organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Naphthalen-1-aminium chloride

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 5 August 2011; accepted 11 August 2011; online 17 August 2011)

In the crystal structure of the title compound, C10H10N+·Cl, the two components are connected via N—H⋯Cl hydrogen bonds, forming a layer parallel to the bc plane.

Related literature

For applications of naphthalene, see: Griego et al. (2008[Griego, F. Y., Bogen, K. T., Price, P. S. & Weed, D. L. (2008). Regul. Toxicol. Pharmacol. 51 (Suppl. 1), S22-S26.]). For a related structure, see: Pitchumony & Stoeckli-Evans (2005[Pitchumony, T. S. & Stoeckli-Evans, H. (2005). Acta Cryst. E61, o40-o41.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N+·Cl

  • Mr = 179.64

  • Monoclinic, P 21 /c

  • a = 13.9691 (11) Å

  • b = 5.2811 (4) Å

  • c = 12.164 (1) Å

  • β = 93.791 (2)°

  • V = 895.40 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.50 × 0.11 × 0.06 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.838, Tmax = 0.978

  • 7193 measured reflections

  • 2612 independent reflections

  • 2013 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.05

  • 2612 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.89 2.41 3.1824 (11) 145
N1—H1B⋯Cl1ii 0.89 2.27 3.1355 (11) 164
N1—H1C⋯Cl1 0.89 2.24 3.1225 (11) 170
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Naphthalene, a bicyclic aromatic compound, can be found environmentally as a constituent of coal tar, crude oil, and cigarette smoke. It is also used in chemical manufacturing as a chemical intermediate for many commercial products ranging from pesticides to plastics. Because of its widespread human exposure (Griego et al., 2008), its toxicological properties have been the subject of numerous assessments. Of particular interest was an evaluation for the potential to induce tumors. Herein, we have present the crystal structure of napthalen-1-ammonium chloride (I).

The asymmetric unit of title compound (I), consists of a protonated napthalen-1-ammonium cation and a chloride anion as shown in Fig. 1. In the cation, the C1–C6 bonds are long [1.4260 (17) Å], while the C7–C8, C9–C10, C2—C3 and C4–C5 bonds are short, ranging from 1.357 (3) to 1.370 (2) Å . The remainder of the bonds, C8–C9, C1–C2, C1–C10, C3–C4, C5–C6, C6–C7 and C8–C9 have an intermediate length, ranging from 1.407 (2) to 1.420 (2) Å. This variation indicates that the π electrons are not fully delocalized over the whole nucleus of the naphthalene ring. This situation is similar to that observed in the crystal structure of napththalene 2,3-dicarbonitrile (Pitchumony & Stoeckli-Evans, 2005). The naphthalene ring is essentially planar, with a maximum deviation of 0.007 (2) Å for atom C2. In the crystal structure, (Fig. 2), the ion pairs are connected via N—H···Cl hydrogen bonds (Table 1) forming layers parallel to the bc-plane.

Related literature top

For applications of naphthalene, see: Griego et al. (2008). For a related structure, see: Pitchumony & Stoeckli-Evans (2005).

Experimental top

In a round bottom flask, 25ml of toluene was mixed with 1-nitronapthalene (0.01 mol, 1.5 g) with stirring. Iron powder (0.2 g) dissolved with 5 ml of hydrochloric acid was then added. The mixture was neutralized with sodium hydroxide solution. The blue precipitate formed was washed with alkaline water and then was dissolved in methanol at room temperature. After few days, blue needle-shaped crystals was formed by slow evaporation.

Refinement top

All hydrogen atoms were positioned geometrically (N—H = 0.89 Å and C—H = 0.93 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The intermolecular N—H···Cl hydrogen bond shown by a dashed line.
[Figure 2] Fig. 2. The crystal packing of title compound (I), dashed lines represents hydrogen bonds. H atoms not involved in the hydrogen bond interactions are omitted for clarity.
naphthalen-1-aminium chloride top
Crystal data top
C10H10N+·ClF(000) = 376
Mr = 179.64Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2184 reflections
a = 13.9691 (11) Åθ = 2.4–29.5°
b = 5.2811 (4) ŵ = 0.37 mm1
c = 12.164 (1) ÅT = 296 K
β = 93.791 (2)°Needle, blue
V = 895.40 (12) Å30.50 × 0.11 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2612 independent reflections
Radiation source: fine-focus sealed tube2013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.838, Tmax = 0.978k = 77
7193 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.1614P]
where P = (Fo2 + 2Fc2)/3
2612 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C10H10N+·ClV = 895.40 (12) Å3
Mr = 179.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9691 (11) ŵ = 0.37 mm1
b = 5.2811 (4) ÅT = 296 K
c = 12.164 (1) Å0.50 × 0.11 × 0.06 mm
β = 93.791 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2612 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2013 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.978Rint = 0.024
7193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
2612 reflectionsΔρmin = 0.17 e Å3
110 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.09331 (7)0.2065 (2)0.61299 (9)0.0337 (3)
H1A0.06940.33490.64980.051*
H1B0.06530.06290.63180.051*
H1C0.08240.23240.54100.051*
C10.24993 (9)0.0070 (3)0.58382 (10)0.0327 (3)
C20.20875 (10)0.1621 (3)0.50320 (11)0.0386 (3)
H2A0.14300.15760.48500.046*
C30.26516 (12)0.3317 (3)0.45199 (13)0.0481 (4)
H3A0.23760.44170.39930.058*
C40.36465 (12)0.3402 (4)0.47879 (14)0.0540 (4)
H4A0.40240.45580.44340.065*
C50.40605 (11)0.1815 (4)0.55573 (14)0.0500 (4)
H5A0.47190.18980.57230.060*
C60.35070 (9)0.0034 (3)0.61123 (11)0.0385 (3)
C70.39198 (10)0.1629 (4)0.69232 (13)0.0489 (4)
H7A0.45760.15570.71060.059*
C80.33727 (11)0.3331 (4)0.74393 (13)0.0493 (4)
H8A0.36580.44070.79710.059*
C90.23783 (10)0.3478 (3)0.71757 (11)0.0390 (3)
H9A0.20060.46470.75280.047*
C100.19664 (9)0.1892 (3)0.63994 (10)0.0310 (3)
Cl10.02807 (2)0.28819 (7)0.36504 (2)0.03865 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0316 (5)0.0390 (7)0.0306 (5)0.0057 (5)0.0026 (4)0.0010 (5)
C10.0331 (6)0.0343 (8)0.0309 (5)0.0033 (6)0.0033 (4)0.0064 (6)
C20.0390 (6)0.0398 (9)0.0370 (6)0.0039 (6)0.0040 (5)0.0009 (6)
C30.0569 (9)0.0442 (10)0.0438 (7)0.0070 (8)0.0080 (6)0.0054 (7)
C40.0563 (9)0.0516 (11)0.0557 (9)0.0219 (9)0.0159 (7)0.0019 (8)
C50.0375 (7)0.0562 (11)0.0571 (9)0.0142 (8)0.0082 (6)0.0076 (8)
C60.0329 (6)0.0408 (9)0.0419 (7)0.0037 (6)0.0032 (5)0.0084 (6)
C70.0338 (6)0.0589 (11)0.0530 (8)0.0028 (7)0.0045 (6)0.0052 (8)
C80.0438 (8)0.0560 (11)0.0471 (8)0.0101 (8)0.0048 (6)0.0070 (8)
C90.0411 (7)0.0398 (8)0.0362 (6)0.0003 (7)0.0034 (5)0.0025 (6)
C100.0311 (5)0.0334 (7)0.0286 (5)0.0024 (6)0.0026 (4)0.0042 (5)
Cl10.04571 (19)0.0405 (2)0.03008 (16)0.00534 (16)0.00533 (12)0.00064 (14)
Geometric parameters (Å, º) top
N1—C101.4617 (16)C4—C51.357 (3)
N1—H1A0.8900C4—H4A0.9300
N1—H1B0.8900C5—C61.417 (2)
N1—H1C0.8900C5—H5A0.9300
C1—C101.4189 (19)C6—C71.415 (2)
C1—C21.420 (2)C7—C81.360 (2)
C1—C61.4260 (17)C7—H7A0.9300
C2—C31.370 (2)C8—C91.407 (2)
C2—H2A0.9300C8—H8A0.9300
C3—C41.407 (2)C9—C101.361 (2)
C3—H3A0.9300C9—H9A0.9300
C10—N1—H1A109.5C4—C5—C6121.17 (14)
C10—N1—H1B109.5C4—C5—H5A119.4
H1A—N1—H1B109.5C6—C5—H5A119.4
C10—N1—H1C109.5C7—C6—C5122.29 (14)
H1A—N1—H1C109.5C7—C6—C1119.33 (14)
H1B—N1—H1C109.5C5—C6—C1118.38 (14)
C10—C1—C2123.87 (12)C8—C7—C6121.10 (14)
C10—C1—C6117.05 (13)C8—C7—H7A119.5
C2—C1—C6119.08 (13)C6—C7—H7A119.5
C3—C2—C1120.43 (13)C7—C8—C9120.51 (15)
C3—C2—H2A119.8C7—C8—H8A119.7
C1—C2—H2A119.8C9—C8—H8A119.7
C2—C3—C4120.31 (16)C10—C9—C8119.33 (14)
C2—C3—H3A119.8C10—C9—H9A120.3
C4—C3—H3A119.8C8—C9—H9A120.3
C5—C4—C3120.62 (15)C9—C10—C1122.68 (12)
C5—C4—H4A119.7C9—C10—N1118.88 (12)
C3—C4—H4A119.7C1—C10—N1118.44 (12)
C10—C1—C2—C3179.52 (14)C5—C6—C7—C8179.64 (16)
C6—C1—C2—C30.4 (2)C1—C6—C7—C80.4 (2)
C1—C2—C3—C40.0 (2)C6—C7—C8—C90.1 (3)
C2—C3—C4—C50.2 (3)C7—C8—C9—C100.2 (2)
C3—C4—C5—C60.1 (3)C8—C9—C10—C10.2 (2)
C4—C5—C6—C7179.52 (17)C8—C9—C10—N1179.85 (13)
C4—C5—C6—C10.4 (2)C2—C1—C10—C9179.46 (14)
C10—C1—C6—C70.7 (2)C6—C1—C10—C90.6 (2)
C2—C1—C6—C7179.35 (14)C2—C1—C10—N10.53 (19)
C10—C1—C6—C5179.33 (13)C6—C1—C10—N1179.41 (12)
C2—C1—C6—C50.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.892.413.1824 (11)145
N1—H1B···Cl1ii0.892.273.1355 (11)164
N1—H1C···Cl10.892.243.1225 (11)170
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H10N+·Cl
Mr179.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.9691 (11), 5.2811 (4), 12.164 (1)
β (°) 93.791 (2)
V3)895.40 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.50 × 0.11 × 0.06
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.838, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
7193, 2612, 2013
Rint0.024
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.05
No. of reflections2612
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.89002.41003.1824 (11)145.00
N1—H1B···Cl1ii0.89002.27003.1355 (11)164.00
N1—H1C···Cl10.89002.24003.1225 (11)170.00
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NM gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 304/PF/PFARMASI/650512/I121). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGriego, F. Y., Bogen, K. T., Price, P. S. & Weed, D. L. (2008). Regul. Toxicol. Pharmacol. 51 (Suppl. 1), S22–S26.  Google Scholar
First citationPitchumony, T. S. & Stoeckli-Evans, H. (2005). Acta Cryst. E61, o40–o41.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds