metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1242-m1243

Bis(1-benzyl-3-methyl­imidazolium-κC2)mercury(II) bis­­(hexa­fluoridophosphate)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 5 August 2011; accepted 9 August 2011; online 17 August 2011)

The asymmetric unit of the title complex, [Hg(C11H12N2)2](PF6)2, consists of one bis­(1-benzyl-3-methyl­imidazolium)mercury(II) cation, one half of the cation and an additional HgII atom, which lies on an inversion centre, and three hexa­fluorido­phosphate anions. The HgII atoms exist in a linear coordination geometry [C—Hg—C = 178.9 (2) and 180°] formed by two carbene C atoms from the imidazole rings. In the crystal, the cations and anions are connected via C—H⋯F hydrogen bonds, forming a three-dimensional network.

Related literature

For details of N-heterocyclic carbenes, see: Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Arduengo et al. (1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]); Herrmann et al. (1998[Herrmann, W. A., Goossen, L. J. & Spiegler, M. (1998). Organometallics, 17, 2162-2168.]); McGuinness et al. (1999[McGuinness, D. S., Cavell, K. J., Skelton, B. W. & White, A. H. (1999). Organometallics, 18, 1596-1605.]); Wanzlick & Schönherr (1968[Wanzlick, H. W. & Schönherr, H. J. (1968). Angew. Chem. Int. Ed. Engl. 7, 141-142.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(C11H12N2)2](PF6)2

  • Mr = 834.98

  • Monoclinic, P 21 /c

  • a = 15.1260 (17) Å

  • b = 10.3044 (11) Å

  • c = 26.398 (3) Å

  • β = 102.275 (2)°

  • V = 4020.5 (8) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 5.97 mm−1

  • T = 100 K

  • 0.34 × 0.32 × 0.05 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.233, Tmax = 0.751

  • 23876 measured reflections

  • 7062 independent reflections

  • 5985 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.06

  • 7062 reflections

  • 559 parameters

  • H-atom parameters constrained

  • Δρmax = 1.71 e Å−3

  • Δρmin = −2.05 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯F15i 0.93 2.32 3.240 (7) 171
C11—H11C⋯F6ii 0.96 2.55 3.375 (7) 144
C13—H13A⋯F7i 0.93 2.43 3.355 (7) 175
C18—H18A⋯F5ii 0.97 2.50 3.282 (6) 138
C18—H18B⋯F13ii 0.97 2.45 3.111 (6) 125
C21—H21A⋯F12iii 0.93 2.51 3.351 (6) 150
C29—H29B⋯F17iv 0.97 2.48 3.125 (7) 123
C31—H31A⋯F11iv 0.93 2.43 3.271 (6) 150
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the last two decades, N-heterocyclic carbene (NHC) ligands have emerged as useful and versatile ligands in organometallic chemistry (Herrmann, 2002). The chemistry of NHCs attracted much attention after the isolation of the first stable, crystalline free carbene (Arduengo et al., 1991) which was [1,3-bis(adamantly)imidazole-2-ylidene]. Carbene ligands have some similarities to phosphine ligands, but metal- carbene complexes are often more stable than similar metal phosphine complexes (Herrmann et al., 1998; McGuinness et al., 1999). The first mercury(II)-NHC complex was prepared by Wanzlick and Schönherr (1968) via direct reaction of an imidazolium salt with mercury(II) acetate. However, in spite of being the earliest example of NHC-metal complexes prepared, NHC-mercury complexes have received little attention compared with other metals. Similarly, their applications have not been widely explored.

The asymmetric unit of title complex (I) consists of one bis(1-benzyl-3- methylimidazolium)mercury(II) cation, a half of the (1-benzyl-3-methyl imidazolium)mercury(II) cation (which lies on an inversion centre) and three hexafluorophosphate anions as shown in Fig. 1. The HgII atom exists in a linear coordination geometry formed by two C atoms from the imidazole rings. The bond distances of Hg1–C8 = 2.070 (5) Å; Hg1–C19 = 2.073 (5) Å and Hg2–C30 = 2.070 (5) Å. The distorted octahedral geometry of phosphate ion has typical P–F distances [1.578 (4)–1.610 (3) Å] and F—P—F angles [88.37 (19)–179.4 (2)°]. All bond lengths and bond angles in (I) are in the range of expected values.

In the crystal structure (Fig. 2), ions are connected by C10—H10A···F15; C13—H13A···F7; C18—H18A···F5; C18—H18B···F13; C21—H21A···F12; C29—H29B···F17 and C31—H31A···F11 hydrogen bonds (Table 1), forming a three-dimensional network.

Related literature top

For details of N-heterocyclic carbenes, see: Herrmann (2002); Arduengo et al. (1991); Herrmann et al. (1998); McGuinness et al. (1999); Wanzlick & Schönherr (1968). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hg(OAc)2 (0.35 g, 1.09 mmol) was added to a solution of 1-benzyl-3-methylimidazolium hexafluorophosphate (0.6 g, 1.88) in 40 ml of acetonitrile. The mixture was refluxed at 353–363 K for 18 h to give a clear solution. The solvent was removed under reduced pressure to afford a white solid. The white solid was collected, washed with distilled water (3 × 5 ml) and recrystallized from acetonitrile. Yield: 62.4 %, m.p. = 540–543 °C. Crystal suitable for X-ray analysis was obtained by slow diffusion of diethyl ether into solution of the complex in acetonitrile.

Refinement top

All hydrogen atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. The highest residual electron density peak is located at 1.30 Å from C8 and the deepest hole 0.96 Å located at from Hg2.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. N5A–N6A/C23A–C32A are generated by the symmetry code -x, -y, -z (H atoms are omitted for clarity).
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network.
Bis(1-benzyl-3-methylimidazolium-κC2)mercury(II) bis(hexafluoridophosphate) top
Crystal data top
[Hg(C11H12N2)2](PF6)2F(000) = 2412
Mr = 834.98Dx = 2.069 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9967 reflections
a = 15.1260 (17) Åθ = 2.8–29.9°
b = 10.3044 (11) ŵ = 5.97 mm1
c = 26.398 (3) ÅT = 100 K
β = 102.275 (2)°Plate, colourless
V = 4020.5 (8) Å30.34 × 0.32 × 0.05 mm
Z = 6
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7062 independent reflections
Radiation source: fine-focus sealed tube5985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.233, Tmax = 0.751k = 1212
23876 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0446P)2 + 4.1101P]
where P = (Fo2 + 2Fc2)/3
7062 reflections(Δ/σ)max = 0.002
559 parametersΔρmax = 1.71 e Å3
0 restraintsΔρmin = 2.05 e Å3
Crystal data top
[Hg(C11H12N2)2](PF6)2V = 4020.5 (8) Å3
Mr = 834.98Z = 6
Monoclinic, P21/cMo Kα radiation
a = 15.1260 (17) ŵ = 5.97 mm1
b = 10.3044 (11) ÅT = 100 K
c = 26.398 (3) Å0.34 × 0.32 × 0.05 mm
β = 102.275 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7062 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5985 reflections with I > 2σ(I)
Tmin = 0.233, Tmax = 0.751Rint = 0.046
23876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.06Δρmax = 1.71 e Å3
7062 reflectionsΔρmin = 2.05 e Å3
559 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.315207 (14)0.97602 (2)0.334192 (7)0.01976 (8)
N10.4304 (3)0.7691 (4)0.40062 (17)0.0236 (10)
N20.5155 (3)0.8950 (4)0.36710 (16)0.0224 (10)
N30.2029 (3)1.1919 (4)0.27283 (16)0.0202 (9)
N40.1147 (3)1.0569 (4)0.30011 (16)0.0212 (10)
C10.2034 (4)0.7697 (6)0.4355 (2)0.0257 (12)
H1A0.17900.69580.41760.031*
C20.1494 (4)0.8480 (6)0.4601 (2)0.0274 (13)
H2A0.08950.82560.45890.033*
C30.1852 (4)0.9572 (6)0.4857 (2)0.0286 (13)
H3A0.14961.00860.50240.034*
C40.2739 (4)0.9921 (6)0.4872 (2)0.0300 (14)
H4A0.29721.06780.50400.036*
C50.3283 (4)0.9140 (5)0.4635 (2)0.0242 (12)
H5A0.38820.93690.46490.029*
C60.2933 (3)0.8026 (5)0.43784 (19)0.0217 (11)
C70.3504 (4)0.7083 (6)0.4139 (2)0.0297 (13)
H7A0.36990.63790.43800.036*
H7B0.31320.67140.38270.036*
C80.4286 (3)0.8703 (5)0.3685 (2)0.0219 (11)
C90.5174 (4)0.7287 (6)0.4192 (2)0.0274 (13)
H9A0.53600.66020.44190.033*
C100.5708 (4)0.8078 (6)0.3981 (2)0.0284 (13)
H10A0.63360.80390.40350.034*
C110.5465 (4)0.9991 (6)0.3372 (2)0.0317 (14)
H11A0.49761.02590.30970.048*
H11B0.59560.96800.32270.048*
H11C0.56661.07150.35950.048*
C120.4378 (4)1.2409 (6)0.2515 (2)0.0265 (12)
H12A0.45321.31400.27220.032*
C130.5017 (4)1.1815 (6)0.2282 (2)0.0284 (13)
H13A0.55991.21520.23320.034*
C140.4788 (4)1.0730 (6)0.1976 (2)0.0269 (13)
H14A0.52141.03490.18150.032*
C150.3924 (4)1.0201 (5)0.1908 (2)0.0278 (13)
H15A0.37750.94530.17110.033*
C160.3284 (3)1.0807 (5)0.21380 (19)0.0221 (12)
H16A0.27021.04660.20880.027*
C170.3499 (3)1.1894 (5)0.24355 (19)0.0202 (11)
C180.2829 (3)1.2660 (5)0.2668 (2)0.0224 (12)
H18A0.31341.29790.30060.027*
H18B0.26311.34070.24500.027*
C190.2020 (3)1.0841 (5)0.30121 (19)0.0207 (11)
C200.1155 (3)1.2331 (6)0.2541 (2)0.0249 (12)
H20A0.09781.30530.23320.030*
C210.0606 (3)1.1502 (6)0.2714 (2)0.0273 (13)
H21A0.00221.15470.26530.033*
C220.0795 (4)0.9499 (6)0.3266 (2)0.0300 (13)
H22A0.12770.91340.35220.045*
H22B0.05480.88430.30180.045*
H22C0.03310.98180.34310.045*
P10.45866 (9)0.30179 (15)0.42352 (5)0.0234 (3)
F10.5096 (3)0.1820 (4)0.45364 (15)0.0601 (12)
F20.5246 (2)0.3987 (5)0.46037 (15)0.0600 (13)
F30.3896 (2)0.3037 (4)0.46149 (12)0.0484 (11)
F40.4061 (2)0.4205 (3)0.39212 (14)0.0442 (9)
F50.3921 (2)0.2045 (3)0.38564 (13)0.0337 (8)
F60.5263 (2)0.2995 (3)0.38445 (12)0.0330 (8)
P20.21906 (9)0.66755 (14)0.24439 (5)0.0218 (3)
F70.2844 (2)0.7903 (3)0.24821 (13)0.0356 (8)
F80.1816 (3)0.7220 (4)0.29269 (14)0.0482 (10)
F90.2952 (2)0.5900 (3)0.28381 (13)0.0348 (8)
F100.1427 (2)0.7453 (4)0.20554 (15)0.0467 (10)
F110.2578 (2)0.6126 (4)0.19728 (12)0.0407 (9)
F120.1528 (2)0.5457 (3)0.24149 (13)0.0366 (8)
Hg20.00000.00000.00000.01912 (9)
N50.1234 (3)0.1955 (5)0.06934 (16)0.0235 (10)
N60.2023 (3)0.0628 (5)0.03454 (16)0.0221 (10)
C230.1087 (3)0.2497 (5)0.09363 (19)0.0243 (12)
H23A0.12110.32830.07630.029*
C240.1761 (4)0.1875 (6)0.1134 (2)0.0298 (14)
H24A0.23320.22450.10910.036*
C250.1581 (4)0.0723 (6)0.1391 (2)0.0271 (13)
H25A0.20280.03150.15260.033*
C260.0732 (4)0.0163 (5)0.1451 (2)0.0275 (13)
H26A0.06130.06270.16220.033*
C270.0054 (4)0.0778 (6)0.12544 (19)0.0245 (12)
H27A0.05160.04020.12970.029*
C280.0231 (3)0.1943 (5)0.09981 (19)0.0223 (12)
C290.0482 (4)0.2735 (6)0.0805 (2)0.0265 (12)
H29A0.01930.31910.04920.032*
H29B0.07270.33810.10640.032*
C300.1169 (3)0.0956 (5)0.03602 (19)0.0194 (11)
C310.2122 (4)0.2274 (6)0.0878 (2)0.0278 (13)
H31A0.23410.29380.11090.033*
C320.2616 (4)0.1437 (6)0.0659 (2)0.0288 (13)
H32A0.32440.14140.07120.035*
C330.2284 (4)0.0431 (6)0.0037 (2)0.0283 (13)
H33A0.17740.06750.02300.042*
H33B0.24780.11640.02580.042*
H33C0.27700.01490.01180.042*
P30.12543 (9)0.28634 (14)0.09916 (5)0.0229 (3)
F130.1781 (3)0.3315 (4)0.15507 (13)0.0482 (10)
F140.0398 (2)0.2474 (4)0.12232 (14)0.0420 (9)
F150.2103 (2)0.3240 (4)0.07545 (13)0.0426 (9)
F160.0722 (2)0.2397 (3)0.04238 (12)0.0351 (8)
F170.0841 (2)0.4277 (3)0.08649 (13)0.0371 (8)
F180.1647 (2)0.1422 (3)0.11060 (12)0.0348 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01747 (12)0.02072 (13)0.02189 (12)0.00238 (8)0.00597 (8)0.00041 (8)
N10.029 (3)0.018 (2)0.027 (2)0.008 (2)0.013 (2)0.0043 (19)
N20.022 (2)0.022 (2)0.025 (2)0.002 (2)0.0088 (19)0.0036 (19)
N30.015 (2)0.023 (2)0.025 (2)0.0042 (19)0.0085 (18)0.0001 (19)
N40.017 (2)0.025 (2)0.024 (2)0.000 (2)0.0084 (18)0.000 (2)
C10.027 (3)0.026 (3)0.024 (3)0.008 (2)0.005 (2)0.003 (2)
C20.023 (3)0.036 (3)0.024 (3)0.002 (3)0.008 (2)0.006 (3)
C30.028 (3)0.035 (3)0.028 (3)0.007 (3)0.015 (2)0.005 (3)
C40.034 (3)0.028 (3)0.031 (3)0.001 (3)0.012 (3)0.004 (2)
C50.021 (3)0.028 (3)0.025 (3)0.001 (2)0.007 (2)0.001 (2)
C60.022 (3)0.023 (3)0.020 (3)0.003 (2)0.004 (2)0.003 (2)
C70.033 (3)0.020 (3)0.042 (3)0.001 (3)0.022 (3)0.003 (3)
C80.023 (3)0.019 (3)0.025 (3)0.004 (2)0.009 (2)0.002 (2)
C90.029 (3)0.029 (3)0.024 (3)0.013 (3)0.005 (2)0.004 (2)
C100.019 (3)0.038 (4)0.026 (3)0.009 (3)0.001 (2)0.003 (3)
C110.028 (3)0.032 (3)0.040 (4)0.001 (3)0.018 (3)0.000 (3)
C120.023 (3)0.027 (3)0.030 (3)0.002 (2)0.007 (2)0.002 (2)
C130.016 (3)0.034 (3)0.038 (3)0.000 (2)0.011 (2)0.012 (3)
C140.026 (3)0.028 (3)0.031 (3)0.007 (3)0.016 (2)0.008 (2)
C150.037 (3)0.025 (3)0.023 (3)0.004 (3)0.012 (3)0.000 (2)
C160.018 (3)0.026 (3)0.025 (3)0.004 (2)0.009 (2)0.002 (2)
C170.016 (3)0.022 (3)0.024 (3)0.005 (2)0.009 (2)0.005 (2)
C180.021 (3)0.022 (3)0.026 (3)0.002 (2)0.008 (2)0.002 (2)
C190.018 (3)0.024 (3)0.023 (3)0.003 (2)0.012 (2)0.001 (2)
C200.018 (3)0.029 (3)0.027 (3)0.008 (2)0.003 (2)0.001 (2)
C210.015 (3)0.035 (3)0.031 (3)0.003 (2)0.004 (2)0.001 (3)
C220.023 (3)0.031 (3)0.040 (3)0.002 (3)0.016 (3)0.007 (3)
P10.0168 (7)0.0314 (8)0.0225 (7)0.0002 (6)0.0054 (6)0.0045 (6)
F10.044 (2)0.074 (3)0.061 (3)0.021 (2)0.009 (2)0.033 (2)
F20.036 (2)0.088 (3)0.058 (2)0.017 (2)0.0141 (19)0.044 (2)
F30.0268 (18)0.094 (3)0.0278 (18)0.002 (2)0.0140 (15)0.008 (2)
F40.044 (2)0.028 (2)0.063 (2)0.0109 (17)0.0169 (19)0.0044 (18)
F50.0269 (17)0.0280 (19)0.048 (2)0.0072 (15)0.0110 (15)0.0115 (16)
F60.0233 (17)0.046 (2)0.0332 (18)0.0088 (16)0.0142 (14)0.0085 (16)
P20.0182 (7)0.0220 (7)0.0261 (7)0.0002 (6)0.0068 (6)0.0002 (6)
F70.0307 (18)0.0258 (19)0.052 (2)0.0038 (15)0.0115 (16)0.0000 (16)
F80.066 (3)0.038 (2)0.053 (2)0.009 (2)0.041 (2)0.0030 (18)
F90.0252 (17)0.035 (2)0.043 (2)0.0026 (15)0.0034 (15)0.0113 (16)
F100.0290 (19)0.044 (2)0.063 (2)0.0097 (17)0.0005 (17)0.0187 (19)
F110.054 (2)0.040 (2)0.0351 (19)0.0009 (18)0.0250 (17)0.0065 (16)
F120.0218 (17)0.0309 (19)0.056 (2)0.0058 (15)0.0061 (15)0.0047 (17)
Hg20.01532 (15)0.02267 (16)0.02001 (15)0.00282 (11)0.00519 (11)0.00063 (11)
N50.023 (2)0.026 (3)0.022 (2)0.007 (2)0.0074 (19)0.001 (2)
N60.019 (2)0.028 (3)0.021 (2)0.001 (2)0.0081 (18)0.000 (2)
C230.026 (3)0.023 (3)0.024 (3)0.006 (2)0.006 (2)0.000 (2)
C240.020 (3)0.041 (4)0.032 (3)0.006 (3)0.012 (2)0.010 (3)
C250.031 (3)0.030 (3)0.025 (3)0.008 (3)0.015 (2)0.007 (2)
C260.035 (3)0.024 (3)0.027 (3)0.007 (3)0.015 (3)0.002 (2)
C270.024 (3)0.029 (3)0.023 (3)0.001 (2)0.012 (2)0.001 (2)
C280.022 (3)0.023 (3)0.023 (3)0.001 (2)0.007 (2)0.003 (2)
C290.028 (3)0.026 (3)0.029 (3)0.001 (3)0.012 (2)0.001 (2)
C300.014 (3)0.023 (3)0.023 (3)0.001 (2)0.008 (2)0.000 (2)
C310.024 (3)0.040 (4)0.020 (3)0.013 (3)0.005 (2)0.002 (2)
C320.016 (3)0.040 (4)0.030 (3)0.007 (3)0.004 (2)0.004 (3)
C330.024 (3)0.030 (3)0.036 (3)0.000 (3)0.017 (3)0.002 (3)
P30.0212 (7)0.0235 (8)0.0252 (7)0.0024 (6)0.0078 (6)0.0020 (6)
F130.064 (2)0.045 (2)0.0311 (19)0.007 (2)0.0009 (18)0.0066 (17)
F140.038 (2)0.040 (2)0.057 (2)0.0023 (17)0.0284 (18)0.0121 (18)
F150.0201 (17)0.057 (3)0.054 (2)0.0034 (17)0.0155 (16)0.0187 (19)
F160.0354 (19)0.035 (2)0.0321 (18)0.0034 (16)0.0011 (15)0.0069 (15)
F170.046 (2)0.0260 (19)0.042 (2)0.0047 (17)0.0158 (17)0.0026 (16)
F180.0357 (19)0.0311 (19)0.0369 (19)0.0091 (16)0.0061 (15)0.0029 (15)
Geometric parameters (Å, º) top
Hg1—C82.070 (5)C21—H21A0.9300
Hg1—C192.073 (5)C22—H22A0.9600
N1—C81.341 (7)C22—H22B0.9600
N1—C91.367 (7)C22—H22C0.9600
N1—C71.470 (7)P1—F11.578 (4)
N2—C81.348 (6)P1—F21.589 (4)
N2—C101.373 (7)P1—F41.592 (4)
N2—C111.467 (7)P1—F31.594 (3)
N3—C191.341 (7)P1—F61.600 (3)
N3—C201.377 (6)P1—F51.610 (3)
N3—C181.467 (6)P2—F111.588 (3)
N4—C191.344 (6)P2—F101.588 (4)
N4—C211.380 (7)P2—F91.593 (3)
N4—C221.464 (7)P2—F71.595 (3)
C1—C61.391 (7)P2—F121.598 (3)
C1—C21.401 (8)P2—F81.603 (3)
C1—H1A0.9300Hg2—C30i2.070 (5)
C2—C31.365 (8)Hg2—C302.070 (5)
C2—H2A0.9300N5—C301.344 (7)
C3—C41.381 (8)N5—C311.368 (7)
C3—H3A0.9300N5—C291.472 (7)
C4—C51.392 (8)N6—C301.344 (6)
C4—H4A0.9300N6—C321.368 (7)
C5—C61.379 (8)N6—C331.465 (7)
C5—H5A0.9300C23—C281.393 (7)
C6—C71.523 (7)C23—C241.396 (7)
C7—H7A0.9700C23—H23A0.9300
C7—H7B0.9700C24—C251.365 (8)
C9—C101.350 (8)C24—H24A0.9300
C9—H9A0.9300C25—C261.387 (8)
C10—H10A0.9300C25—H25A0.9300
C11—H11A0.9600C26—C271.395 (7)
C11—H11B0.9600C26—H26A0.9300
C11—H11C0.9600C27—C281.376 (8)
C12—C131.393 (7)C27—H27A0.9300
C12—C171.405 (7)C28—C291.524 (7)
C12—H12A0.9300C29—H29A0.9700
C13—C141.379 (8)C29—H29B0.9700
C13—H13A0.9300C31—C321.350 (8)
C14—C151.392 (8)C31—H31A0.9300
C14—H14A0.9300C32—H32A0.9300
C15—C161.396 (7)C33—H33A0.9600
C15—H15A0.9300C33—H33B0.9600
C16—C171.367 (7)C33—H33C0.9600
C16—H16A0.9300P3—F131.591 (4)
C17—C181.514 (7)P3—F151.591 (3)
C18—H18A0.9700P3—F171.592 (4)
C18—H18B0.9700P3—F141.597 (3)
C20—C211.337 (7)P3—F181.604 (3)
C20—H20A0.9300P3—F161.616 (3)
C8—Hg1—C19178.9 (2)F1—P1—F290.4 (3)
C8—N1—C9110.7 (5)F1—P1—F4178.7 (3)
C8—N1—C7125.1 (5)F2—P1—F490.9 (2)
C9—N1—C7124.3 (5)F1—P1—F390.5 (2)
C8—N2—C10109.6 (4)F2—P1—F391.0 (2)
C8—N2—C11125.3 (5)F4—P1—F389.8 (2)
C10—N2—C11125.1 (5)F1—P1—F690.1 (2)
C19—N3—C20109.5 (4)F2—P1—F689.97 (19)
C19—N3—C18126.7 (4)F4—P1—F689.56 (19)
C20—N3—C18123.5 (5)F3—P1—F6178.9 (2)
C19—N4—C21109.3 (4)F1—P1—F590.0 (2)
C19—N4—C22127.0 (5)F2—P1—F5179.4 (2)
C21—N4—C22123.6 (4)F4—P1—F588.73 (19)
C6—C1—C2120.0 (5)F3—P1—F589.51 (19)
C6—C1—H1A120.0F6—P1—F589.53 (17)
C2—C1—H1A120.0F11—P2—F1090.7 (2)
C3—C2—C1119.7 (5)F11—P2—F989.8 (2)
C3—C2—H2A120.1F10—P2—F9179.4 (2)
C1—C2—H2A120.1F11—P2—F790.32 (19)
C2—C3—C4120.6 (5)F10—P2—F789.8 (2)
C2—C3—H3A119.7F9—P2—F790.26 (19)
C4—C3—H3A119.7F11—P2—F1290.8 (2)
C3—C4—C5120.0 (6)F10—P2—F1290.18 (19)
C3—C4—H4A120.0F9—P2—F1289.78 (19)
C5—C4—H4A120.0F7—P2—F12178.9 (2)
C6—C5—C4120.0 (5)F11—P2—F8178.9 (2)
C6—C5—H5A120.0F10—P2—F890.3 (2)
C4—C5—H5A120.0F9—P2—F889.1 (2)
C5—C6—C1119.6 (5)F7—P2—F889.5 (2)
C5—C6—C7122.8 (5)F12—P2—F889.4 (2)
C1—C6—C7117.5 (5)C30i—Hg2—C30180.0 (4)
N1—C7—C6113.3 (5)C30—N5—C31110.4 (5)
N1—C7—H7A108.9C30—N5—C29126.6 (4)
C6—C7—H7A108.9C31—N5—C29122.6 (5)
N1—C7—H7B108.9C30—N6—C32109.9 (4)
C6—C7—H7B108.9C30—N6—C33125.3 (5)
H7A—C7—H7B107.7C32—N6—C33124.8 (5)
N1—C8—N2105.9 (5)C28—C23—C24120.2 (5)
N1—C8—Hg1126.1 (4)C28—C23—H23A119.9
N2—C8—Hg1127.7 (4)C24—C23—H23A119.9
C10—C9—N1106.4 (5)C25—C24—C23120.1 (5)
C10—C9—H9A126.8C25—C24—H24A120.0
N1—C9—H9A126.8C23—C24—H24A120.0
C9—C10—N2107.4 (5)C24—C25—C26120.0 (5)
C9—C10—H10A126.3C24—C25—H25A120.0
N2—C10—H10A126.3C26—C25—H25A120.0
N2—C11—H11A109.5C25—C26—C27120.3 (5)
N2—C11—H11B109.5C25—C26—H26A119.8
H11A—C11—H11B109.5C27—C26—H26A119.8
N2—C11—H11C109.5C28—C27—C26119.8 (5)
H11A—C11—H11C109.5C28—C27—H27A120.1
H11B—C11—H11C109.5C26—C27—H27A120.1
C13—C12—C17119.4 (5)C27—C28—C23119.6 (5)
C13—C12—H12A120.3C27—C28—C29123.6 (5)
C17—C12—H12A120.3C23—C28—C29116.6 (5)
C14—C13—C12120.2 (5)N5—C29—C28114.0 (5)
C14—C13—H13A119.9N5—C29—H29A108.8
C12—C13—H13A119.9C28—C29—H29A108.8
C13—C14—C15120.3 (5)N5—C29—H29B108.8
C13—C14—H14A119.8C28—C29—H29B108.8
C15—C14—H14A119.8H29A—C29—H29B107.7
C14—C15—C16119.2 (5)N6—C30—N5105.9 (4)
C14—C15—H15A120.4N6—C30—Hg2126.9 (4)
C16—C15—H15A120.4N5—C30—Hg2127.0 (4)
C17—C16—C15121.0 (5)C32—C31—N5106.6 (5)
C17—C16—H16A119.5C32—C31—H31A126.7
C15—C16—H16A119.5N5—C31—H31A126.7
C16—C17—C12119.8 (5)C31—C32—N6107.2 (5)
C16—C17—C18124.2 (5)C31—C32—H32A126.4
C12—C17—C18115.9 (5)N6—C32—H32A126.4
N3—C18—C17114.3 (4)N6—C33—H33A109.5
N3—C18—H18A108.7N6—C33—H33B109.5
C17—C18—H18A108.7H33A—C33—H33B109.5
N3—C18—H18B108.7N6—C33—H33C109.5
C17—C18—H18B108.7H33A—C33—H33C109.5
H18A—C18—H18B107.6H33B—C33—H33C109.5
N3—C19—N4106.7 (5)F13—P3—F1590.4 (2)
N3—C19—Hg1125.0 (4)F13—P3—F1791.4 (2)
N4—C19—Hg1128.1 (4)F15—P3—F1790.44 (19)
C21—C20—N3107.4 (5)F13—P3—F1490.3 (2)
C21—C20—H20A126.3F15—P3—F14179.3 (2)
N3—C20—H20A126.3F17—P3—F1489.77 (19)
C20—C21—N4107.1 (4)F13—P3—F1890.2 (2)
C20—C21—H21A126.4F15—P3—F1890.16 (19)
N4—C21—H21A126.4F17—P3—F18178.3 (2)
N4—C22—H22A109.5F14—P3—F1889.61 (19)
N4—C22—H22B109.5F13—P3—F16179.7 (2)
H22A—C22—H22B109.5F15—P3—F1689.57 (19)
N4—C22—H22C109.5F17—P3—F1688.93 (19)
H22A—C22—H22C109.5F14—P3—F1689.74 (19)
H22B—C22—H22C109.5F18—P3—F1689.47 (18)
C6—C1—C2—C30.8 (8)C18—N3—C19—N4173.6 (4)
C1—C2—C3—C40.7 (9)C20—N3—C19—Hg1175.8 (4)
C2—C3—C4—C51.6 (9)C18—N3—C19—Hg111.0 (7)
C3—C4—C5—C60.9 (9)C21—N4—C19—N31.1 (6)
C4—C5—C6—C10.6 (8)C22—N4—C19—N3178.4 (5)
C4—C5—C6—C7176.1 (5)C21—N4—C19—Hg1176.2 (4)
C2—C1—C6—C51.5 (8)C22—N4—C19—Hg16.5 (8)
C2—C1—C6—C7175.5 (5)C19—N3—C20—C210.4 (6)
C8—N1—C7—C658.1 (7)C18—N3—C20—C21173.1 (5)
C9—N1—C7—C6122.6 (6)N3—C20—C21—N41.0 (6)
C5—C6—C7—N124.6 (7)C19—N4—C21—C201.3 (6)
C1—C6—C7—N1158.5 (5)C22—N4—C21—C20178.7 (5)
C9—N1—C8—N20.6 (6)C28—C23—C24—C250.2 (8)
C7—N1—C8—N2179.9 (5)C23—C24—C25—C260.7 (8)
C9—N1—C8—Hg1175.3 (4)C24—C25—C26—C270.8 (8)
C7—N1—C8—Hg15.4 (8)C25—C26—C27—C280.4 (8)
C10—N2—C8—N10.7 (6)C26—C27—C28—C230.1 (8)
C11—N2—C8—N1179.3 (5)C26—C27—C28—C29175.4 (5)
C10—N2—C8—Hg1175.2 (4)C24—C23—C28—C270.2 (8)
C11—N2—C8—Hg14.7 (8)C24—C23—C28—C29175.7 (5)
C8—N1—C9—C100.3 (6)C30—N5—C29—C2857.7 (7)
C7—N1—C9—C10179.7 (5)C31—N5—C29—C28130.7 (5)
N1—C9—C10—N20.1 (6)C27—C28—C29—N526.5 (7)
C8—N2—C10—C90.5 (6)C23—C28—C29—N5157.8 (5)
C11—N2—C10—C9179.5 (5)C32—N6—C30—N51.3 (6)
C17—C12—C13—C140.2 (8)C33—N6—C30—N5179.1 (5)
C12—C13—C14—C151.4 (8)C32—N6—C30—Hg2175.8 (4)
C13—C14—C15—C162.1 (8)C33—N6—C30—Hg24.5 (8)
C14—C15—C16—C171.1 (8)C31—N5—C30—N61.4 (6)
C15—C16—C17—C120.4 (8)C29—N5—C30—N6173.9 (5)
C15—C16—C17—C18175.7 (5)C31—N5—C30—Hg2175.9 (4)
C13—C12—C17—C161.1 (8)C29—N5—C30—Hg211.6 (8)
C13—C12—C17—C18175.4 (5)C30—N5—C31—C321.0 (6)
C19—N3—C18—C1760.2 (7)C29—N5—C31—C32173.8 (5)
C20—N3—C18—C17127.5 (5)N5—C31—C32—N60.2 (6)
C16—C17—C18—N322.5 (7)C30—N6—C32—C310.7 (6)
C12—C17—C18—N3161.2 (5)C33—N6—C32—C31179.6 (5)
C20—N3—C19—N40.5 (6)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···F15ii0.932.323.240 (7)171
C11—H11C···F6iii0.962.553.375 (7)144
C13—H13A···F7ii0.932.433.355 (7)175
C18—H18A···F5iii0.972.503.282 (6)138
C18—H18B···F13iii0.972.453.111 (6)125
C21—H21A···F12iv0.932.513.351 (6)150
C29—H29B···F17v0.972.483.125 (7)123
C31—H31A···F11v0.932.433.271 (6)150
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Hg(C11H12N2)2](PF6)2
Mr834.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.1260 (17), 10.3044 (11), 26.398 (3)
β (°) 102.275 (2)
V3)4020.5 (8)
Z6
Radiation typeMo Kα
µ (mm1)5.97
Crystal size (mm)0.34 × 0.32 × 0.05
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.233, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
23876, 7062, 5985
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.06
No. of reflections7062
No. of parameters559
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.71, 2.05

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···F15i0.932.323.240 (7)171
C11—H11C···F6ii0.962.553.375 (7)144
C13—H13A···F7i0.932.433.355 (7)175
C18—H18A···F5ii0.972.503.282 (6)138
C18—H18B···F13ii0.972.453.111 (6)125
C21—H21A···F12iii0.932.513.351 (6)150
C29—H29B···F17iv0.972.483.125 (7)123
C31—H31A···F11iv0.932.433.271 (6)150
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH and AWS thank Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), short term grant (304/PKIMIA/639001) and RU grants (1001/PKIMIA/813023 and 1001/PKIMIA/811157). AWS thanks Universiti Sains Malaysia (USM) for the RU grant (1001/PKIMIA/843090). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Goossen, L. J. & Spiegler, M. (1998). Organometallics, 17, 2162–2168.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcGuinness, D. S., Cavell, K. J., Skelton, B. W. & White, A. H. (1999). Organometallics, 18, 1596–1605.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWanzlick, H. W. & Schönherr, H. J. (1968). Angew. Chem. Int. Ed. Engl. 7, 141–142.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1242-m1243
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds