organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Amino-1,8-naphthyridin-2(1H)-one monohydrate

aFaculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, People's Republic of China
*Correspondence e-mail: lizhen0520@139.com

(Received 6 August 2011; accepted 18 August 2011; online 31 August 2011)

In the crystal structure of the title compound, C8H7N3O·H2O, adjacent organic mol­ecules are linked together into a tape along the a axis through N—H⋯N and N—H⋯O hydrogen bonds. On the other hand, water mol­ecules are linked together to form a chain along the b axis through O—H⋯O hydrogen bonds. The water chains and the organic mol­ecular tapes are further connected by inter­molecular O—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, a ππ stacking inter­action between the 1,8-naphthyridine ring systems with an inter­planar separation of 3.246 (1) Å and a centroid–centroid distance of 3.825 (2) Å is observed.

Related literature

For applications of 1,8-naphthyridine and its derivatives in coordination chemistry, see: Oskui et al. (1999[Oskui, B. & Sheldrick, W. S. (1999). Eur. J. Inorg. Chem. pp. 1325-1333.]); Nakatani et al. (2003[Nakatani, K., Horie, S. & Saito, I. (2003). J. Am. Chem. Soc. 125, 8972-8973.]); Fang et al. (2004[Fang, J. M., Selvi, S., Liao, J. H., Slanina, Z., Chen, C. T. & Chou, P. T. (2004). J. Am. Chem. Soc. 126, 3559-3566.]); Sinha et al. (2009[Sinha, A., Wahidur Rahaman, S. M., Sarkar, M., Saha, B., Daw, P. & Bera, J. K. (2009). Inorg. Chem. 48, 11114-11122.]); Fu et al. (2009[Fu, W.-F., Li, H.-F. J., Wang, D.-H., Zhou, L.-J., Li, L., Gan, X., Xu, Q.-Q. & Song, H.-B. (2009). Chem. Commun. pp. 5524-5526.], 2010[Fu, W.-F., Jia, L.-F., Mu, W.-H., Gan, X., Zhang, J.-B., Liu, P.-H. & Cao, Q.-Y. (2010). Inorg. Chem. 49, 4524-4533.]). For related structures of 1,8-naphthyridine derivatives, see: Goswami et al. (2007[Goswami, S., Dey, S., Gallagher, J. F., Lough, A. J., García-Granda, S., Torre-Fernández, L., Alkorta, I. & Elguero, J. (2007). J. Mol. Struct. 846, 97-107.]). For the synthesis of the title compound, see: Newcome et al. (1981[Newcome, G. H., Garbis, S. J., Majestic, V. K., Fronczek, F. R. & Chiari, G. (1981). J. Org. Chem. 46, 833-839.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N3O·H2O

  • Mr = 179.18

  • Monoclinic, P 21 /c

  • a = 9.5413 (9) Å

  • b = 17.1560 (16) Å

  • c = 4.9954 (4) Å

  • β = 95.19 (2)°

  • V = 814.34 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 113 K

  • 0.22 × 0.20 × 0.02 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.998

  • 6502 measured reflections

  • 1432 independent reflections

  • 906 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.171

  • S = 1.00

  • 1432 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.00 2.853 (3) 175
N1—H1B⋯O1ii 0.86 2.28 2.989 (3) 140
N3—H1⋯N2i 0.86 2.18 3.040 (3) 178
O2—H2A⋯O2iii 0.85 1.93 2.7758 (18) 179
O2—H2B⋯O1 0.85 1.97 2.823 (3) 178
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The 1,8-naphthyridine and its derivatives have attracted considerable attention as an polydentate nitrogen-donor ligand, since these ligands are linked to metals with several coordination modes such as monodentate and chelating bidentate fashion with short metal-metal bonds (Oskui et al., 1999). In addition, the metal 1,8-naphthyridine complexes can exhibit biocompatibility, interesting catalytic and fluorescence properties (Nakatani et al., 2003; Fang et al., 2004; Sinha et al., 2009). Previously, we have concentrated our investigation on the chemistry of 1,8-naphthyridine derivatives and related metal coordination compounds (Fu et al., 2009, 2010). Herein, we report herein the crystal structure of the title compound. Although the synthesis of the compound 7-amino-1,8-naphthyridin-2(1H)-one has been reported (Newcome et al., 1981), no crystallographic study has been reported on this ligand until now.

The asymmetric unit of the title compound contains a crystallographically independent molecules and one water molecule (Fig. 1), in which the bond lengths and angles are generally within normal ranges in accordance with the corresponding values reported (Goswami et al., 2007). The organic molecule is nearly planar with an r.m.s. deviation of 0.0146 Å. In the crystal structure, adjacent organic molecules are joined together into a one-dimensional tape propagating in the a axis direction (Fig. 2) through N—H···N and N—H···O hydrogen bonds (Table 1). Neighboring water molecules joined together to form a one-dimensional water chain extending along the b axis (Fig. 3) through OW—H···OW hydrogen bonds. These one-dimensional water chains are further connected to the adjacent one-dimensional tape motifs, forming a three-dimensional network (Fig. 3) by intermolecular OW—H···O hydrogen bonds (Table 1). In addition, a ππ stacking interaction between 1,8-naphthyridine rings may further stabilize the structure; the interplanar distance and the centrioid-centrioid distance are 3.246 (1) and 3.825 (2) Å, respectively.

Related literature top

For applications of 1,8-naphthyridine and its derivatives in coordination chemistry, see: Oskui et al. (1999); Nakatani et al. (2003); Fang et al. (2004); Sinha et al. (2009); Fu et al. (2009, 2010). For related structures of 1,8-naphthyridine derivatives, see: Goswami et al. (2007). For the synthesis of the title compound, see: Newcome et al. (1981).

Experimental top

The 7-amino-1,8-naphthyridin-2(1H)-one was synthesized according to the literature method (Newcome et al., 1981). The colorless crystals of the title compound suitable for X-ray diffraction were obtained by vapor diffusion of diethyl ether into the solution of the product 7-amino-1,8-naphthyridin-2(1H)-one in CH3CN-MeOH (v:v = 4:1).

Refinement top

All H atoms were placed in idealized positions (O—H = 0.85 Å, N—H = 0.86 Å and C—H = 0.95 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The tape structure of the organic molecules propagating in the a axis direction through N—H···N and N—H···O hydrogen bonds.
[Figure 3] Fig. 3. The three-dimensional packing of the title compound viewed along the a axis, showing the hydrogen bonds with dashed lines.
7-Amino-1,8-naphthyridin-2(1H)-one monohydrate top
Crystal data top
C8H7N3O·H2OF(000) = 376
Mr = 179.18Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2181 reflections
a = 9.5413 (9) Åθ = 2.1–27.8°
b = 17.1560 (16) ŵ = 0.11 mm1
c = 4.9954 (4) ÅT = 113 K
β = 95.19 (2)°Prism, colorless
V = 814.34 (13) Å30.22 × 0.20 × 0.02 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
1432 independent reflections
Radiation source: fine-focus sealed tube906 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 14.63 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω scanh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.977, Tmax = 0.998l = 55
6502 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0752P)2]
where P = (Fo2 + 2Fc2)/3
1432 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C8H7N3O·H2OV = 814.34 (13) Å3
Mr = 179.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5413 (9) ŵ = 0.11 mm1
b = 17.1560 (16) ÅT = 113 K
c = 4.9954 (4) Å0.22 × 0.20 × 0.02 mm
β = 95.19 (2)°
Data collection top
Bruker APEX CCD
diffractometer
1432 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
906 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.998Rint = 0.085
6502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
1432 reflectionsΔρmin = 0.28 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1654 (2)0.58746 (12)0.1928 (4)0.0401 (6)
O20.0186 (2)0.71471 (12)0.0843 (4)0.0461 (7)
H2A0.01890.73690.23650.055*
H2B0.03860.67720.11790.055*
N10.8793 (2)0.52074 (14)0.2402 (5)0.0381 (7)
H1A0.86060.48890.10890.046*
H1B0.96510.52810.30360.046*
N20.6422 (2)0.54442 (13)0.2362 (4)0.0286 (6)
N30.4034 (2)0.56892 (13)0.2314 (4)0.0290 (6)
H10.39300.53700.09840.035*
C10.7755 (3)0.55862 (17)0.3454 (6)0.0333 (7)
C20.8036 (3)0.61017 (18)0.5674 (6)0.0364 (8)
H20.89780.61870.63990.044*
C30.6969 (3)0.64711 (17)0.6756 (6)0.0348 (8)
H30.71600.68170.82290.042*
C40.5572 (3)0.63391 (17)0.5685 (6)0.0322 (7)
C50.4358 (3)0.66882 (16)0.6616 (6)0.0363 (8)
H50.44670.70300.81160.044*
C60.3041 (3)0.65478 (17)0.5423 (6)0.0344 (8)
H60.22500.67920.60930.041*
C70.2846 (3)0.60331 (16)0.3161 (6)0.0335 (8)
C80.5372 (3)0.58251 (15)0.3459 (6)0.0285 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0361 (12)0.0370 (14)0.0470 (14)0.0041 (9)0.0037 (10)0.0006 (10)
O20.0615 (15)0.0333 (13)0.0421 (14)0.0105 (11)0.0025 (12)0.0020 (10)
N10.0301 (13)0.0420 (17)0.0423 (18)0.0001 (11)0.0036 (12)0.0050 (13)
N20.0308 (13)0.0253 (13)0.0296 (15)0.0033 (10)0.0024 (11)0.0030 (11)
N30.0345 (13)0.0261 (13)0.0265 (15)0.0028 (10)0.0032 (11)0.0016 (10)
C10.0382 (17)0.0269 (17)0.0348 (19)0.0047 (14)0.0025 (14)0.0073 (14)
C20.0387 (17)0.0306 (18)0.039 (2)0.0079 (13)0.0035 (15)0.0043 (14)
C30.0460 (18)0.0258 (17)0.0317 (19)0.0060 (14)0.0013 (15)0.0006 (13)
C40.0431 (17)0.0230 (16)0.0305 (19)0.0002 (13)0.0042 (14)0.0037 (13)
C50.053 (2)0.0227 (16)0.0334 (19)0.0011 (14)0.0050 (15)0.0003 (14)
C60.0389 (17)0.0268 (17)0.0385 (19)0.0054 (13)0.0099 (15)0.0023 (14)
C70.0392 (17)0.0243 (16)0.0377 (19)0.0039 (13)0.0066 (15)0.0055 (14)
C80.0364 (16)0.0192 (15)0.0300 (18)0.0014 (12)0.0037 (14)0.0056 (13)
Geometric parameters (Å, º) top
O1—C71.273 (3)C1—C21.425 (4)
O2—H2A0.8500C2—C31.353 (4)
O2—H2B0.8500C2—H20.9500
N1—C11.332 (4)C3—C41.409 (4)
N1—H1A0.8600C3—H30.9500
N1—H1B0.8600C4—C81.418 (4)
N2—C81.353 (3)C4—C51.419 (4)
N2—C11.360 (3)C5—C61.363 (4)
N3—C81.370 (3)C5—H50.9500
N3—C71.378 (3)C6—C71.433 (4)
N3—H10.8600C6—H60.9500
H2A—O2—H2B102.5C4—C3—H3120.2
C1—N1—H1A120.0C3—C4—C8116.9 (3)
C1—N1—H1B120.0C3—C4—C5125.4 (3)
H1A—N1—H1B120.0C8—C4—C5117.6 (3)
C8—N2—C1116.8 (3)C6—C5—C4122.0 (3)
C8—N3—C7124.0 (3)C6—C5—H5119.0
C8—N3—H1118.0C4—C5—H5119.0
C7—N3—H1118.0C5—C6—C7120.2 (3)
N1—C1—N2117.2 (3)C5—C6—H6119.9
N1—C1—C2121.1 (3)C7—C6—H6119.9
N2—C1—C2121.7 (3)O1—C7—N3118.9 (3)
C3—C2—C1120.5 (3)O1—C7—C6124.0 (3)
C3—C2—H2119.8N3—C7—C6117.1 (3)
C1—C2—H2119.8N2—C8—N3116.4 (3)
C2—C3—C4119.5 (3)N2—C8—C4124.5 (3)
C2—C3—H3120.2N3—C8—C4119.2 (3)
C8—N2—C1—N1179.3 (3)C8—N3—C7—C61.6 (4)
C8—N2—C1—C21.0 (4)C5—C6—C7—O1179.6 (3)
N1—C1—C2—C3178.7 (3)C5—C6—C7—N30.9 (4)
N2—C1—C2—C30.4 (4)C1—N2—C8—N3178.8 (2)
C1—C2—C3—C40.4 (5)C1—N2—C8—C41.7 (4)
C2—C3—C4—C81.0 (4)C7—N3—C8—N2179.4 (2)
C2—C3—C4—C5179.8 (3)C7—N3—C8—C41.1 (4)
C3—C4—C5—C6178.1 (3)C3—C4—C8—N21.7 (4)
C8—C4—C5—C60.7 (4)C5—C4—C8—N2179.4 (3)
C4—C5—C6—C70.1 (4)C3—C4—C8—N3178.8 (2)
C8—N3—C7—O1179.0 (2)C5—C4—C8—N30.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.002.853 (3)175
N1—H1B···O1ii0.862.282.989 (3)140
N3—H1···N2i0.862.183.040 (3)178
O2—H2A···O2iii0.851.932.7758 (18)179
O2—H2B···O10.851.972.823 (3)178
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H7N3O·H2O
Mr179.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)9.5413 (9), 17.1560 (16), 4.9954 (4)
β (°) 95.19 (2)
V3)814.34 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.20 × 0.02
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
6502, 1432, 906
Rint0.085
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.171, 1.00
No. of reflections1432
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.002.853 (3)175.1
N1—H1B···O1ii0.862.282.989 (3)140.2
N3—H1···N2i0.862.183.040 (3)177.8
O2—H2A···O2iii0.851.932.7758 (18)178.9
O2—H2B···O10.851.972.823 (3)177.9
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

The author thanks the Science Foundation from the Education Department (grant No. 2010Y004) as well as the Science and Technology Department (grant No. 2010ZC070) of Yunnan Province for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, J. M., Selvi, S., Liao, J. H., Slanina, Z., Chen, C. T. & Chou, P. T. (2004). J. Am. Chem. Soc. 126, 3559–3566.  Google Scholar
First citationFu, W.-F., Jia, L.-F., Mu, W.-H., Gan, X., Zhang, J.-B., Liu, P.-H. & Cao, Q.-Y. (2010). Inorg. Chem. 49, 4524–4533.  Google Scholar
First citationFu, W.-F., Li, H.-F. J., Wang, D.-H., Zhou, L.-J., Li, L., Gan, X., Xu, Q.-Q. & Song, H.-B. (2009). Chem. Commun. pp. 5524–5526.  Google Scholar
First citationGoswami, S., Dey, S., Gallagher, J. F., Lough, A. J., García-Granda, S., Torre-Fernández, L., Alkorta, I. & Elguero, J. (2007). J. Mol. Struct. 846, 97–107.  Google Scholar
First citationNakatani, K., Horie, S. & Saito, I. (2003). J. Am. Chem. Soc. 125, 8972–8973.  Google Scholar
First citationNewcome, G. H., Garbis, S. J., Majestic, V. K., Fronczek, F. R. & Chiari, G. (1981). J. Org. Chem. 46, 833–839.  Google Scholar
First citationOskui, B. & Sheldrick, W. S. (1999). Eur. J. Inorg. Chem. pp. 1325–1333.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinha, A., Wahidur Rahaman, S. M., Sarkar, M., Saha, B., Daw, P. & Bera, J. K. (2009). Inorg. Chem. 48, 11114–11122.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds