organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2520-o2521

3,5-Di­methyl-4-nitroso-1H-pyrazole

aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Str. 64, 01601 Kiev, Ukraine, and bDepartment of Chemistry, University of Joensuu, PO Box, 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: safyanova_inna@mail.ru

(Received 26 July 2011; accepted 18 August 2011; online 31 August 2011)

In the unit cell of the title compound, C5H7N3O, there are two conformers (A and B) which differ in the position of the oxime group with respect to the protonated pyrazole nitro­gen (trans in the A conformer and cis in the B conformer) and in the geometric parameters. The oxime group exists in the nitroso form in both conformers. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds into zigzag-like chains along the b axis.

Related literature

For the use of pyrazole-based ligands, see: Mullins & Pecoraro (2008[Mullins, C. S. & Pecoraro, V. L. (2008). Coord. Chem. Rev. 252, 416-443.]); Mukhopadhyay et al. (2004[Mukhopadhyay, S., Mandal, S. K., Bhaduri, S. & Armstrong, W. H. (2004). Chem. Rev. 104, 3981-4026.]). For the magnetic properties of pyrazolate complexes, see: Aromi & Brechin (2006[Aromi, G. & Brechin, E. K. (2006). Struct. Bonding (Berlin), 122, 1-67.]); Gatteschi et al. (2006[Gatteschi, D., Sessoli, R. & Villain, J. (2006). Molecular Nanomagnets. Oxford University Press.]). For the use of oxime substituents in the synthesis of polynuclear ligands, see: Petrusenko et al. (1997[Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267-274.]); Kanderal et al. (2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, pp. 800-806.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]). For the use of 4-nitro­pyrazoles as ligands, see: Halcrow (2005[Halcrow, M. A. (2005). Coord. Chem. Rev. 249, 2880-2908.]). For related structures, see: Fletcher et al. (1997[Fletcher, D. A., Gowenlock, B. G., Orrell, K. G., Šik, V., Hibbs, D. E., Hursthouse, M. B. & Abdul Malik, K. M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 721-728.]); Kovbasyuk et al. (2004[Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]); Wörl, Fritsky et al. (2005[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759-765.]); Wörl, Pritzkow et al. (2005[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27-29.]). For the synthesis of the title compound, see: Cameron et al. (1996[Cameron, M., Gowenlock, B. G. & Boyd, A. S. F. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 2271-2274.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N3O

  • Mr = 125.14

  • Monoclinic, P 21 /c

  • a = 4.0268 (2) Å

  • b = 15.3793 (7) Å

  • c = 19.6627 (9) Å

  • β = 94.613 (3)°

  • V = 1213.75 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.46 × 0.33 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.955, Tmax = 0.987

  • 9003 measured reflections

  • 2747 independent reflections

  • 1866 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.03

  • 2747 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1B⋯O1Ai 0.954 (18) 1.802 (18) 2.7526 (16) 174.0 (15)
N1A—H1A⋯N2Bii 0.915 (19) 1.95 (2) 2.8544 (18) 171.5 (16)
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole-based ligands are widely used in bioinorganic chemistry, molecular magnetism and supramolecular chemistry, as they are able to form different architectures, ranging from polynuclear clusters to metallocycles (Mullins, et al., 2008; Mukhopadhyay, et al., 2004). In addition to the ability to bridge two or more metal ions, pyrazole ligands also provide an effective magnetic exchange pathway between them (Aromi et al. 2006; Gatteschi, et al., 2006). The incorporation of other coordinating groups to the pyrazole ring can increase the variety of polynuclear compounds that can be formed. For example, introduction of the potentially bridging oxime group in the molecules of the ligands already having bridging moieties (such as pyrazolates) can lead to increase of nuclearity and complexity of the metal complexes on their basis (Petrusenko et al., 1997; Kanderal et al., 2005; Sachse et al., 2008; Moroz et al., 2010). In this work, we report the crystal structure of the title compound which contains the oxime group in the 4-position of the pyrazole ring. Unlike 4-nitropyrazoles which have been widely used for preparation of oligonuclear metal complexes (Halcrow et al., 2005), 4-nitrosopyrazoles have never been studied as ligands, and no metal complexes based on this type of ligands have been reported up to date. Crystal and molecular structures of only two 4-nitrosopyrazoles have been reported before (Cameron et al., 1996; Fletcher et al., 1997).

In the unit cell there are two types of conformers (A and B) of the title compound which differs significantly by the geometrical parameters and by the position of the oxime group with respect to the protonated pyrazole nitrogen (Fig. 1). In the conformer A, the oxime group is trans- with respect to the pyrazole hydrogen, while in the conformer B the oxime-group is cis-situated. In the conformers A and B the bond lengths markedly differs, first of all it is noticeable upon comparing the interatomic distances within the oxime groups. In the conformer B, the difference in bond lengths between C—N (1.3902 (19) Å) and N=O (1.2412 (16) Å) bonds of the oxime groups is quite large (ca 0.15 Å) while in the conformer A (C—N 1.3553 (19) Å and N=O 1.2701 (16) Å) it is much less pronounced (less than 0.08 Å). This clearly indicates that the CNO moiety in both conformers exists in the nitroso-form (Sliva et al. (1997); Mokhir et al., 2002), however, in the conformer A there is a noticeable contribution of the isonitroso-form. Such a difference can be a consequence of the involvement of the oxime oxygen O1A in formation of the intermolecular H-bond, while O1B does not participate in any H-bond (Table 1).

The differences in geometrical and electronic structure of the oxime groups significantly influence on the C—C, C—N, N—N bond lengths within the pyrazole rings which are deviated from normal values (Kovbasyuk et al., 2004; Wörl, Fritsky et al., 2005; Wörl, Pritzkow et al., 2005). Thus, there are signs of conjugation of the C(3B)—C(4B) bond with the O(1B)—N(3B) bond which results in noticeable shortening of the former (1.405 (2) Å) as compare to that observed in the conformer A, C(3)—C(4) = 1.442 (2) Å.

In the crystal, the molecules are linked by intermolecular N—H···O and N—H···N hydrogen bonds building zigzag chains along the b axis (Fig.2, Table 1). The translational along a axis chains form walls which are united into the crystal by van der Waals interactions.

Related literature top

For the use of pyrazole-based ligands, see: Mullins et al. (2008); Mukhopadhyay et al. (2004). For the magnetic properties of pyrazolate complexes, see: Aromi & Brechin (2006); Gatteschi et al. (2006). For the use of oxime substituents in the synthesis of polynucleative ligands, see: Petrusenko et al. (1997); Kanderal et al. (2005); Sachse et al. (2008); Moroz et al. (2010). For the use of 4-nitropyrazoles as ligands, see: Halcrow (2005). For related structures, see: Fletcher et al. (1997); Kovbasyuk et al. (2004); Mokhir et al. (2002); Sliva et al. (1997); Wörl, Fritsky et al. (2005); Wörl, Pritzkow et al. (2005). For the synthesis of the title compound, see: Cameron et al. (1996).

Experimental top

3,5-dimethyl-4-nitrozo-1H-pyrazole was synthesized by using a literature procedure (Cameron et al., 1996) from acetylacetone, sodium nitrite and hydrazine hydrate in aqueous hydrochloric acid. The crude product was collected by filtration and purified by recrystallization from benzene. Colorless crystals suitable for the X-ray diffraction were obtained after several hours (yield 78%).

Refinement top

The aromatic NH H atoms were located from the difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.98 Å, and Uiso = 1.5 Ueq (parent atom).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two independent molecules of (I) in the unit cell, showing the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound showing the intermolecular hydrogen bonds by dashed lines.
3,5-Dimethyl-4-nitroso-1H-pyrazole top
Crystal data top
C5H7N3OF(000) = 528
Mr = 125.14Dx = 1.370 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4238 reflections
a = 4.0268 (2) Åθ = 1.0–27.5°
b = 15.3793 (7) ŵ = 0.10 mm1
c = 19.6627 (9) ÅT = 120 K
β = 94.613 (3)°Plate, blue
V = 1213.75 (10) Å30.46 × 0.33 × 0.13 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
2747 independent reflections
Radiation source: fine-focus sealed tube1866 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.040
Detector resolution: 9 pixels mm-1θmax = 27.4°, θmin = 2.5°
ϕ scans and ω scans with κ offseth = 45
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1819
Tmin = 0.955, Tmax = 0.987l = 2525
9003 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.0988P]
where P = (Fo2 + 2Fc2)/3
2747 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C5H7N3OV = 1213.75 (10) Å3
Mr = 125.14Z = 8
Monoclinic, P21/cMo Kα radiation
a = 4.0268 (2) ŵ = 0.10 mm1
b = 15.3793 (7) ÅT = 120 K
c = 19.6627 (9) Å0.46 × 0.33 × 0.13 mm
β = 94.613 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2747 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1866 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.987Rint = 0.040
9003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
2747 reflectionsΔρmin = 0.25 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.1796 (3)0.16615 (7)0.22546 (5)0.0279 (3)
N1A0.3665 (3)0.05073 (9)0.32527 (7)0.0241 (3)
N2A0.4403 (3)0.02548 (8)0.36162 (6)0.0243 (3)
N3A0.1316 (3)0.08489 (8)0.22016 (7)0.0240 (3)
C1A0.2710 (3)0.08712 (10)0.32773 (8)0.0210 (4)
C2A0.2872 (4)0.17879 (10)0.35059 (8)0.0258 (4)
H2A0.44080.18370.39170.039*
H2B0.06480.19810.36090.039*
H2C0.36670.21520.31440.039*
C3A0.0867 (4)0.05016 (9)0.26876 (8)0.0202 (4)
C4A0.1598 (4)0.03950 (10)0.27044 (8)0.0225 (4)
C5A0.0466 (4)0.11093 (10)0.22306 (9)0.0308 (4)
H5A0.19020.11330.18520.046*
H5B0.18390.10010.20520.046*
H5C0.05890.16640.24760.046*
O1B0.2132 (3)0.13230 (7)0.04852 (6)0.0356 (3)
N1B0.3699 (3)0.21423 (8)0.11942 (7)0.0216 (3)
N2B0.3158 (3)0.30207 (8)0.10938 (7)0.0226 (3)
N3B0.1646 (3)0.20960 (9)0.03253 (7)0.0275 (3)
C1B0.1150 (4)0.30759 (10)0.05258 (8)0.0214 (4)
C2B0.0044 (4)0.39331 (10)0.02337 (8)0.0267 (4)
H2B10.08840.44000.05400.040*
H2B20.23950.39530.01820.040*
H2B30.09180.40090.02130.040*
C3B0.0397 (4)0.22318 (10)0.02693 (7)0.0201 (3)
C4B0.2123 (4)0.16456 (10)0.07173 (8)0.0208 (4)
C5B0.2411 (4)0.06867 (10)0.07173 (8)0.0264 (4)
H5B10.39570.05020.11000.040*
H5B20.32500.04940.02880.040*
H5B30.02160.04280.07630.040*
H1A0.453 (4)0.1013 (13)0.3437 (9)0.040 (5)*
H1B0.515 (4)0.1949 (11)0.1572 (9)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0312 (6)0.0231 (6)0.0288 (7)0.0049 (5)0.0017 (5)0.0031 (5)
N1A0.0283 (7)0.0183 (7)0.0252 (8)0.0026 (6)0.0006 (6)0.0023 (6)
N2A0.0268 (7)0.0221 (8)0.0236 (7)0.0000 (6)0.0000 (6)0.0000 (6)
N3A0.0240 (7)0.0244 (8)0.0236 (7)0.0010 (6)0.0024 (6)0.0034 (6)
C1A0.0187 (8)0.0230 (9)0.0216 (8)0.0002 (6)0.0028 (6)0.0019 (6)
C2A0.0259 (8)0.0246 (9)0.0261 (9)0.0004 (7)0.0024 (7)0.0031 (7)
C3A0.0198 (8)0.0204 (8)0.0205 (8)0.0002 (6)0.0023 (6)0.0010 (6)
C4A0.0224 (8)0.0218 (9)0.0235 (9)0.0005 (7)0.0039 (7)0.0021 (6)
C5A0.0352 (9)0.0228 (9)0.0337 (10)0.0011 (7)0.0005 (8)0.0046 (7)
O1B0.0459 (7)0.0269 (7)0.0328 (7)0.0057 (6)0.0044 (6)0.0041 (5)
N1B0.0249 (7)0.0172 (7)0.0222 (7)0.0014 (6)0.0014 (6)0.0019 (5)
N2B0.0270 (7)0.0153 (7)0.0250 (7)0.0008 (5)0.0008 (6)0.0011 (5)
N3B0.0295 (7)0.0247 (8)0.0280 (8)0.0038 (6)0.0007 (6)0.0014 (6)
C1B0.0220 (8)0.0203 (8)0.0223 (8)0.0005 (6)0.0037 (7)0.0001 (6)
C2B0.0308 (9)0.0205 (8)0.0282 (9)0.0013 (7)0.0010 (7)0.0030 (7)
C3B0.0212 (8)0.0194 (8)0.0198 (8)0.0005 (6)0.0020 (6)0.0002 (6)
C4B0.0204 (8)0.0211 (8)0.0214 (8)0.0018 (6)0.0041 (7)0.0013 (6)
C5B0.0313 (9)0.0184 (8)0.0294 (9)0.0012 (7)0.0017 (7)0.0003 (7)
Geometric parameters (Å, º) top
O1A—N3A1.2701 (16)O1B—N3B1.2412 (16)
N1A—C4A1.319 (2)N1B—C4B1.330 (2)
N1A—N2A1.3922 (18)N1B—N2B1.3801 (17)
N1A—H1A0.915 (19)N1B—H1B0.954 (18)
N2A—C1A1.3170 (19)N2B—C1B1.3279 (19)
N3A—C3A1.3553 (19)N3B—C3B1.3902 (19)
C1A—C3A1.442 (2)C1B—C3B1.417 (2)
C1A—C2A1.479 (2)C1B—C2B1.492 (2)
C2A—H2A0.9800C2B—H2B10.9800
C2A—H2B0.9800C2B—H2B20.9800
C2A—H2C0.9800C2B—H2B30.9800
C3A—C4A1.410 (2)C3B—C4B1.405 (2)
C4A—C5A1.488 (2)C4B—C5B1.479 (2)
C5A—H5A0.9800C5B—H5B10.9800
C5A—H5B0.9800C5B—H5B20.9800
C5A—H5C0.9800C5B—H5B30.9800
C4A—N1A—N2A113.82 (13)C4B—N1B—N2B113.61 (12)
C4A—N1A—H1A129.1 (11)C4B—N1B—H1B126.7 (10)
N2A—N1A—H1A116.9 (11)N2B—N1B—H1B119.7 (10)
C1A—N2A—N1A105.42 (12)C1B—N2B—N1B105.14 (12)
O1A—N3A—C3A115.11 (12)O1B—N3B—C3B115.32 (13)
N2A—C1A—C3A109.56 (13)N2B—C1B—C3B109.83 (13)
N2A—C1A—C2A121.60 (13)N2B—C1B—C2B121.54 (13)
C3A—C1A—C2A128.84 (13)C3B—C1B—C2B128.62 (14)
C1A—C2A—H2A109.5C1B—C2B—H2B1109.5
C1A—C2A—H2B109.5C1B—C2B—H2B2109.5
H2A—C2A—H2B109.5H2B1—C2B—H2B2109.5
C1A—C2A—H2C109.5C1B—C2B—H2B3109.5
H2A—C2A—H2C109.5H2B1—C2B—H2B3109.5
H2B—C2A—H2C109.5H2B2—C2B—H2B3109.5
N3A—C3A—C4A121.63 (13)N3B—C3B—C4B131.33 (14)
N3A—C3A—C1A132.39 (14)N3B—C3B—C1B122.16 (14)
C4A—C3A—C1A105.89 (13)C4B—C3B—C1B106.50 (13)
N1A—C4A—C3A105.30 (13)N1B—C4B—C3B104.92 (13)
N1A—C4A—C5A123.80 (14)N1B—C4B—C5B122.65 (14)
C3A—C4A—C5A130.89 (14)C3B—C4B—C5B132.42 (14)
C4A—C5A—H5A109.5C4B—C5B—H5B1109.5
C4A—C5A—H5B109.5C4B—C5B—H5B2109.5
H5A—C5A—H5B109.5H5B1—C5B—H5B2109.5
C4A—C5A—H5C109.5C4B—C5B—H5B3109.5
H5A—C5A—H5C109.5H5B1—C5B—H5B3109.5
H5B—C5A—H5C109.5H5B2—C5B—H5B3109.5
C4A—N1A—N2A—C1A0.03 (17)C4B—N1B—N2B—C1B0.10 (17)
N1A—N2A—C1A—C3A0.15 (16)N1B—N2B—C1B—C3B0.46 (17)
N1A—N2A—C1A—C2A179.56 (13)N1B—N2B—C1B—C2B178.40 (13)
O1A—N3A—C3A—C4A178.61 (13)O1B—N3B—C3B—C4B2.4 (2)
O1A—N3A—C3A—C1A2.4 (2)O1B—N3B—C3B—C1B179.01 (14)
N2A—C1A—C3A—N3A176.84 (15)N2B—C1B—C3B—N3B179.59 (13)
C2A—C1A—C3A—N3A3.8 (3)C2B—C1B—C3B—N3B0.8 (2)
N2A—C1A—C3A—C4A0.22 (16)N2B—C1B—C3B—C4B0.65 (17)
C2A—C1A—C3A—C4A179.57 (15)C2B—C1B—C3B—C4B178.11 (15)
N2A—N1A—C4A—C3A0.11 (17)N2B—N1B—C4B—C3B0.30 (16)
N2A—N1A—C4A—C5A179.38 (14)N2B—N1B—C4B—C5B178.69 (13)
N3A—C3A—C4A—N1A177.26 (14)N3B—C3B—C4B—N1B179.36 (15)
C1A—C3A—C4A—N1A0.19 (16)C1B—C3B—C4B—N1B0.56 (16)
N3A—C3A—C4A—C5A3.5 (3)N3B—C3B—C4B—C5B0.5 (3)
C1A—C3A—C4A—C5A179.39 (16)C1B—C3B—C4B—C5B178.29 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O1Ai0.954 (18)1.802 (18)2.7526 (16)174.0 (15)
N1A—H1A···N2Bii0.915 (19)1.95 (2)2.8544 (18)171.5 (16)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H7N3O
Mr125.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)4.0268 (2), 15.3793 (7), 19.6627 (9)
β (°) 94.613 (3)
V3)1213.75 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.46 × 0.33 × 0.13
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.955, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
9003, 2747, 1866
Rint0.040
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.03
No. of reflections2747
No. of parameters175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.25

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O1Ai0.954 (18)1.802 (18)2.7526 (16)174.0 (15)
N1A—H1A···N2Bii0.915 (19)1.95 (2)2.8544 (18)171.5 (16)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

References

First citationAromi, G. & Brechin, E. K. (2006). Struct. Bonding (Berlin), 122, 1–67.  CAS Google Scholar
First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCameron, M., Gowenlock, B. G. & Boyd, A. S. F. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 2271–2274.  Google Scholar
First citationFletcher, D. A., Gowenlock, B. G., Orrell, K. G., Šik, V., Hibbs, D. E., Hursthouse, M. B. & Abdul Malik, K. M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 721–728.  Google Scholar
First citationGatteschi, D., Sessoli, R. & Villain, J. (2006). Molecular Nanomagnets. Oxford University Press.  Google Scholar
First citationHalcrow, M. A. (2005). Coord. Chem. Rev. 249, 2880–2908.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef PubMed Google Scholar
First citationKovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.  Web of Science CrossRef Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMukhopadhyay, S., Mandal, S. K., Bhaduri, S. & Armstrong, W. H. (2004). Chem. Rev. 104, 3981–4026.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMullins, C. S. & Pecoraro, V. L. (2008). Coord. Chem. Rev. 252, 416–443.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPetrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.  CSD CrossRef CAS Web of Science Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, pp. 800–806.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2520-o2521
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds