metal-organic compounds
cyclo-Tetrakis(μ-3-acetyl-4-methyl-1H-pyrazole-5-carboxylato-κ4N2,O3:N1,O5)tetrakis[aquacopper(II)] tetradecahydrate
aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine, and bUniversity of Joensuu, Department of Chemistry, PO Box 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: malinachem@mail.ru
The title compound, [Cu4(C7H6N2O3)4(H2O)4]·14H2O, a tetranuclear [2 × 2] grid-type complex with S4 symmetry, contains four CuII atoms which are bridged by four pyrazolecarboxylate ligand anions and are additionally bonded to a water molecule. Each CuII atom is coordinated by two O atoms of the carboxylate and acetyl groups, two pyrazole N atoms of doubly deprotonated 3-acetyl-4-methyl-1H-pyrazole-5-carboxylic acid and one O atom of a water molecule. The geometry at each CuII atom is distorted square-pyramidal, with the two N and two O atoms in the equatorial plane and O atoms in the axial positions. O—H⋯O hydrogen-bonding interactions additionally stabilize the structure. One of the uncoordinated water molecules shows half-occupancy.
Related literature
For the use of pyrazolate ligands in the preparation of polynuclear supramolecular compounds, see: Piguet et al. (1997); Krämer et al. (2002); Zhang et al. (1996); Van der Vlugt et al. (2008); Klingele et al. (2007); Kovbasyuk et al. (2004); Pons et al. (2003). For the use of asymmetric ligands in the preparation of heterometallic complexes, see: Moroz et al. (2010). For related structures, see: Mokhir et al. (2002); Sliva et al. (1997); Wörl et al. (2005a,b); Świątek-Kozłowska et al. (2000). For the preparation of related ligands, see: Sachse et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811030832/jh2318sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811030832/jh2318Isup2.hkl
The ligand 5-acetyl-4-methyl-1H-pyrazole-3-carboxylic acid (Sachse et al., 2008) (0.25 g, 1.5 mmol) was added to a solution of Cu(Ac)2.H2O (0.30 g, 1.5 mmol) in H2O–CH3OH (50 mL) [80:20 v/v]. The reaction mixture was heated for 30 min with constant stirring at 80 °C until completedissolution of the ligand occurred. The resulting deep blue solution was filtered to remove any undissolved ligand and left at room temperature. Square block dark blue crystals suitable for X-ray diffraction were isolated after standing for several days (yield 0.32 g, 80%). Elemental analysis calc. (%) for C28H40Cu4N8O20: C 31.64; H 3.79; N 10.54; found: C 31.22; H 3.47; N 10.34.
The O—H and N—H hydrogen atoms were located from the difference Fourier map, and refined with Uiso = 1.5 Ueq(parent atom). The remaining H atoms were positioned geometrically and were constrained to ride on their parent atoms with C—H = 0.96–0.97 Å, and with Uiso = 1.2–1.5 Ueq(parent atom).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. H atoms are omitted for clarity. | |
Fig. 2. A packing diagram for the title compound, showing the columns along the y-axis direction. Copper atoms and water molecules are depicted as the big and the small balls, respectively. |
[Cu4(C7H6N2O3)4(H2O)4]·14H2O | Dx = 1.638 Mg m−3 |
Mr = 1243.00 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41/a | Cell parameters from 9905 reflections |
Hall symbol: -I 4ad | θ = 2.6–30.3° |
a = 13.8502 (7) Å | µ = 1.76 mm−1 |
c = 26.280 (3) Å | T = 100 K |
V = 5041.1 (6) Å3 | Block, blue |
Z = 4 | 0.35 × 0.25 × 0.15 mm |
F(000) = 2560 |
Bruker SMART APEXII CCD diffractometer | 3993 independent reflections |
Radiation source: fine-focus sealed tube | 3254 reflections with I > 2σ(I) |
Flat graphite crystal monochromator | Rint = 0.037 |
Detector resolution: 16 pixels mm-1 | θmax = 30.9°, θmin = 1.7° |
ϕ scans and ω scans | h = −19→19 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | k = −19→19 |
Tmin = 0.578, Tmax = 0.778 | l = −37→38 |
37816 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0463P)2 + 11.3899P] where P = (Fo2 + 2Fc2)/3 |
3993 reflections | (Δ/σ)max < 0.001 |
165 parameters | Δρmax = 1.20 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
[Cu4(C7H6N2O3)4(H2O)4]·14H2O | Z = 4 |
Mr = 1243.00 | Mo Kα radiation |
Tetragonal, I41/a | µ = 1.76 mm−1 |
a = 13.8502 (7) Å | T = 100 K |
c = 26.280 (3) Å | 0.35 × 0.25 × 0.15 mm |
V = 5041.1 (6) Å3 |
Bruker SMART APEXII CCD diffractometer | 3993 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 3254 reflections with I > 2σ(I) |
Tmin = 0.578, Tmax = 0.778 | Rint = 0.037 |
37816 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0463P)2 + 11.3899P] where P = (Fo2 + 2Fc2)/3 |
3993 reflections | Δρmax = 1.20 e Å−3 |
165 parameters | Δρmin = −0.58 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.164669 (16) | 0.330841 (17) | 0.089037 (8) | 0.01628 (8) | |
O1 | 0.19490 (11) | 0.47600 (11) | 0.13584 (6) | 0.0220 (3) | |
O2 | 0.18857 (10) | 0.33808 (11) | 0.01594 (5) | 0.0191 (3) | |
O3 | 0.11824 (11) | 0.36118 (11) | −0.05924 (5) | 0.0207 (3) | |
O4 | 0.30114 (11) | 0.29660 (13) | 0.09939 (6) | 0.0290 (4) | |
H4O | 0.3390 | 0.2983 | 0.0745 | 0.044* | |
H4P | 0.3283 | 0.3161 | 0.1259 | 0.044* | |
O5 | 0.42451 (14) | 0.31765 (18) | 0.02160 (7) | 0.0496 (6) | |
H5O | 0.4877 | 0.3162 | 0.0229 | 0.074* | |
H5P | 0.3994 | 0.3042 | −0.0049 | 0.074* | |
O6 | 0.34700 (12) | 0.60006 (12) | 0.10161 (6) | 0.0300 (3) | |
H6O | 0.3363 | 0.6619 | 0.0904 | 0.045* | |
H6P | 0.2916 | 0.5694 | 0.1089 | 0.045* | |
O7 | 0.32202 (12) | 0.28601 (12) | −0.06718 (6) | 0.0275 (3) | |
H7O | 0.3430 | 0.3107 | −0.0939 | 0.041* | |
H7P | 0.2651 | 0.2997 | −0.0606 | 0.041* | |
O8 | 0.4789 (2) | 0.4970 (4) | 0.04080 (17) | 0.0610 (16) | 0.50 |
H8O | 0.4561 | 0.4429 | 0.0310 | 0.092* | 0.50 |
H8P | 0.4390 | 0.5278 | 0.0564 | 0.092* | 0.50 |
N1 | 0.13450 (12) | 0.30012 (11) | 0.16041 (6) | 0.0161 (3) | |
N2 | 0.03441 (11) | 0.36571 (11) | 0.06776 (6) | 0.0152 (3) | |
C1 | 0.17729 (14) | 0.46349 (14) | 0.18133 (8) | 0.0191 (4) | |
C2 | 0.18659 (19) | 0.54292 (15) | 0.21907 (9) | 0.0284 (5) | |
H2A | 0.2408 | 0.5293 | 0.2419 | 0.043* | |
H2B | 0.1269 | 0.5478 | 0.2389 | 0.043* | |
H2C | 0.1982 | 0.6040 | 0.2012 | 0.043* | |
C3 | 0.14765 (13) | 0.36668 (13) | 0.19793 (7) | 0.0159 (3) | |
C4 | −0.07281 (13) | 0.38673 (13) | 0.00422 (7) | 0.0161 (3) | |
C5 | −0.11564 (15) | 0.39273 (16) | −0.04787 (7) | 0.0218 (4) | |
H5A | −0.0653 | 0.3807 | −0.0733 | 0.033* | |
H5B | −0.1430 | 0.4572 | −0.0531 | 0.033* | |
H5C | −0.1667 | 0.3442 | −0.0513 | 0.033* | |
C6 | 0.02326 (13) | 0.36773 (13) | 0.01655 (7) | 0.0145 (3) | |
C7 | 0.11406 (13) | 0.35477 (13) | −0.01228 (7) | 0.0159 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01545 (12) | 0.02178 (13) | 0.01160 (11) | −0.00004 (8) | −0.00341 (8) | 0.00135 (8) |
O1 | 0.0244 (7) | 0.0211 (7) | 0.0207 (7) | −0.0033 (5) | −0.0084 (5) | 0.0037 (5) |
O2 | 0.0159 (6) | 0.0270 (7) | 0.0145 (6) | −0.0023 (5) | −0.0004 (5) | 0.0028 (5) |
O3 | 0.0246 (7) | 0.0253 (7) | 0.0122 (6) | −0.0018 (6) | 0.0017 (5) | 0.0031 (5) |
O4 | 0.0222 (7) | 0.0459 (10) | 0.0190 (7) | 0.0079 (7) | −0.0080 (6) | −0.0070 (7) |
O5 | 0.0298 (9) | 0.0881 (17) | 0.0307 (9) | 0.0203 (10) | −0.0046 (8) | −0.0200 (10) |
O6 | 0.0302 (8) | 0.0300 (8) | 0.0297 (8) | −0.0047 (7) | −0.0066 (7) | 0.0033 (7) |
O7 | 0.0244 (7) | 0.0294 (8) | 0.0288 (8) | −0.0005 (6) | 0.0089 (6) | 0.0036 (6) |
O8 | 0.0102 (14) | 0.102 (4) | 0.071 (3) | 0.0179 (18) | −0.0138 (16) | −0.068 (3) |
N1 | 0.0212 (8) | 0.0149 (7) | 0.0121 (7) | 0.0011 (6) | −0.0041 (6) | −0.0001 (5) |
N2 | 0.0158 (7) | 0.0197 (7) | 0.0102 (6) | −0.0028 (5) | −0.0003 (5) | 0.0028 (5) |
C1 | 0.0199 (8) | 0.0157 (8) | 0.0216 (9) | 0.0016 (6) | −0.0083 (7) | −0.0002 (7) |
C2 | 0.0416 (13) | 0.0164 (9) | 0.0270 (10) | −0.0008 (8) | −0.0070 (9) | −0.0035 (8) |
C3 | 0.0188 (8) | 0.0150 (8) | 0.0138 (8) | 0.0031 (6) | −0.0046 (6) | −0.0008 (6) |
C4 | 0.0172 (8) | 0.0170 (8) | 0.0140 (8) | −0.0046 (6) | −0.0030 (6) | 0.0045 (6) |
C5 | 0.0218 (9) | 0.0284 (10) | 0.0152 (8) | −0.0034 (8) | −0.0070 (7) | 0.0038 (7) |
C6 | 0.0164 (8) | 0.0158 (8) | 0.0112 (7) | −0.0037 (6) | −0.0017 (6) | 0.0029 (6) |
C7 | 0.0184 (8) | 0.0155 (8) | 0.0138 (8) | −0.0037 (6) | 0.0009 (6) | 0.0025 (6) |
Cu1—N2 | 1.9495 (16) | O8—H8O | 0.8529 |
Cu1—O2 | 1.9519 (14) | O8—H8P | 0.8080 |
Cu1—O4 | 1.9676 (15) | N1—N2i | 1.329 (2) |
Cu1—N1 | 1.9682 (16) | N1—C3 | 1.362 (2) |
Cu1—O1 | 2.3938 (15) | N2—N1ii | 1.329 (2) |
Cu1—Cu1i | 4.0600 (4) | N2—C6 | 1.355 (2) |
Cu1—Cu1ii | 4.0600 (4) | C1—C3 | 1.469 (3) |
Cu1—Cu1iii | 5.0814 (5) | C1—C2 | 1.487 (3) |
O1—C1 | 1.232 (3) | C2—H2A | 0.9800 |
O2—C7 | 1.292 (2) | C2—H2B | 0.9800 |
O3—C7 | 1.239 (2) | C2—H2C | 0.9800 |
O4—H4O | 0.8400 | C3—C4i | 1.405 (3) |
O4—H4P | 0.8355 | C4—C6 | 1.394 (2) |
O5—H5O | 0.8760 | C4—C3ii | 1.405 (3) |
O5—H5P | 0.7998 | C4—C5 | 1.494 (3) |
O6—H6O | 0.9174 | C5—H5A | 0.9800 |
O6—H6P | 0.8985 | C5—H5B | 0.9800 |
O7—H7O | 0.8324 | C5—H5C | 0.9800 |
O7—H7P | 0.8289 | C6—C7 | 1.479 (3) |
N2—Cu1—O2 | 82.06 (6) | H7O—O7—H7P | 114.5 |
N2—Cu1—O4 | 171.24 (6) | H8O—O8—H8P | 111.3 |
O2—Cu1—O4 | 89.18 (6) | N2i—N1—C3 | 108.05 (15) |
N2—Cu1—N1 | 97.49 (7) | N2i—N1—Cu1 | 130.03 (12) |
O2—Cu1—N1 | 170.07 (6) | C3—N1—Cu1 | 121.00 (13) |
O4—Cu1—N1 | 91.15 (7) | N1ii—N2—C6 | 108.91 (15) |
N2—Cu1—O1 | 95.81 (6) | N1ii—N2—Cu1 | 137.70 (12) |
O2—Cu1—O1 | 115.65 (6) | C6—N2—Cu1 | 113.30 (12) |
O4—Cu1—O1 | 87.90 (6) | O1—C1—C3 | 118.16 (17) |
N1—Cu1—O1 | 74.28 (6) | O1—C1—C2 | 121.73 (18) |
N2—Cu1—Cu1i | 94.38 (5) | C3—C1—C2 | 120.11 (18) |
O2—Cu1—Cu1i | 123.35 (4) | C1—C2—H2A | 109.5 |
O4—Cu1—Cu1i | 90.48 (5) | C1—C2—H2B | 109.5 |
N1—Cu1—Cu1i | 46.73 (5) | H2A—C2—H2B | 109.5 |
O1—Cu1—Cu1i | 120.95 (4) | C1—C2—H2C | 109.5 |
N2—Cu1—Cu1ii | 44.57 (5) | H2A—C2—H2C | 109.5 |
O2—Cu1—Cu1ii | 125.84 (4) | H2B—C2—H2C | 109.5 |
O4—Cu1—Cu1ii | 144.00 (5) | N1—C3—C4i | 109.93 (16) |
N1—Cu1—Cu1ii | 55.97 (5) | N1—C3—C1 | 116.13 (16) |
O1—Cu1—Cu1ii | 70.56 (4) | C4i—C3—C1 | 133.70 (17) |
Cu1i—Cu1—Cu1ii | 77.482 (5) | C6—C4—C3ii | 103.01 (15) |
N2—Cu1—Cu1iii | 43.82 (5) | C6—C4—C5 | 127.02 (18) |
O2—Cu1—Cu1iii | 100.07 (4) | C3ii—C4—C5 | 129.97 (17) |
O4—Cu1—Cu1iii | 139.12 (6) | C4—C5—H5A | 109.5 |
N1—Cu1—Cu1iii | 73.39 (5) | C4—C5—H5B | 109.5 |
O1—Cu1—Cu1iii | 121.81 (4) | H5A—C5—H5B | 109.5 |
Cu1i—Cu1—Cu1iii | 51.259 (3) | C4—C5—H5C | 109.5 |
Cu1ii—Cu1—Cu1iii | 51.259 (3) | H5A—C5—H5C | 109.5 |
C1—O1—Cu1 | 110.22 (12) | H5B—C5—H5C | 109.5 |
C7—O2—Cu1 | 116.03 (12) | N2—C6—C4 | 110.08 (16) |
Cu1—O4—H4O | 119.0 | N2—C6—C7 | 114.16 (15) |
Cu1—O4—H4P | 118.0 | C4—C6—C7 | 135.66 (17) |
H4O—O4—H4P | 111.1 | O3—C7—O2 | 123.20 (17) |
H5O—O5—H5P | 117.6 | O3—C7—C6 | 122.78 (17) |
H6O—O6—H6P | 111.8 | O2—C7—C6 | 114.02 (15) |
Symmetry codes: (i) y−1/4, −x+1/4, −z+1/4; (ii) −y+1/4, x+1/4, −z+1/4; (iii) −x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O5 | 0.84 | 1.84 | 2.680 (3) | 173 |
O4—H4P···O3iv | 0.84 | 2.03 | 2.868 (2) | 177 |
O5—H5O···O5v | 0.88 | 2.22 | 2.808 (4) | 124 |
O5—H5P···O7 | 0.80 | 1.97 | 2.766 (3) | 171 |
O6—H6O···O7vi | 0.92 | 1.84 | 2.752 (2) | 177 |
O6—H6P···O1 | 0.90 | 1.99 | 2.863 (2) | 163 |
O7—H7O···O6vii | 0.83 | 1.92 | 2.707 (2) | 157 |
O7—H7P···O3 | 0.83 | 2.21 | 3.016 (2) | 166 |
O7—H7P···O2 | 0.83 | 2.33 | 2.951 (2) | 132 |
O8—H8O···O5 | 0.85 | 1.81 | 2.644 (5) | 167 |
O8—H8P···O6 | 0.81 | 2.01 | 2.815 (4) | 174 |
Symmetry codes: (iv) −y+3/4, x+1/4, z+1/4; (v) −x+1, −y+1/2, z; (vi) x, y+1/2, −z; (vii) y−1/4, −x+3/4, z−1/4. |
Experimental details
Crystal data | |
Chemical formula | [Cu4(C7H6N2O3)4(H2O)4]·14H2O |
Mr | 1243.00 |
Crystal system, space group | Tetragonal, I41/a |
Temperature (K) | 100 |
a, c (Å) | 13.8502 (7), 26.280 (3) |
V (Å3) | 5041.1 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.76 |
Crystal size (mm) | 0.35 × 0.25 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.578, 0.778 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 37816, 3993, 3254 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.723 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.097, 1.06 |
No. of reflections | 3993 |
No. of parameters | 165 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0463P)2 + 11.3899P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.20, −0.58 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).
Cu1—N2 | 1.9495 (16) | Cu1—O1 | 2.3938 (15) |
Cu1—O2 | 1.9519 (14) | Cu1—Cu1i | 4.0600 (4) |
Cu1—O4 | 1.9676 (15) | Cu1—Cu1ii | 4.0600 (4) |
Cu1—N1 | 1.9682 (16) | Cu1—Cu1iii | 5.0814 (5) |
N2—Cu1—O2 | 82.06 (6) | O4—Cu1—N1 | 91.15 (7) |
O2—Cu1—O4 | 89.18 (6) | N1—Cu1—O1 | 74.28 (6) |
N2—Cu1—N1 | 97.49 (7) |
Symmetry codes: (i) y−1/4, −x+1/4, −z+1/4; (ii) −y+1/4, x+1/4, −z+1/4; (iii) −x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O5 | 0.84 | 1.84 | 2.680 (3) | 173.0 |
O4—H4P···O3iv | 0.84 | 2.03 | 2.868 (2) | 177.2 |
O5—H5O···O5v | 0.88 | 2.22 | 2.808 (4) | 124.4 |
O5—H5P···O7 | 0.80 | 1.97 | 2.766 (3) | 171.1 |
O6—H6O···O7vi | 0.92 | 1.84 | 2.752 (2) | 176.8 |
O6—H6P···O1 | 0.90 | 1.99 | 2.863 (2) | 163.3 |
O7—H7O···O6vii | 0.83 | 1.92 | 2.707 (2) | 156.7 |
O7—H7P···O3 | 0.83 | 2.21 | 3.016 (2) | 165.5 |
O7—H7P···O2 | 0.83 | 2.33 | 2.951 (2) | 131.6 |
O8—H8O···O5 | 0.85 | 1.81 | 2.644 (5) | 167.1 |
O8—H8P···O6 | 0.81 | 2.01 | 2.815 (4) | 174.1 |
Symmetry codes: (iv) −y+3/4, x+1/4, z+1/4; (v) −x+1, −y+1/2, z; (vi) x, y+1/2, −z; (vii) y−1/4, −x+3/4, z−1/4. |
Acknowledgements
Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.
References
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Klingele, J., Prikhodko, A. I., Leibeling, G., Demeshko, S., Dechert, S. & Meyer, F. (2007). Dalton Trans. pp. 2003–2008. Google Scholar
Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881. Web of Science CrossRef Google Scholar
Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314. Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. Web of Science CSD CrossRef CAS PubMed Google Scholar
Piguet, C., Bernardinelli, G. & Hopfgartner, G. (1997). Chem. Rev. 97, 2005–2057. Google Scholar
Pons, J., Sanchez, F. J., Casaby, J., Alvarez-Larena, A., Piniella, J. F. & Ros, J. (2003). Inorg. Chem. Commun. 6, 833–836. Google Scholar
Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294. CSD CrossRef CAS Web of Science Google Scholar
Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068. Google Scholar
Van der Vlugt, J. I., Demeshko, S., Dechert, S. & Meyer, F. (2008). Inorg. Chem. 47, 1576–1585. Google Scholar
Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759–765. Google Scholar
Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27–29. Google Scholar
Zhang, H., Fu, D., Ji, F., Wang, G., Yu, K. & Yao, T. (1996). J. Chem. Soc. Dalton Trans. pp. 3799–3805. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Substituted pyrazolate ligands have found widespread use as building blocks for the formation of self-assembled supramolecular coordination complexes with an array of transition metal ions and a variety of different structures, e.g., helical polymers (Piguet et al., 1997; Krämer et al., 2002), so-called [2 × 2] grids (Zhang et al., 1996; Van der Vlugt et al., 2008; Klingele et al., 2007) and other polynuclear structures (Kovbasyuk et al., 2004; Pons et al., 2003). Introduction of different donor substituents in 3- and 5-positions of the pyrazole ring is still rare, and such ligands can be successully used for the obtaining of oligonuclear heterometallic species (Moroz et al., 2010). Reported here is a new copper(II) complex with [2 × 2] grid-structure based on a novel asymmetric pyrazolate ligand having different substituents (the carboxylic and acetyl gropus) in 3- and 5-positions.
In the title compound, (I), the tetranuclear [2 × 2] grid-type complex with S4 symmetry are composed of four CuII ions, four ligands and four metal-bound water molecules (Fig. 1).
Each copper ion is nested in a square-pyramidal environment that is composed of the pyrazolate-N2, deprotonated carboxyl-O2 from a compartment of one ligand molecule and acetyl-O1 atoms, the pyrazolate-N1 from another ligand and one water-O4.
The intermetallic separations pyrazolate-bridged CuII ions is 4.0600 (4) Å which is similar to that seen in the structures reported by Zhang et al., 1996 (4.098 – 4.115 Å), while the distance between diagonal copper atoms is 5.0814 (5) Å, which is more longer to that observed in the structures reported by Klingele et al., 2007 (4.7091 (5) Å) and Van der Vlugt et al., 2008 (4.2308 (6) Å).
The coordinated pyrazolate ligand exhibits C—C, C—N, N—N bond lengths which are normal for bridging pyrazolate rings (Sliva et al., 1997; Świątek-Kozłowska et al., 2000; Mokhir et al., 2002). The C—O bond lengths in the deprotonated carboxylic groups differs significantly (1.239 (2) and 1.292 (2) ) which is typical for monodentately coordinated carboxylates (Wörl et al., 2005a,b).
A part of the crystal packing of (I) is presented in Fig.2. In the crystal packing the complex molecules are associated via intermolecular hydrogen bonds that involve the O—H interactions between the coordinated and the solvate water molecules and the non-coordinating carboxylate-O atoms. Thus, the tetranuclear molecules are stacked along the crystallographic x and y axises, forming the columns. The columns bisect one another at right angles to give a layer-like structure.