inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new mixed group 5 metal selenide, Nb1.41V0.59Se9

aDivision of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, Republic of Korea
*Correspondence e-mail: hsyun@ajou.ac.kr

(Received 7 July 2011; accepted 16 August 2011; online 27 August 2011)

The new mixed-metallic phase, niobium vanadium nona­selenide, (Nb2-xVx)Se9 (0.18≤ x ≤ 0.59) is isostructural with monoclinic V2Se9. The structure is composed of chains of bicapped trigonal–prismatic [MSe8] units. The metal (M) site is occupied by statistically disordered Nb [0.706 (5)] and V [0.294 (5)] atoms. Two trigonal prisms are linked by sharing a recta­ngular face composed of two Se22− pairs. Through three edging and capping Se atoms, the chains are extended along [101]. The chain shows alternating short [2.8847 (7) Å] and long [3.7159 (7) Å] MM distances. The structure shows a wide range of Se—Se inter­actions. In addition to the Se22− pairs of the recta­ngular face, an inter­mediate Se⋯Se separation [2.6584 (5) Å] is found. The amount of each metal can vary, [(Nb2-xVx)Se9, 0.18 ≤ x ≤m 0.59] and they seem to form a random substitutional solid solution. The MM distances increase gradually by increasing the amount of Nb atoms. The classical charge-balance of the compound can be described as [M4+]2[Se22−]2[Se54−].

Related literature

For related group 5 metal chalcogenide triclinic Nb2Se9 structures, see: Meerschaut et al. (1979[Meerschaut, A., Guémas, L., Berger, R. & Rouxel, J. (1979). Acta Cryst. B35, 1747-1750.]); Sunshine & Ibers (1987[Sunshine, S. A. & Ibers, J. A. (1987). Acta Cryst. C43, 1019-1022.]). For the synthesis and structures of related group 5 metal monoclinic V2Se9 chalcogenides, see: Furuseth & Klewe (1984[Furuseth, S. & Klewe, B. (1984). Acta Chem. Scand. Ser. A, 38, 467-471.]).

Experimental

Crystal data
  • Nb1.41V0.59Se9

  • Mr = 871.69

  • Monoclinic, C 2/c

  • a = 10.8039 (5) Å

  • b = 12.6209 (7) Å

  • c = 8.1704 (3) Å

  • β = 94.6473 (15)°

  • V = 1110.41 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 31.39 mm−1

  • T = 290 K

  • 0.36 × 0.02 × 0.02 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (NUMABS; Higashi, 2000[Higashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.415, Tmax = 1.000

  • 5325 measured reflections

  • 1281 independent reflections

  • 1141 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.051

  • S = 1.12

  • 1281 reflections

  • 52 parameters

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: locally modified version of ORTEP (Johnson, 1965[Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Group 5 metal chalcogenides usually have low-dimensional structures. In particular, both triclinic Nb2Se9 (Meerschaut et al., 1979; Sunshine & Ibers, 1987) and monoclinic V2Se9 (Furuseth & Klewe, 1984) have been reported to have one-dimensional chain structures. These compounds share the same one-dimensional chain structure. However they show different packing of the chains and the twofold rotational symmetry is not observed in Nb2Se9. During our search for new group 5 metal chalcogenides, we have found a new mixed-metallic phase, (Nb2 - xVx)Se9 (0.18x0.59) and here we report the synthesis and crystal structure of (Nb1.41V0.59)Se9.

The title compound is isostructural with monoclinic V2Se9 (Furuseth & Klewe, 1984). The structure is composed of one-dimensional chains made of the bicapped trigonal prismatic [M2Se10] unit. The metal (M) site is occupied by statistically disordered Nb (0.706 (5) %) and V (0.294 (5) %) atoms. The Se atoms are found as Se2 or Se5 units. Each Nb atom is surrounded by two Se2 and one Se5 units. Two trigonal prisms are linked by sharing a rectangular face composed of two Se22- pairs (Fig. 1). Through three edging and capping Se atoms of the Se5 unit, the chains are extended along [101] (Fig. 2). The shortest interchain Se—Se distance is 3.5479 (8) Å and thus there is no strong bonding interaction among the chains. The chain shows alternating short (2.8847 (7) Å) and long (3.7159 (7) Å) M—M distances. The short M—M distance is in-between those found in V2Se9 (2.842 (2) Å, Furuseth & Klewe, 1984) and Nb2Se9 (2.895 (2) Å, Sunshine & Ibers, 1987). The structure shows a wide range of Se—Se interactions. In the prism, two Se4—Se5 pairs (2.3140 (6) Å) forming a rectangular face exhibit the regular Se—Se bonds. In addition, the intermediate Se1···Se2 separation (2.6584 (5) Å) is found along with the short Se2—Se3 distance (2.3603 (6) Å) in the Se5 unit.

The structural investigations of the three different crystals from the same reaction tube showed that the stoichiometries of each metal can vary, [(Nb2- xVx)Se9, 0.18x0.59] and they seem to form a random substitutional solid solution. The intermetallic distances are affected by the contribution of each constituent metal. The M—M distances increase gradually by increasing the amount of Nb atoms (Fig.3). The classical charge balance of the compound can be described as [M4+]2[Se22-]2[Se54-].

Related literature top

For related group 5 metal chalcogenide triclinic Nb2Se9 structures, see: Meerschaut et al. (1979); Sunshine & Ibers (1987). For the synthesis and structures of related group 5 metal monoclinic V2Se9 chalcogenides, see: Furuseth & Klewe (1984).

Experimental top

The title compound, (Nb1.41V0.59)Se9 was prepared by the reaction of elements Nb, V, and Se at 873 K. A combination of the pure elements, Nb powder (CERAC 99.999%), V powder (Aldrich 99.5%), and Se powder (Aldrich 99.999%) were mixed in a fused silica tube in molar ratio of Nb: V: Se = 2: 1: 16. The tube was evacuated to 0.133 Pa, sealed, and heated gradually (20 K/h) to 873 K, where it was kept for 72 h. The tube was cooled to room temperature at the rate 3 K/h. The products were obtained as shiny black needle-shaped crystals. The crystals are stable in air and water. XRF analysis indicated the presence of Nb, V, and Se. Both X-ray diffraction studies and quantitative XRF analysis indicated that stoichiometries of each metal vary considerably for crystals even from the same reaction tube. The average Nb: V ratio for many crystals is 78: 22.

Refinement top

The disordered nature of the metals in the title compound was checked by refining the anisotropic displacement parameters (ADPs). When the structure was refined assuming Nb2Se9 and V2Se9, the displacement parameters of the metal sites were very large and small, respectively. In both cases the reliability indices were high (wR2 > 0.098). With the mixed-metal model, the ADPs of the metal atoms are comparable with those of the other atoms and the residuals were reduced significantly (wR2 = 0.051). The Se atoms were refined anisotropically.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the chain fragment of (Nb1.41V0.59)Se9. Displacement ellipsoids are drawn at the 80% probability level. [Symmetry code: (i) -x + 1/2, -y + 1/2, -z + 1; (ii) -x, y, -z + 1/2]
[Figure 2] Fig. 2. The structure of the one-dimensional (Nb1.41V0.59)Se9. Atoms are as marked in Fig. 1.
[Figure 3] Fig. 3. Plots of M—M distances (Å) versus x in (Nb2 - xVx)Se9. [(a) x = 0 (Sunshine & Ibers, 1987); (b) x = 0.18; (c) x = 0.36; (d) x = 0.59; (e) x = 2 (Furuseth & Klewe, 1984)]
Niobium vanadium nonaselenide top
Crystal data top
Nb1.41V0.59Se9F(000) = 1508.8
Mr = 871.69Dx = 5.215 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4525 reflections
a = 10.8039 (5) Åθ = 3.2–27.5°
b = 12.6209 (7) ŵ = 31.39 mm1
c = 8.1704 (3) ÅT = 290 K
β = 94.6473 (15)°Needle, black
V = 1110.41 (9) Å30.36 × 0.02 × 0.02 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1281 independent reflections
Radiation source: fine-focus sealed tube1141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(NUMABS; Higashi, 2000)
h = 1114
Tmin = 0.415, Tmax = 1.000k = 1616
5325 measured reflectionsl = 1010
Refinement top
Refinement on F252 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0198P)2 + 0.9634P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max = 0.001
S = 1.12Δρmax = 1.07 e Å3
1281 reflectionsΔρmin = 0.72 e Å3
Crystal data top
Nb1.41V0.59Se9V = 1110.41 (9) Å3
Mr = 871.69Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.8039 (5) ŵ = 31.39 mm1
b = 12.6209 (7) ÅT = 290 K
c = 8.1704 (3) Å0.36 × 0.02 × 0.02 mm
β = 94.6473 (15)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1281 independent reflections
Absorption correction: multi-scan
(NUMABS; Higashi, 2000)
1141 reflections with I > 2σ(I)
Tmin = 0.415, Tmax = 1.000Rint = 0.038
5325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02252 parameters
wR(F2) = 0.0510 restraints
S = 1.12Δρmax = 1.07 e Å3
1281 reflectionsΔρmin = 0.72 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nb10.13016 (4)0.26771 (3)0.41322 (4)0.01363 (17)0.706 (5)
V10.13016 (4)0.26771 (3)0.41322 (4)0.01363 (17)0.294 (5)
Se100.41770 (5)0.250.02302 (15)
Se20.06049 (4)0.35079 (4)0.54157 (5)0.02270 (13)
Se30.10370 (4)0.19147 (4)0.39677 (5)0.01982 (12)
Se40.23604 (4)0.08172 (4)0.44427 (5)0.02230 (12)
Se50.16278 (4)0.15311 (4)0.67875 (5)0.02290 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.0106 (2)0.0172 (3)0.0130 (2)0.00056 (16)0.00004 (14)0.00019 (15)
V10.0106 (2)0.0172 (3)0.0130 (2)0.00056 (16)0.00004 (14)0.00019 (15)
Se10.0181 (3)0.0191 (3)0.0305 (3)00.0063 (2)0
Se20.0191 (2)0.0305 (3)0.0185 (2)0.00413 (18)0.00163 (15)0.00470 (17)
Se30.0163 (2)0.0254 (3)0.0177 (2)0.00295 (18)0.00143 (14)0.00224 (16)
Se40.0207 (2)0.0198 (2)0.0256 (2)0.00210 (18)0.00346 (16)0.00309 (17)
Se50.0180 (2)0.0314 (3)0.0191 (2)0.00145 (19)0.00056 (14)0.00614 (17)
Geometric parameters (Å, º) top
Nb1—Se4i2.6046 (6)Se1—Nb1ii2.6524 (6)
Nb1—Se22.6061 (6)Se1—Se2ii2.6584 (5)
Nb1—Se52.6075 (6)Se1—Se22.6584 (5)
Nb1—Se42.6146 (6)Se2—Se32.3603 (6)
Nb1—Se5i2.6153 (6)Se3—V1ii2.7028 (5)
Nb1—Se12.6524 (6)Se3—Nb1ii2.7028 (5)
Nb1—Se32.6968 (6)Se4—Se52.3140 (6)
Nb1—Se3ii2.7028 (5)Se4—V1i2.6046 (6)
Nb1—V1i2.8847 (7)Se4—Nb1i2.6046 (6)
Nb1—Nb1i2.8847 (7)Se5—V1i2.6153 (6)
Se1—V1ii2.6524 (6)Se5—Nb1i2.6153 (6)
Se4i—Nb1—Se287.402 (19)Se4i—Nb1—Nb1i56.614 (16)
Se4i—Nb1—Se590.002 (18)Se2—Nb1—Nb1i124.88 (2)
Se2—Nb1—Se586.924 (18)Se5—Nb1—Nb1i56.603 (16)
Se4i—Nb1—Se4112.894 (17)Se4—Nb1—Nb1i56.281 (17)
Se2—Nb1—Se4132.53 (2)Se5i—Nb1—Nb1i56.345 (16)
Se5—Nb1—Se452.604 (16)Se1—Nb1—Nb1i140.90 (3)
Se4i—Nb1—Se5i52.629 (16)Se3—Nb1—Nb1i140.29 (3)
Se2—Nb1—Se5i133.17 (2)Se3ii—Nb1—Nb1i115.34 (2)
Se5—Nb1—Se5i112.948 (17)V1i—Nb1—Nb1i0.00 (2)
Se4—Nb1—Se5i89.611 (19)V1ii—Se1—Nb188.93 (3)
Se4i—Nb1—Se187.508 (19)Nb1ii—Se1—Nb188.93 (3)
Se2—Nb1—Se160.729 (13)V1ii—Se1—Se2ii58.774 (15)
Se5—Nb1—Se1147.63 (2)Nb1ii—Se1—Se2ii58.774 (15)
Se4—Nb1—Se1154.09 (2)Nb1—Se1—Se2ii93.73 (2)
Se5i—Nb1—Se190.793 (17)V1ii—Se1—Se293.73 (2)
Se4i—Nb1—Se3140.03 (2)Nb1ii—Se1—Se293.73 (2)
Se2—Nb1—Se352.827 (16)Nb1—Se1—Se258.774 (15)
Se5—Nb1—Se384.635 (18)Se2ii—Se1—Se2142.96 (3)
Se4—Nb1—Se394.89 (2)Se3—Se2—Nb165.560 (17)
Se5i—Nb1—Se3160.346 (19)Se3—Se2—Se182.79 (2)
Se1—Nb1—Se376.889 (16)Nb1—Se2—Se160.497 (15)
Se4i—Nb1—Se3ii133.74 (2)Se2—Se3—Nb161.613 (16)
Se2—Nb1—Se3ii119.558 (18)Se2—Se3—V1ii99.67 (2)
Se5—Nb1—Se3ii125.39 (2)Nb1—Se3—V1ii86.973 (17)
Se4—Nb1—Se3ii77.498 (17)Se2—Se3—Nb1ii99.67 (2)
Se5i—Nb1—Se3ii83.958 (17)Nb1—Se3—Nb1ii86.973 (17)
Se1—Nb1—Se3ii76.786 (16)Se5—Se4—V1i63.925 (18)
Se3—Nb1—Se3ii78.391 (18)Se5—Se4—Nb1i63.925 (18)
Se4i—Nb1—V1i56.614 (16)Se5—Se4—Nb163.540 (17)
Se2—Nb1—V1i124.88 (2)V1i—Se4—Nb167.105 (17)
Se5—Nb1—V1i56.603 (16)Nb1i—Se4—Nb167.105 (17)
Se4—Nb1—V1i56.281 (17)Se4—Se5—Nb163.856 (18)
Se5i—Nb1—V1i56.345 (16)Se4—Se5—V1i63.447 (18)
Se1—Nb1—V1i140.90 (3)Nb1—Se5—V1i67.052 (17)
Se3—Nb1—V1i140.29 (3)Se4—Se5—Nb1i63.447 (18)
Se3ii—Nb1—V1i115.34 (2)Nb1—Se5—Nb1i67.052 (17)
Se4i—Nb1—Se1—V1ii176.568 (19)Se2—Nb1—Se3—V1ii102.699 (18)
Se2—Nb1—Se1—V1ii95.014 (17)Se5—Nb1—Se3—V1ii167.096 (18)
Se5—Nb1—Se1—V1ii97.37 (4)Se4—Nb1—Se3—V1ii115.431 (19)
Se4—Nb1—Se1—V1ii33.29 (4)Se5i—Nb1—Se3—V1ii12.76 (8)
Se5i—Nb1—Se1—V1ii124.029 (18)Se1—Nb1—Se3—V1ii39.663 (15)
Se3—Nb1—Se1—V1ii40.511 (11)Se3ii—Nb1—Se3—V1ii39.28 (2)
Se3ii—Nb1—Se1—V1ii40.424 (11)V1i—Nb1—Se3—V1ii155.17 (3)
V1i—Nb1—Se1—V1ii154.52 (4)Nb1i—Nb1—Se3—V1ii155.17 (3)
Nb1i—Nb1—Se1—V1ii154.52 (4)Se4i—Nb1—Se3—Nb1ii109.33 (2)
Se4i—Nb1—Se1—Nb1ii176.568 (19)Se2—Nb1—Se3—Nb1ii102.699 (18)
Se2—Nb1—Se1—Nb1ii95.014 (17)Se5—Nb1—Se3—Nb1ii167.096 (18)
Se5—Nb1—Se1—Nb1ii97.37 (4)Se4—Nb1—Se3—Nb1ii115.431 (19)
Se4—Nb1—Se1—Nb1ii33.29 (4)Se5i—Nb1—Se3—Nb1ii12.76 (8)
Se5i—Nb1—Se1—Nb1ii124.029 (18)Se1—Nb1—Se3—Nb1ii39.663 (15)
Se3—Nb1—Se1—Nb1ii40.511 (11)Se3ii—Nb1—Se3—Nb1ii39.28 (2)
Se3ii—Nb1—Se1—Nb1ii40.424 (11)V1i—Nb1—Se3—Nb1ii155.17 (3)
V1i—Nb1—Se1—Nb1ii154.52 (4)Nb1i—Nb1—Se3—Nb1ii155.17 (3)
Nb1i—Nb1—Se1—Nb1ii154.52 (4)Se4i—Nb1—Se4—Se571.168 (19)
Se4i—Nb1—Se1—Se2ii117.956 (18)Se2—Nb1—Se4—Se537.53 (3)
Se2—Nb1—Se1—Se2ii153.63 (2)Se5i—Nb1—Se4—Se5119.734 (16)
Se5—Nb1—Se1—Se2ii155.98 (4)Se1—Nb1—Se4—Se5149.25 (5)
Se4—Nb1—Se1—Se2ii25.33 (5)Se3—Nb1—Se4—Se579.423 (19)
Se5i—Nb1—Se1—Se2ii65.416 (18)Se3ii—Nb1—Se4—Se5156.37 (2)
Se3—Nb1—Se1—Se2ii99.124 (18)V1i—Nb1—Se4—Se571.168 (19)
Se3ii—Nb1—Se1—Se2ii18.189 (16)Nb1i—Nb1—Se4—Se571.168 (19)
V1i—Nb1—Se1—Se2ii95.90 (4)Se4i—Nb1—Se4—V1i0.0
Nb1i—Nb1—Se1—Se2ii95.90 (4)Se2—Nb1—Se4—V1i108.70 (3)
Se4i—Nb1—Se1—Se288.417 (19)Se5—Nb1—Se4—V1i71.168 (19)
Se5—Nb1—Se1—Se22.35 (4)Se5i—Nb1—Se4—V1i48.565 (15)
Se4—Nb1—Se1—Se2128.30 (5)Se1—Nb1—Se4—V1i139.58 (5)
Se5i—Nb1—Se1—Se2140.96 (2)Se3—Nb1—Se4—V1i150.59 (2)
Se3—Nb1—Se1—Se254.503 (16)Se3ii—Nb1—Se4—V1i132.46 (2)
Se3ii—Nb1—Se1—Se2135.44 (2)Nb1i—Nb1—Se4—V1i0.0
V1i—Nb1—Se1—Se2110.47 (4)Se4i—Nb1—Se4—Nb1i0.0
Nb1i—Nb1—Se1—Se2110.47 (4)Se2—Nb1—Se4—Nb1i108.70 (3)
Se4i—Nb1—Se2—Se3175.74 (2)Se5—Nb1—Se4—Nb1i71.168 (19)
Se5—Nb1—Se2—Se385.597 (19)Se5i—Nb1—Se4—Nb1i48.565 (15)
Se4—Nb1—Se2—Se356.60 (3)Se1—Nb1—Se4—Nb1i139.58 (5)
Se5i—Nb1—Se2—Se3155.39 (3)Se3—Nb1—Se4—Nb1i150.59 (2)
Se1—Nb1—Se2—Se395.663 (19)Se3ii—Nb1—Se4—Nb1i132.46 (2)
Se3ii—Nb1—Se2—Se343.91 (2)V1i—Nb1—Se4—Nb1i0.0
V1i—Nb1—Se2—Se3130.41 (3)V1i—Se4—Se5—Nb176.099 (17)
Nb1i—Nb1—Se2—Se3130.41 (3)Nb1i—Se4—Se5—Nb176.099 (17)
Se4i—Nb1—Se2—Se188.598 (19)Nb1i—Se4—Se5—V1i0.0
Se5—Nb1—Se2—Se1178.74 (2)Nb1—Se4—Se5—V1i76.099 (17)
Se4—Nb1—Se2—Se1152.27 (3)V1i—Se4—Se5—Nb1i0.0
Se5i—Nb1—Se2—Se159.73 (3)Nb1—Se4—Se5—Nb1i76.099 (17)
Se3—Nb1—Se2—Se195.663 (19)Se4i—Nb1—Se5—Se4119.319 (18)
Se3ii—Nb1—Se2—Se151.75 (2)Se2—Nb1—Se5—Se4153.28 (2)
V1i—Nb1—Se2—Se1133.92 (3)Se5i—Nb1—Se5—Se470.55 (2)
Nb1i—Nb1—Se2—Se1133.92 (3)Se1—Nb1—Se5—Se4155.34 (4)
V1ii—Se1—Se2—Se320.533 (18)Se3—Nb1—Se5—Se4100.35 (2)
Nb1ii—Se1—Se2—Se320.533 (18)Se3ii—Nb1—Se5—Se428.69 (2)
Nb1—Se1—Se2—Se365.948 (18)V1i—Nb1—Se5—Se470.55 (2)
Se2ii—Se1—Se2—Se318.564 (12)Nb1i—Nb1—Se5—Se470.55 (2)
V1ii—Se1—Se2—Nb186.48 (2)Se4i—Nb1—Se5—V1i48.766 (16)
Nb1ii—Se1—Se2—Nb186.48 (2)Se2—Nb1—Se5—V1i136.16 (2)
Se2ii—Se1—Se2—Nb147.384 (12)Se4—Nb1—Se5—V1i70.55 (2)
Se1—Se2—Se3—Nb160.808 (13)Se5i—Nb1—Se5—V1i0.0
Nb1—Se2—Se3—V1ii81.199 (17)Se1—Nb1—Se5—V1i134.11 (5)
Se1—Se2—Se3—V1ii20.391 (16)Se3—Nb1—Se5—V1i170.90 (3)
Nb1—Se2—Se3—Nb1ii81.199 (17)Se3ii—Nb1—Se5—V1i99.24 (3)
Se1—Se2—Se3—Nb1ii20.391 (16)Nb1i—Nb1—Se5—V1i0.0
Se4i—Nb1—Se3—Se26.64 (3)Se4i—Nb1—Se5—Nb1i48.766 (16)
Se5—Nb1—Se3—Se290.205 (19)Se2—Nb1—Se5—Nb1i136.16 (2)
Se4—Nb1—Se3—Se2141.87 (2)Se4—Nb1—Se5—Nb1i70.55 (2)
Se5i—Nb1—Se3—Se2115.45 (7)Se5i—Nb1—Se5—Nb1i0.0
Se1—Nb1—Se3—Se263.036 (16)Se1—Nb1—Se5—Nb1i134.11 (5)
Se3ii—Nb1—Se3—Se2141.981 (19)Se3—Nb1—Se5—Nb1i170.90 (3)
V1i—Nb1—Se3—Se2102.13 (4)Se3ii—Nb1—Se5—Nb1i99.24 (3)
Nb1i—Nb1—Se3—Se2102.13 (4)V1i—Nb1—Se5—Nb1i0.0
Se4i—Nb1—Se3—V1ii109.33 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaNb1.41V0.59Se9
Mr871.69
Crystal system, space groupMonoclinic, C2/c
Temperature (K)290
a, b, c (Å)10.8039 (5), 12.6209 (7), 8.1704 (3)
β (°) 94.6473 (15)
V3)1110.41 (9)
Z4
Radiation typeMo Kα
µ (mm1)31.39
Crystal size (mm)0.36 × 0.02 × 0.02
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(NUMABS; Higashi, 2000)
Tmin, Tmax0.415, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5325, 1281, 1141
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.051, 1.12
No. of reflections1281
No. of parameters52
Δρmax, Δρmin (e Å3)1.07, 0.72

Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), locally modified version of ORTEP (Johnson, 1965), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by an Ajou University Research Fellowship (2010). Use was made of the X-ray facilities supported by Ajou University.

References

First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFuruseth, S. & Klewe, B. (1984). Acta Chem. Scand. Ser. A, 38, 467–471.  Google Scholar
First citationHigashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMeerschaut, A., Guémas, L., Berger, R. & Rouxel, J. (1979). Acta Cryst. B35, 1747–1750.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunshine, S. A. & Ibers, J. A. (1987). Acta Cryst. C43, 1019–1022.  CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds