metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1235-m1236

catena-Poly[[tetra­kis­(μ-penta­fluoro­benzoato-κ2O:O′)dimolybdenum(II)]-μ-4,4′-bi­pyridine-κ2N:N′]

aDepartment of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
*Correspondence e-mail: 08hanlij@tongji.edu.cn

(Received 14 July 2011; accepted 5 August 2011; online 17 August 2011)

In the title compound, [Mo2(C7F5O2)4(C10H8N2)]n, the mol­ecule forms a paddle-wheel-type structure. Each Mo24+ unit is equatorially coordinated by four pentafluoro­benzoate groups, while the axial positions are occupied by two 4,4′-bipyridine mol­ecules. The Mo—Mo bond length of 2.1227 (4) Å is representative of a dimolybdenum quadruple bond. An infinite linear chain parallel to [110] is formed by the Mo24+ unit coordinating axially to the two N atoms of the 4,4′-bipyridine ligand [Mo—N = 2.594 (2) Å]. The crystal packing shows mol­ecules linked together into a three-dimensional network via Mo—N coordination inter­actions and weak ππ stacking inter­actions between perfluoro­phenyl rings [centroid–centroid distance = 3.7280 (3) Å and centroid-to-plane distance = 3.6103 (12) Å between two penta­fluoro­phenyl rings].

Related literature

For background to coordination polymers, see: Batten (2002[Batten, S. R. (2002). Curr. Opin. Solid State Mater. Sci. 5, 107-114.]); Kumar et al. (2004[Kumar, T., Uemura, K., Chang, H.-C., Matsuda, R. & Kitagawa, S. (2004). Angew. Chem. Int. Ed. 43, 3269-3272.]). For torsion angles about the penta­fluoro­benzoate anion, see: Reddy et al. (2004[Reddy, L. S., Nangia, A. & Lynch, V. M. (2004). Cryst. Growth Des. 4, 89-94.]); Bach et al. (2001[Bach, A., Lentz, D. & Luger, P. (2001). J. Phys. Chem. A, 105, 7405-7412.]); For Mo–Mo quadruple bond lengths, see: Cotton et al. (2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds Between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo2(C7F5O2)4(C10H8N2)]

  • Mr = 1192.34

  • Triclinic, [P \overline 1]

  • a = 8.8858 (8) Å

  • b = 9.9311 (9) Å

  • c = 11.1978 (10) Å

  • α = 101.158 (1)°

  • β = 94.697 (1)°

  • γ = 99.092 (1)°

  • V = 950.83 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.849, Tmax = 0.884

  • 4937 measured reflections

  • 3294 independent reflections

  • 3072 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.061

  • S = 1.01

  • 3294 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—O1 2.1124 (17)
Mo1—O6 2.1155 (16)
Mo1—O5 2.1427 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C55—H55A⋯F35 0.93 2.55 3.152 (2) 122
C51—H51A⋯F33ii 0.93 2.78 2.987 (3) 94
Symmetry code: (ii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and construction of coordination polymers are of great interest due to their structural topologies and potential application as functional materials (Batten, 2002; Kumar, et al., 2004). Here, we report the synthesis and crystal structure of the coordination polymer [Mo2(OOCC6F5)4(C10H8N2)]n.

In the title compound, Mo2(C7F5O2)4(C10H8N2), (I), the molecule forms a paddle-wheel-type structure. Each quadruply bonded Mo24+ unit is equatorially coordinated by four pertafluoro-benzoate (OOCC6F5) groups and the axial positions have associated with them two 4, 4-bipyridine molecules (Fig. 1). The Mo–Mo bond length of 2.1227 (4) Å is representative for dimolybdenum quadruple bonds (Cotton et al., 2005). The torsion angles between the C6F5 group and the connected chelating ring (Mo2OCO) are 72.081 (3)°, 75.537 (3)°, 22.059 (3)° and 22.422 (3)°, respectively, and relate to the O···F repulsion within the pentafluoro-benzonate anion (Reddy et al., 2004; Bach et al., 2001). Weak ππ stacking interactions between perfluorophenyl rings also affect the 72.081 (3)° and 75.537 (3)° torsion angles.

An infinite, linear chain coordination polymer is formed by the Mo24+ unit coordinating axially to the two N atoms of the 4, 4-bipyridine ligand [Mo–N distance = 2.5938 (2) Å] (Fig. 2). A one-dimensional linear chain is generated by the π-π stacking between perfluorophenyl rings as viewed along the equatorial position of the Mo–Mo quadruple bonds (Fig. 3), [the center-to-center distance = 3.7280 (3) Å and center-to-plane distance = 3.6103 (0) Å between two pentafluorophenyl rings]. Crystal packing shows molecules linked together into a three-dimensional network (Fig. 4) via Mo–N coordination interactions and perfluorophenyl rings via weak ππ stacking interactions. Weak C–H···F intermolecular interactions further stabilize the crystal structure [(F···H distances = 2.7879 (15) Å].

Related literature top

For background to coordination polymers, see: Batten (2002); Kumar et al. (2004). For torsion angles about the pentafluorobenzoate anion, see: Reddy et al. (2004); Bach et al. (2001); For Mo–Mo quadruple bond lengths, see: Cotton et al. (2005).

Experimental top

4, 4-bipyridine (0.312 g, 2 mmol) was dissolved in dichloromethane (30 ml), and the solution was filtered to a Schelenk tube. Mo2(OOCC6F5)4 (0.207 g, 0.2 mmol) was dissolved in ethanol (10 ml), resulting in a clear yellow solution. The yellow solution was carefully layered on the top of the Schelenk tube. Solution diffusion at low temperature (in refrigetator) afforded yellow X-ray quality crystals after three days. Yield: 0.190 g (80%). Anal. Calcd. for C38H8N2O8F20Mo2: C, 38.28; H, 0.68; N, 2.35. Found: C, 38.13; H, 0.53; N, 2.37.

Refinement top

The H atoms were positioned geometrically and refined using the riding model with C–H = 0.93 Å for aromatic H, 0.96 Å for methyl H atoms. The Uiso parameters for H atoms were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq of the carrier atom for the remaining H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound drawn with displacement ellipsoids at the 30% probability level. All hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Part of a one-dimensional linear chain formed by a Mo–N coordination bond viewed along the a axis.
[Figure 3] Fig. 3. Part of a one-dimensional linear chain formed by the ππ intermolecular stacking interactions.
[Figure 4] Fig. 4. Molecular packing diagram of (I) with a view along the a axis.
catena-Poly[[tetrakis(µ-pentafluorobenzoato- κ2O:O')dimolybdenum(II)]-µ-4,4'-bipyridine- κ2N:N'] top
Crystal data top
[Mo2(C7F5O2)4(C10H8N2)]Z = 1
Mr = 1192.34F(000) = 578
Triclinic, P1Dx = 2.082 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8858 (8) ÅCell parameters from 4122 reflections
b = 9.9311 (9) Åθ = 2.5–27.6°
c = 11.1978 (10) ŵ = 0.82 mm1
α = 101.158 (1)°T = 293 K
β = 94.697 (1)°Block, yellow
γ = 99.092 (1)°0.20 × 0.18 × 0.15 mm
V = 950.83 (15) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3294 independent reflections
Radiation source: fine-focus sealed tube3072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 810
Tmin = 0.849, Tmax = 0.884k = 1111
4937 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.6373P]
where P = (Fo2 + 2Fc2)/3
3294 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Mo2(C7F5O2)4(C10H8N2)]γ = 99.092 (1)°
Mr = 1192.34V = 950.83 (15) Å3
Triclinic, P1Z = 1
a = 8.8858 (8) ÅMo Kα radiation
b = 9.9311 (9) ŵ = 0.82 mm1
c = 11.1978 (10) ÅT = 293 K
α = 101.158 (1)°0.20 × 0.18 × 0.15 mm
β = 94.697 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3294 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3072 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.884Rint = 0.013
4937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
3294 reflectionsΔρmin = 0.47 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.94356 (2)0.58128 (2)0.480838 (17)0.02757 (8)
F110.46291 (19)0.34697 (17)0.29542 (17)0.0569 (4)
F120.2509 (2)0.1493 (2)0.1523 (2)0.0712 (5)
F130.3174 (2)0.10294 (19)0.05942 (18)0.0682 (5)
F140.6015 (2)0.15799 (17)0.11139 (18)0.0662 (5)
F150.81465 (19)0.03236 (17)0.25713 (17)0.0568 (4)
F311.0522 (2)0.7439 (2)0.89717 (17)0.0701 (5)
F320.9848 (3)0.8073 (2)1.13037 (18)0.0825 (6)
F330.7539 (2)0.6435 (2)1.20533 (14)0.0708 (6)
F340.5986 (3)0.4110 (2)1.05142 (19)0.0823 (6)
F350.6643 (2)0.3488 (2)0.81764 (17)0.0770 (6)
O10.75702 (18)0.43333 (16)0.38004 (15)0.0332 (4)
O20.87528 (19)0.26377 (17)0.42436 (15)0.0345 (4)
O50.85431 (19)0.59500 (18)0.65400 (15)0.0355 (4)
O61.03083 (19)0.58024 (17)0.31053 (15)0.0352 (4)
C10.7665 (3)0.3051 (3)0.3681 (2)0.0330 (5)
C30.8955 (3)0.5167 (3)0.7219 (2)0.0325 (5)
C110.6483 (3)0.1984 (3)0.2857 (2)0.0341 (5)
C120.5018 (3)0.2234 (3)0.2528 (2)0.0391 (6)
C130.3913 (3)0.1235 (3)0.1796 (3)0.0456 (7)
C140.4231 (3)0.0065 (3)0.1325 (3)0.0467 (7)
C150.5677 (3)0.0340 (3)0.1609 (2)0.0437 (6)
C160.6762 (3)0.0656 (3)0.2357 (2)0.0382 (6)
C310.8594 (3)0.5460 (3)0.8527 (2)0.0346 (5)
C320.9392 (3)0.6610 (3)0.9340 (2)0.0428 (6)
C330.9070 (4)0.6945 (3)1.0538 (2)0.0497 (7)
C340.7909 (3)0.6100 (3)1.0917 (2)0.0480 (7)
C350.7115 (3)0.4929 (3)1.0133 (3)0.0502 (7)
C360.7458 (3)0.4611 (3)0.8941 (2)0.0437 (6)
N10.2434 (3)0.2426 (2)0.5169 (2)0.0434 (5)
C510.3883 (4)0.2800 (3)0.5640 (2)0.0498 (7)
H51A0.42260.37270.60270.060*
C520.1981 (3)0.1097 (3)0.4617 (3)0.0555 (8)
H52A0.09660.08100.42700.067*
C530.2934 (3)0.0113 (3)0.4527 (3)0.0540 (8)
H53A0.25540.08050.41300.065*
C540.4463 (3)0.0507 (3)0.5034 (2)0.0377 (6)
C550.4927 (3)0.1900 (3)0.5594 (2)0.0467 (7)
H55A0.59380.22300.59380.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.03074 (12)0.03149 (12)0.02725 (12)0.01909 (8)0.00822 (8)0.00964 (8)
F110.0419 (9)0.0543 (10)0.0761 (12)0.0260 (8)0.0033 (8)0.0049 (9)
F120.0397 (9)0.0805 (13)0.0925 (14)0.0211 (9)0.0114 (9)0.0154 (11)
F130.0585 (11)0.0614 (11)0.0735 (12)0.0033 (9)0.0153 (10)0.0079 (9)
F140.0698 (12)0.0416 (9)0.0795 (13)0.0163 (9)0.0058 (10)0.0049 (9)
F150.0458 (9)0.0479 (9)0.0739 (12)0.0251 (8)0.0035 (8)0.0034 (8)
F310.0668 (12)0.0753 (13)0.0585 (11)0.0139 (10)0.0155 (9)0.0085 (9)
F320.1018 (17)0.0801 (14)0.0504 (11)0.0059 (12)0.0050 (11)0.0135 (10)
F330.0872 (14)0.1141 (16)0.0306 (8)0.0598 (12)0.0245 (9)0.0213 (9)
F340.0797 (14)0.1097 (17)0.0669 (12)0.0041 (12)0.0374 (11)0.0393 (12)
F350.0870 (15)0.0773 (13)0.0534 (11)0.0205 (11)0.0149 (10)0.0069 (10)
O10.0319 (9)0.0335 (9)0.0390 (9)0.0169 (7)0.0043 (7)0.0098 (7)
O20.0357 (9)0.0349 (9)0.0375 (9)0.0162 (7)0.0044 (7)0.0108 (7)
O50.0391 (9)0.0449 (10)0.0318 (9)0.0260 (8)0.0126 (7)0.0124 (7)
O60.0403 (10)0.0412 (9)0.0334 (9)0.0225 (8)0.0121 (7)0.0153 (7)
C10.0331 (13)0.0395 (13)0.0328 (12)0.0160 (11)0.0105 (10)0.0123 (10)
C30.0317 (12)0.0401 (13)0.0312 (12)0.0150 (11)0.0092 (10)0.0116 (10)
C110.0344 (13)0.0394 (13)0.0339 (12)0.0131 (11)0.0097 (10)0.0131 (10)
C120.0380 (14)0.0440 (14)0.0426 (14)0.0178 (12)0.0109 (11)0.0162 (12)
C130.0342 (14)0.0573 (17)0.0504 (16)0.0141 (13)0.0022 (12)0.0196 (14)
C140.0457 (16)0.0500 (16)0.0420 (15)0.0011 (13)0.0020 (13)0.0126 (13)
C150.0505 (16)0.0375 (14)0.0441 (15)0.0117 (12)0.0056 (13)0.0079 (12)
C160.0351 (13)0.0423 (14)0.0419 (14)0.0151 (11)0.0053 (11)0.0132 (11)
C310.0365 (13)0.0452 (14)0.0298 (12)0.0206 (11)0.0109 (10)0.0128 (11)
C320.0408 (15)0.0538 (16)0.0387 (14)0.0140 (13)0.0112 (12)0.0141 (12)
C330.0576 (18)0.0579 (17)0.0334 (14)0.0234 (15)0.0003 (13)0.0008 (13)
C340.0540 (17)0.076 (2)0.0283 (13)0.0404 (16)0.0159 (12)0.0177 (14)
C350.0463 (16)0.073 (2)0.0427 (16)0.0201 (15)0.0188 (13)0.0262 (15)
C360.0443 (15)0.0543 (16)0.0357 (14)0.0124 (13)0.0101 (12)0.0117 (12)
N10.0503 (14)0.0533 (14)0.0405 (12)0.0343 (11)0.0176 (11)0.0187 (10)
C510.0609 (19)0.0551 (17)0.0396 (15)0.0382 (15)0.0052 (13)0.0025 (13)
C520.0399 (16)0.0552 (18)0.084 (2)0.0259 (14)0.0165 (15)0.0281 (17)
C530.0416 (16)0.0402 (15)0.090 (2)0.0202 (13)0.0163 (15)0.0234 (15)
C540.0446 (15)0.0458 (14)0.0363 (13)0.0264 (12)0.0179 (11)0.0211 (11)
C550.0491 (16)0.0586 (17)0.0360 (14)0.0320 (14)0.0019 (12)0.0018 (12)
Geometric parameters (Å, º) top
Mo1—O2i2.0955 (17)C11—C121.397 (3)
Mo1—O12.1124 (17)C11—C161.398 (3)
Mo1—O62.1155 (16)C12—C131.366 (4)
Mo1—Mo1i2.1227 (4)C13—C141.379 (4)
Mo1—O52.1427 (16)C14—C151.379 (4)
Mo1—N1ii2.594 (2)C15—C161.362 (4)
F11—C121.337 (3)C31—C321.368 (4)
F12—C131.335 (3)C31—C361.379 (4)
F13—C141.325 (3)C32—C331.383 (4)
F14—C151.340 (3)C33—C341.373 (4)
F15—C161.338 (3)C34—C351.365 (4)
F31—C321.338 (3)C35—C361.381 (4)
F32—C331.325 (3)N1—C511.318 (4)
F33—C341.333 (3)N1—C521.327 (4)
F34—C351.341 (3)C51—C551.383 (4)
F35—C361.333 (3)C51—H51A0.9300
O1—C11.272 (3)C52—C531.385 (4)
O2—C11.274 (3)C52—H52A0.9300
O2—Mo1i2.0955 (17)C53—C541.393 (4)
O5—C31.261 (3)C53—H53A0.9300
O6—C3i1.261 (3)C54—C551.385 (4)
C1—C111.480 (3)C54—C54iii1.489 (5)
C3—O6i1.261 (3)C55—H55A0.9300
C3—C311.508 (3)
O2i—Mo1—O1176.82 (6)F15—C16—C11120.6 (2)
O2i—Mo1—O692.90 (7)C15—C16—C11122.5 (2)
O1—Mo1—O685.79 (7)C32—C31—C36118.0 (2)
O2i—Mo1—Mo1i92.41 (4)C32—C31—C3119.8 (2)
O1—Mo1—Mo1i90.57 (4)C36—C31—C3122.2 (2)
O6—Mo1—Mo1i93.70 (4)F31—C32—C31119.4 (2)
O2i—Mo1—O585.43 (7)F31—C32—C33118.7 (3)
O1—Mo1—O595.73 (7)C31—C32—C33121.9 (3)
O6—Mo1—O5176.63 (6)F32—C33—C34120.4 (3)
Mo1i—Mo1—O589.29 (4)F32—C33—C32120.8 (3)
C1—O1—Mo1117.52 (15)C34—C33—C32118.9 (3)
C1—O2—Mo1i116.51 (15)F33—C34—C35119.8 (3)
C3—O5—Mo1117.24 (14)F33—C34—C33119.8 (3)
C3i—O6—Mo1114.32 (14)C35—C34—C33120.5 (2)
O1—C1—O2122.5 (2)F34—C35—C34119.9 (3)
O1—C1—C11119.5 (2)F34—C35—C36120.3 (3)
O2—C1—C11118.0 (2)C34—C35—C36119.8 (3)
O5—C3—O6i124.7 (2)F35—C36—C31119.9 (2)
O5—C3—C31117.2 (2)F35—C36—C35119.0 (3)
O6i—C3—C31118.1 (2)C31—C36—C35121.0 (3)
C12—C11—C16115.6 (2)C51—N1—C52116.5 (2)
C12—C11—C1122.4 (2)N1—C51—C55124.1 (3)
C16—C11—C1122.0 (2)N1—C51—H51A117.9
F11—C12—C13117.1 (2)C55—C51—H51A117.9
F11—C12—C11120.6 (2)N1—C52—C53123.8 (3)
C13—C12—C11122.3 (2)N1—C52—H52A118.1
F12—C13—C12121.0 (3)C53—C52—H52A118.1
F12—C13—C14118.7 (3)C52—C53—C54119.7 (3)
C12—C13—C14120.3 (2)C52—C53—H53A120.2
F13—C14—C15120.5 (3)C54—C53—H53A120.2
F13—C14—C13120.6 (3)C55—C54—C53116.0 (2)
C15—C14—C13119.0 (3)C55—C54—C54iii122.0 (3)
F14—C15—C16120.4 (2)C53—C54—C54iii122.0 (3)
F14—C15—C14119.3 (3)C51—C55—C54119.9 (3)
C16—C15—C14120.3 (2)C51—C55—H55A120.1
F15—C16—C15116.8 (2)C54—C55—H55A120.1
O6—Mo1—O1—C191.22 (16)C1—C11—C16—F152.7 (4)
Mo1i—Mo1—O1—C12.45 (16)C12—C11—C16—C150.8 (4)
O5—Mo1—O1—C191.80 (16)C1—C11—C16—C15179.2 (2)
O2i—Mo1—O5—C389.66 (18)O5—C3—C31—C3272.1 (3)
O1—Mo1—O5—C393.32 (18)O6i—C3—C31—C32105.4 (3)
Mo1i—Mo1—O5—C32.82 (18)O5—C3—C31—C36107.0 (3)
O2i—Mo1—O6—C3i98.99 (17)O6i—C3—C31—C3675.6 (3)
O1—Mo1—O6—C3i83.91 (17)C36—C31—C32—F31178.7 (2)
Mo1i—Mo1—O6—C3i6.38 (17)C3—C31—C32—F312.2 (4)
Mo1—O1—C1—O27.3 (3)C36—C31—C32—C331.2 (4)
Mo1—O1—C1—C11172.39 (15)C3—C31—C32—C33177.9 (2)
Mo1i—O2—C1—O18.4 (3)F31—C32—C33—F320.9 (4)
Mo1i—O2—C1—C11171.27 (15)C31—C32—C33—F32179.3 (3)
Mo1—O5—C3—O6i9.2 (3)F31—C32—C33—C34179.8 (2)
Mo1—O5—C3—C31168.03 (16)C31—C32—C33—C340.3 (4)
O1—C1—C11—C1222.4 (3)F32—C33—C34—F331.7 (4)
O2—C1—C11—C12157.9 (2)C32—C33—C34—F33177.3 (2)
O1—C1—C11—C16157.6 (2)F32—C33—C34—C35179.4 (3)
O2—C1—C11—C1622.1 (3)C32—C33—C34—C351.7 (4)
C16—C11—C12—F11179.9 (2)F33—C34—C35—F341.1 (4)
C1—C11—C12—F110.0 (4)C33—C34—C35—F34179.9 (3)
C16—C11—C12—C132.0 (4)F33—C34—C35—C36177.4 (3)
C1—C11—C12—C13178.1 (2)C33—C34—C35—C361.5 (4)
F11—C12—C13—F120.0 (4)C32—C31—C36—F35179.4 (2)
C11—C12—C13—F12178.2 (2)C3—C31—C36—F350.3 (4)
F11—C12—C13—C14179.9 (2)C32—C31—C36—C351.3 (4)
C11—C12—C13—C141.8 (4)C3—C31—C36—C35177.8 (2)
F12—C13—C14—F131.4 (4)F34—C35—C36—F350.5 (4)
C12—C13—C14—F13178.6 (2)C34—C35—C36—F35178.0 (3)
F12—C13—C14—C15179.6 (3)F34—C35—C36—C31178.6 (3)
C12—C13—C14—C150.3 (4)C34—C35—C36—C310.0 (4)
F13—C14—C15—F141.7 (4)C52—N1—C51—C550.3 (4)
C13—C14—C15—F14177.2 (3)C51—N1—C52—C530.6 (4)
F13—C14—C15—C16179.7 (2)N1—C52—C53—C540.1 (5)
C13—C14—C15—C160.8 (4)C52—C53—C54—C550.7 (4)
F14—C15—C16—F150.7 (4)C52—C53—C54—C54iii179.9 (3)
C14—C15—C16—F15178.7 (2)N1—C51—C55—C540.5 (4)
F14—C15—C16—C11177.5 (2)C53—C54—C55—C511.0 (4)
C14—C15—C16—C110.5 (4)C54iii—C54—C55—C51179.6 (3)
C12—C11—C16—F15177.3 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C55—H55A···F350.932.553.152 (2)122
C51—H51A···F33iv0.932.782.987 (3)94
Symmetry code: (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Mo2(C7F5O2)4(C10H8N2)]
Mr1192.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8858 (8), 9.9311 (9), 11.1978 (10)
α, β, γ (°)101.158 (1), 94.697 (1), 99.092 (1)
V3)950.83 (15)
Z1
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.849, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
4937, 3294, 3072
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.01
No. of reflections3294
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.47

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mo1—O12.1124 (17)Mo1—Mo1i2.1227 (4)
Mo1—O62.1155 (16)Mo1—O52.1427 (16)
O1—C1—C11—C1222.4 (3)O5—C3—C31—C3272.1 (3)
O2—C1—C11—C1622.1 (3)O6i—C3—C31—C3675.6 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C55—H55A···F350.932.553.152 (2)122.40
C51—H51A···F33ii0.932.782.987 (3)93.86
Symmetry code: (ii) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by the National Natural Scientific Foundation of China (No. 20741004/B010303).

References

First citationBach, A., Lentz, D. & Luger, P. (2001). J. Phys. Chem. A, 105, 7405–7412.  Web of Science CSD CrossRef CAS Google Scholar
First citationBatten, S. R. (2002). Curr. Opin. Solid State Mater. Sci. 5, 107–114.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds Between Metal Atoms, 3rd ed. New York: Springer Science and Business Media Inc.  Google Scholar
First citationKumar, T., Uemura, K., Chang, H.-C., Matsuda, R. & Kitagawa, S. (2004). Angew. Chem. Int. Ed. 43, 3269–3272.  Google Scholar
First citationReddy, L. S., Nangia, A. & Lynch, V. M. (2004). Cryst. Growth Des. 4, 89–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1235-m1236
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds