organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2,5-di­chloro­phen­yl)isophthalamide

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: ruitaozhu@126.com

(Received 19 July 2011; accepted 5 August 2011; online 11 August 2011)

The asymmetric unit of the title compound, C20H12Cl4N2O2, contains one half-mol­ecule with a center of symmetry along a C⋯C axis of the central benzene ring. The two C=O groups adopt an anti orientation and the two amide groups are twisted away from the central benzene ring by 27.38 (3) and 27.62 (4)°. The mean planes of the dichloro-substituted benzene rings are twisted by 7.95 (4)° with respect to the benzene ring. The crystal packing is stabilized by weak inter­molecular N—H⋯O inter­actions.

Related literature

For the design of artificial receptors related to isophthalamide, see: Gale (2006[Gale, P. A. (2006). Acc. Chem. Res. 36, 465-475.]). For related structures, see: Light et al. (2006[Light, M. E., Gale, P. A. & Navakhun, K. (2006). Acta Cryst. E62, o1097-o1098.]); Kavallieratos et al. (1997[Kavallieratos, K., Gala, S. R., Austin, D. J. & Grabtee, R. H. (1997). J. Am. Chem. Soc. 119, 2325-2326.], 1999[Kavallieratos, K., Bertao, C. M. & Grabtee, R. H. (1999). J. Org. Chem. 64, 1675-1683.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H12Cl4N2O2

  • Mr = 454.12

  • Monoclinic, P 2/c

  • a = 11.3661 (11) Å

  • b = 10.0239 (9) Å

  • c = 8.9470 (7) Å

  • β = 109.988 (1)°

  • V = 957.95 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 298 K

  • 0.49 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.745, Tmax = 0.939

  • 4668 measured reflections

  • 1687 independent reflections

  • 1152 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.110

  • S = 1.01

  • 1687 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.22 3.046 (3) 160
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Anion recognition is an area of growing interest in supramolecular chemistry due to its important role in a wide range of environmental, clinical, chemical, and biological applications. Considerable attention has been focused on the design of artificial receptors that are able to selectively recognize and sense anion species (Gale, 2006). Artificial receptors, containing the isophthalamide core function as effective receptors for halide anions in very simple systems (Kavallieratos et al., 1997, 1999; Light et al. 2006). We report here the crystal structure of the title compound, C20H12Cl4N2O2, (I), related to these types of receptors.

In the title compound,(I), the asymmetric unit containing one-half of the molecule crystallizes with a center of symmetry along the C2—C5 axis in the benzene ring thereby producing the desired structure (Fig. 1). In the molecule the two CO groups adopt an anti orientation and the two amide groups are twisted away from the center benzene ring by 27.38 (3) ° and 27.62 (4) °, respectively. The mean planes of the dichloro substituted benzene rings are twisted by 7.95 (4) ° with that of the benzene ring. Bond lengths are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by weak N—H···O intermolecular interactions (Table 1).

Related literature top

For the design of artificial receptors related to isophthalamide, see: Gale (2006). For related structures, see: Light et al. (2006); Kavallieratos et al. (1997, 1999). For standard bond lengths, see: Allen et al. (1987).

Experimental top

N,N-Bis(2,5-dichlorophenyl)isophthalamide (I) was prepared according to literature procedures (Kavallieratos et al., 1997, 1999). To dichloromethane (20 ml) in a 100 ml flask was added 2,5-dichloroaniline(1.62 g, 10 mmol) with magnetic stirring. Isophthalogyl chloride (1.01 g, 5 mmol) was added gradually, and the reaction mixture was stirred at room temperature for 2 h and then poured into ice water (100 ml). The product was precipitated as a white powder, which was washed three times with water. Recrystallization from dimethyl sulfoxide solution produced the crystals of the title compound.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93–0.96 Å, N—H = 0.86Å and Uiso(H)= 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids are drawn at the 30% probability level.
N,N'-bis(2,5-dichlorophenyl)benzene-1,3-dicarboxamide top
Crystal data top
C20H12Cl4N2O2F(000) = 460
Mr = 454.12Dx = 1.574 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 1505 reflections
a = 11.3661 (11) Åθ = 2.8–27.4°
b = 10.0239 (9) ŵ = 0.64 mm1
c = 8.9470 (7) ÅT = 298 K
β = 109.988 (1)°Prism, colorless
V = 957.95 (15) Å30.49 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1687 independent reflections
Radiation source: fine-focus sealed tube1152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 136
Tmin = 0.745, Tmax = 0.939k = 1111
4668 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.6846P]
where P = (Fo2 + 2Fc2)/3
1687 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C20H12Cl4N2O2V = 957.95 (15) Å3
Mr = 454.12Z = 2
Monoclinic, P2/cMo Kα radiation
a = 11.3661 (11) ŵ = 0.64 mm1
b = 10.0239 (9) ÅT = 298 K
c = 8.9470 (7) Å0.49 × 0.20 × 0.10 mm
β = 109.988 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1687 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1152 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.939Rint = 0.030
4668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
1687 reflectionsΔρmin = 0.30 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.64968 (9)0.85140 (8)0.38003 (10)0.0726 (3)
Cl20.99324 (10)0.70144 (15)1.06068 (10)0.1021 (5)
N10.7062 (2)0.5769 (2)0.4952 (2)0.0412 (6)
H10.69110.59860.39740.049*
O10.70204 (19)0.4014 (2)0.6539 (2)0.0544 (6)
C10.6692 (2)0.4532 (3)0.5224 (3)0.0392 (7)
C20.50000.4520 (4)0.25000.0362 (9)
H20.50000.54480.25000.043*
C30.5811 (2)0.3842 (3)0.3794 (3)0.0372 (6)
C40.5787 (3)0.2456 (3)0.3786 (4)0.0537 (8)
H40.63060.19850.46570.064*
C50.50000.1782 (4)0.25000.0638 (13)
H50.50000.08540.25000.077*
C60.7666 (2)0.6736 (3)0.6099 (3)0.0401 (7)
C70.7463 (3)0.8080 (3)0.5689 (3)0.0489 (8)
C80.8009 (3)0.9072 (4)0.6768 (4)0.0672 (10)
H80.78730.99620.64680.081*
C90.8753 (3)0.8746 (4)0.8289 (4)0.0732 (11)
H90.91040.94100.90340.088*
C100.8969 (3)0.7431 (4)0.8689 (4)0.0640 (10)
C110.8451 (3)0.6423 (3)0.7628 (3)0.0513 (8)
H110.86240.55360.79320.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0832 (7)0.0488 (5)0.0643 (6)0.0049 (4)0.0025 (5)0.0043 (4)
Cl20.0748 (7)0.1852 (13)0.0349 (5)0.0308 (7)0.0039 (4)0.0066 (6)
N10.0485 (14)0.0452 (14)0.0276 (11)0.0025 (11)0.0101 (10)0.0034 (10)
O10.0655 (14)0.0594 (13)0.0382 (11)0.0103 (11)0.0177 (10)0.0161 (10)
C10.0390 (15)0.0439 (16)0.0397 (16)0.0121 (13)0.0197 (13)0.0064 (13)
C20.041 (2)0.0292 (19)0.042 (2)0.0000.0197 (18)0.000
C30.0366 (15)0.0367 (15)0.0427 (16)0.0029 (12)0.0191 (13)0.0041 (12)
C40.0489 (18)0.0418 (17)0.069 (2)0.0079 (15)0.0184 (16)0.0109 (15)
C50.069 (3)0.027 (2)0.089 (4)0.0000.019 (3)0.000
C60.0347 (15)0.0546 (18)0.0327 (15)0.0042 (13)0.0139 (12)0.0040 (13)
C70.0422 (17)0.0531 (18)0.0475 (17)0.0007 (14)0.0101 (14)0.0103 (14)
C80.061 (2)0.064 (2)0.075 (2)0.0116 (18)0.020 (2)0.0223 (19)
C90.056 (2)0.102 (3)0.061 (2)0.020 (2)0.0185 (19)0.040 (2)
C100.0418 (18)0.115 (3)0.0355 (17)0.016 (2)0.0131 (14)0.0138 (19)
C110.0395 (16)0.077 (2)0.0369 (16)0.0049 (16)0.0128 (14)0.0011 (16)
Geometric parameters (Å, º) top
Cl1—C71.727 (3)C4—H40.9300
Cl2—C101.742 (3)C5—C4i1.370 (4)
N1—C11.358 (3)C5—H50.9300
N1—C61.408 (3)C6—C111.390 (4)
N1—H10.8600C6—C71.395 (4)
O1—C11.222 (3)C7—C81.376 (4)
C1—C31.498 (4)C8—C91.373 (5)
C2—C3i1.387 (3)C8—H80.9300
C2—C31.387 (3)C9—C101.366 (5)
C2—H20.9300C9—H90.9300
C3—C41.389 (4)C10—C111.374 (5)
C4—C51.370 (4)C11—H110.9300
C1—N1—C6127.0 (2)C11—C6—C7118.0 (3)
C1—N1—H1116.5C11—C6—N1123.5 (3)
C6—N1—H1116.5C7—C6—N1118.5 (2)
O1—C1—N1123.3 (3)C8—C7—C6121.2 (3)
O1—C1—C3121.4 (3)C8—C7—Cl1119.2 (3)
N1—C1—C3115.2 (2)C6—C7—Cl1119.6 (2)
C3i—C2—C3121.2 (3)C9—C8—C7120.0 (3)
C3i—C2—H2119.4C9—C8—H8120.0
C3—C2—H2119.4C7—C8—H8120.0
C2—C3—C4118.7 (3)C10—C9—C8118.9 (3)
C2—C3—C1123.1 (2)C10—C9—H9120.5
C4—C3—C1118.2 (2)C8—C9—H9120.5
C5—C4—C3120.2 (3)C9—C10—C11122.2 (3)
C5—C4—H4119.9C9—C10—Cl2119.1 (3)
C3—C4—H4119.9C11—C10—Cl2118.7 (3)
C4—C5—C4i120.9 (4)C10—C11—C6119.5 (3)
C4—C5—H5119.6C10—C11—H11120.2
C4i—C5—H5119.6C6—C11—H11120.2
C6—N1—C1—O112.3 (4)C11—C6—C7—C80.8 (5)
C6—N1—C1—C3166.2 (2)N1—C6—C7—C8178.8 (3)
C3i—C2—C3—C40.9 (2)C11—C6—C7—Cl1179.9 (2)
C3i—C2—C3—C1179.2 (3)N1—C6—C7—Cl10.6 (4)
O1—C1—C3—C2151.0 (2)C6—C7—C8—C91.0 (5)
N1—C1—C3—C227.5 (3)Cl1—C7—C8—C9178.3 (3)
O1—C1—C3—C427.4 (4)C7—C8—C9—C102.0 (5)
N1—C1—C3—C4154.2 (3)C8—C9—C10—C111.1 (6)
C2—C3—C4—C51.9 (4)C8—C9—C10—Cl2179.0 (3)
C1—C3—C4—C5179.7 (2)C9—C10—C11—C60.8 (5)
C3—C4—C5—C4i1.0 (2)Cl2—C10—C11—C6179.1 (2)
C1—N1—C6—C1129.4 (4)C7—C6—C11—C101.7 (4)
C1—N1—C6—C7150.1 (3)N1—C6—C11—C10177.8 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.862.223.046 (3)160
Symmetry code: (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC20H12Cl4N2O2
Mr454.12
Crystal system, space groupMonoclinic, P2/c
Temperature (K)298
a, b, c (Å)11.3661 (11), 10.0239 (9), 8.9470 (7)
β (°) 109.988 (1)
V3)957.95 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.49 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.745, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
4668, 1687, 1152
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.01
No. of reflections1687
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.2243.046 (3)159.75
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

The authors gratefully acknowledge the University Technology Development Project in Shanxi Province (grant Nos. 20091144, 20101116).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGale, P. A. (2006). Acc. Chem. Res. 36, 465–475.  CrossRef Google Scholar
First citationKavallieratos, K., Bertao, C. M. & Grabtee, R. H. (1999). J. Org. Chem. 64, 1675–1683.  CrossRef CAS Google Scholar
First citationKavallieratos, K., Gala, S. R., Austin, D. J. & Grabtee, R. H. (1997). J. Am. Chem. Soc. 119, 2325–2326.  CrossRef CAS Google Scholar
First citationLight, M. E., Gale, P. A. & Navakhun, K. (2006). Acta Cryst. E62, o1097–o1098.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds