organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,10-Bis(pyridin-2-ylmeth­yl)-1,7-di­thia-4,10-diazo­nia­cyclo­do­decane bis­(perchlorate)

aDepartment of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
*Correspondence e-mail: weizh@ncu.edu.cn

(Received 27 July 2011; accepted 12 August 2011; online 27 August 2011)

The asymmetric unit of the title compound C20H30N4S2+. 2ClO4 comprises one macrocyclic cation and two perchlorate anions. In the cation, one of the protonated H atoms bound to the amide N atom is involved in an intra­molecular N—H⋯N hydrogen bond. The O atoms in the two perchlorate anions are disordered over two sets of sites with occupancy ratios of 0.65 (3):0.35 (3) and 0.640 (15):0.360 (15).

Related literature

For tunable physicochemical and functional properties of macrocyclic ligands, see: Fabbrizzi et al. (1999[Fabbrizzi, L., Licchelli, M. & Pallavicini, P. (1999). Acc. Chem. Res. 32, 846-853.]). For applications of transition metal complexes with macrocyclic ligands, see: De Silva et al. (2003[De Silva, A. P., McClea, G. D. & Pagliari, S. (2003). Chem. Commun. pp. 2010-2011.]); Habata et al. (2006[Habata, Y., Seo, J., Otawa, S., Osaka, F., Noto, K. & Lee, S.-S. (2006). Dalton Trans. pp. 2202-2206.]); Bilgin et al. (2009[Bilgin, A., Ertem, B. & Gök, Y. (2009). Dyes Pigments, 80, 187-193.]); Bernier et al. (2011[Bernier, N., Costa, J., Delgado, R., Félix, V., Royal, G. & Tripier, R. (2011). Dalton Trans. 40, 4514-4526.]). For similar structures, see: Peng et al. (2009[Peng, Y., Li, Z.-M., Niu, Z.-G., Liu, Y.-Q., Zeng, X.-R., Luo, Q.-Y., Hughes, D. L. & Liu, X.-M. (2009). Inorg. Chim. Acta, 362, 3975-3981.]); Wasitlewski & Mattes (1990[Wasielewski, K. & Mattes, R. (1990). Acta Cryst. C46, 1826-1828.]); Funkemeier & Mattes (1993[Funkemeier, D. & Mattes, R. (1993). J. Chem. Soc. Dalton Trans. pp. 1313-1319.]); Chak & McAuley (2006[Chak, B. C. M. & McAuley, A. (2006). Can. J. Chem. 84, 187-195.]).

[Scheme 1]

Experimental

Crystal data
  • C20H30N4S22+·2ClO4

  • Mr = 589.52

  • Triclinic, [P \overline 1]

  • a = 10.4491 (6) Å

  • b = 11.6146 (7) Å

  • c = 11.7795 (7) Å

  • α = 96.167 (1)°

  • β = 90.340 (1)°

  • γ = 113.830 (1)°

  • V = 1298.23 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.850, Tmax = 0.891

  • 12276 measured reflections

  • 6516 independent reflections

  • 4865 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.04

  • 6516 reflections

  • 407 parameters

  • 84 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1B⋯N4 0.89 (2) 2.06 (2) 2.661 (3) 123.6 (19)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Macrocyclic ligands have the ability to form transition metal complexes with tunable physicochemical and functional properties (Fabbrizzi et al. 1999). The resulting complexes are found to have diverse applications such as with medicinal inorganic compounds, photosensitizers in solar cells, catalysts for organic transformations, molecular devices based on tunable properties, mimics for enzymes catalyzing redox and hydrolytic processes (De Silva et al. 2003; Habata et al. 2006; Bilgin et al. 2009; Bernier et al. 2011). Among the large number of known macrocyclic ligands, there has been particular interest in the preparation and characterization of macrocyclic ligands with pendant substituents (Peng et al. 2009; Wasitlewski et al. 1990). For example, N, S-functionalized macrocycles with pyridyl pendant arms may enhance their metal-ion selectivity depending on their the macrocyclic ring size as well as the pendent moiety. These novel ligands containing the thioether donors as well as aliphatic and pyridyl nitrogen donors, provide a strong mixed nitrogen/sulfur metal coordination environment (Funkemeier et al. 1993). In this work, the structure of the title compound with the {py2N2S2}-donor set as a macrocyclic cation is reported.

In the cation, the twelve-membered ring adopts a distorted crown conformation with the sulfur and nitrogen atoms at the point and carbon atoms at the edges (Fig. 1). Due to the preference of C—S bonds to adopt a gauche conformation, the sulfur atoms are oriented with their lone pairs pointing out of the ring (Chak et al. 2006). The protonated hydrogen atoms bound to the amide atoms are oriented at the inner cavity. The two pyridyl pendent arms are located at the same side, but not parallel to each other with the dihedral angle between the pyridyl rings being 14.61 (13)°. The H1B atom bonded to N2 is involved in a N2—H1B···N4 intramolecular hydrogen bond. There are no hydrogen bonds between the O atoms of ClO4- and the amide H atoms. The ClO4- anions are embedded in the cavity formed by cations (Fig. 2).

Related literature top

For tunable physicochemical and functional properties of macrocyclic ligands, see: Fabbrizzi et al. (1999). For applications of transition metal complexes with macrocyclic ligands, see: De Silva et al. (2003); Habata et al. (2006); Bilgin et al. (2009); Bernier et al. (2011). For similar structures, see: Peng et al. (2009); Wasitlewski & Mattes (1990); Funkemeier & Mattes (1993); Chak & McAuley (2006).

Experimental top

A mixture of ligand 4-(pyridin-2-ylmethyl)-1,7-dithia-4,10-diazacyclododecane (1.5 g, 5 mmol) and 2-(chloromethyl)pyridine (0.64 g, 5 mmol) in dry toluene (50 ml) was refluxed under an Ar atmosphere for 48 h in the presence of K2CO3 (1.40 g, 10.14 mmol) and KI (0.84 g, 5.05 mmol). The resulting orange solution was filtered, and the solvent was removed under reduced pressure. The obtained solid was purified by chromatography using ethyl acetate as the eluant to give a pale yellow solid 4,10-bis(pyridin-2-ylmethyl)-1,7-dithia-4,10-diazacyclododecane, L (1.5 g, 79%). Reaction of L with Zn(ClO4)2. 6H2O) in MeCN in the presence of little acid afforded a solution. Diffusion of Et2O into the MeCN solution gave single crystals of the title product with 25% yield.

Refinement top

In title complex, oxygen atoms in two perchlorate anions exhibited disorder over two positions. The O(1)—O(4) oxygen atoms bonded to the Cl1 atom, and the O(5)—O(8) oxygen atoms bonded to the Cl2 atom, were split into two fragments with occupancy factors of O(1)—O(4)/O(1 A)—O(4 A) = 0.65 (3)/0.35 (3), and O(5)—O(8)/O(5 A)—O(8 A) = 0.640 (15)/0.360 (15). Hydrogen atoms for the carbon atoms were placed in geometrically idealized positions and constrained to ride on their parent with C—H = 0.97 Å and 0.93 Å for methylene and aryl type H-atoms, respectively, and refined in a riding mode with Uiso(H) = 1.2Ueq(C). The H atoms on the amino atoms were located from the Fourier map and were allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex with 30% thermal ellipsoids. Dashed line indicate hydrogen bond.
[Figure 2] Fig. 2. Cell packing of the title complex looking down the c axis, H atoms were ommited for clarity.
4,10-Bis(pyridin-2-ylmethyl)-1,7-dithia-4,10-diazoniacyclododecane bis(perchlorate) top
Crystal data top
C20H30N4S22+·2(ClO4)Z = 2
Mr = 589.52F(000) = 616
Triclinic, P1Dx = 1.508 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4491 (6) ÅCell parameters from 5215 reflections
b = 11.6146 (7) Åθ = 2.4–27.9°
c = 11.7795 (7) ŵ = 0.46 mm1
α = 96.167 (1)°T = 296 K
β = 90.340 (1)°Block, colorless
γ = 113.830 (1)°0.35 × 0.30 × 0.25 mm
V = 1298.23 (13) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6516 independent reflections
Radiation source: fine-focus sealed tube4865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Thin slice ϕ & ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1312
Tmin = 0.850, Tmax = 0.891k = 1515
12276 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.4486P]
where P = (Fo2 + 2Fc2)/3
6516 reflections(Δ/σ)max = 0.001
407 parametersΔρmax = 0.37 e Å3
84 restraintsΔρmin = 0.37 e Å3
Crystal data top
C20H30N4S22+·2(ClO4)γ = 113.830 (1)°
Mr = 589.52V = 1298.23 (13) Å3
Triclinic, P1Z = 2
a = 10.4491 (6) ÅMo Kα radiation
b = 11.6146 (7) ŵ = 0.46 mm1
c = 11.7795 (7) ÅT = 296 K
α = 96.167 (1)°0.35 × 0.30 × 0.25 mm
β = 90.340 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6516 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4865 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.891Rint = 0.018
12276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04184 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
6516 reflectionsΔρmin = 0.37 e Å3
407 parameters
Special details top

Experimental. Characterization of ligand: 4,10-bis(pyridin-2-ylmethyl)-1,7-dithia-4,10-diazacyclododecane: 1H NMR (CDCl3): 8.455 (d, J = 4.52, py—H), 7.604 (t, J = 15.08, py—H), 7.475 (d, J = 7.79, py—H), 7.097 (t, J = 12.18, py—H), 3.739 (s, py—CH2), 2.802 (t, J = 13.08, NCH2CH2), 2.729 (t, J = 13.02, NCH2CH2). 13C NMR (CDCl3): 159.26, 149.06, 136.50, 123.05, 122.12, 61.35, 52.54, 26.66.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.39671 (6)0.14286 (5)0.65754 (5)0.05266 (15)
S20.48251 (5)0.13448 (5)1.00606 (5)0.04540 (14)
N10.21785 (17)0.03948 (15)0.83251 (14)0.0387 (3)
N20.61643 (17)0.35034 (16)0.84963 (16)0.0444 (4)
N30.34391 (19)0.16697 (17)0.71127 (16)0.0513 (4)
N40.7232 (2)0.19581 (18)0.74762 (17)0.0541 (4)
C10.4072 (3)0.2237 (3)0.6405 (2)0.0610 (6)
H10.48420.17270.60330.073*
C20.3645 (3)0.3522 (2)0.6201 (2)0.0595 (6)
H20.41200.38720.57090.071*
C30.2501 (3)0.4286 (2)0.6738 (2)0.0600 (6)
H30.21810.51640.66090.072*
C40.1835 (2)0.3728 (2)0.7471 (2)0.0519 (5)
H40.10640.42210.78520.062*
C50.23386 (19)0.24212 (18)0.76281 (16)0.0398 (4)
C60.1675 (2)0.17756 (18)0.84537 (18)0.0438 (4)
H6A0.06650.21790.83200.053*
H6B0.18980.18700.92290.053*
C70.1455 (2)0.0218 (2)0.7285 (2)0.0515 (5)
H7A0.14140.08530.66630.062*
H7B0.04990.03620.74580.062*
C80.2161 (2)0.1076 (2)0.6893 (2)0.0532 (5)
H8A0.21330.17120.74850.064*
H8B0.16550.11120.62140.064*
C90.1998 (2)0.0353 (2)0.93856 (18)0.0469 (5)
H9A0.10490.00670.96220.056*
H9B0.21210.11860.92070.056*
C100.3007 (2)0.05079 (19)1.03664 (17)0.0460 (5)
H10A0.28650.03241.05610.055*
H10B0.28000.09651.10270.055*
C110.4678 (3)0.3147 (2)0.6720 (2)0.0606 (6)
H11A0.55160.34530.62910.073*
H11B0.40010.34030.63810.073*
C120.5040 (2)0.3773 (2)0.7943 (2)0.0543 (5)
H12A0.53500.46820.79530.065*
H12B0.42070.34700.83780.065*
C130.5041 (2)0.29796 (19)1.03629 (19)0.0521 (5)
H13A0.42050.30611.00940.063*
H13B0.51740.32351.11820.063*
C140.6293 (2)0.3825 (2)0.9775 (2)0.0533 (5)
H14A0.64120.46980.99580.064*
H14B0.71250.37571.00690.064*
C150.7559 (2)0.4119 (2)0.7978 (2)0.0571 (6)
H15A0.82950.45040.85790.069*
H15B0.75520.47800.75430.069*
C160.7840 (2)0.3135 (2)0.72044 (18)0.0479 (5)
C170.7505 (3)0.1055 (3)0.6860 (2)0.0642 (6)
H170.70760.02250.70340.077*
C180.8396 (3)0.1311 (3)0.5980 (2)0.0791 (9)
H180.85920.06710.55810.095*
C190.8991 (3)0.2522 (4)0.5698 (2)0.0868 (10)
H190.95860.27120.50960.104*
C200.8703 (3)0.3455 (3)0.6311 (2)0.0677 (7)
H200.90820.42820.61260.081*
Cl10.07973 (5)0.30206 (4)0.92855 (4)0.04391 (13)
O10.1496 (11)0.2960 (8)1.0304 (5)0.0704 (15)0.65 (3)
O20.0140 (9)0.1779 (8)0.8848 (8)0.0671 (19)0.65 (3)
O30.0093 (11)0.3821 (9)0.9534 (8)0.0776 (19)0.65 (3)
O40.1840 (8)0.3539 (7)0.8490 (7)0.077 (2)0.65 (3)
O1A0.1935 (18)0.3149 (12)1.003 (2)0.082 (5)0.35 (3)
O2A0.0087 (13)0.1694 (11)0.9035 (16)0.057 (3)0.35 (3)
O3A0.0013 (17)0.3660 (14)0.9828 (18)0.075 (4)0.35 (3)
O4A0.130 (3)0.3533 (14)0.8256 (12)0.106 (5)0.35 (3)
Cl20.77446 (5)0.71112 (5)0.63800 (4)0.04936 (14)
O50.7051 (8)0.7250 (11)0.7361 (3)0.143 (5)0.640 (15)
O60.8883 (4)0.6809 (5)0.6678 (5)0.074 (2)0.640 (15)
O70.8261 (6)0.8223 (5)0.5868 (9)0.136 (4)0.640 (15)
O80.6782 (6)0.6138 (6)0.5611 (5)0.111 (3)0.640 (15)
O5A0.7899 (12)0.8133 (10)0.7147 (11)0.124 (5)0.360 (15)
O6A0.8869 (9)0.6775 (10)0.6571 (9)0.086 (5)0.360 (15)
O7A0.7803 (15)0.7432 (18)0.5294 (7)0.152 (8)0.360 (15)
O8A0.6522 (6)0.6099 (9)0.6511 (16)0.146 (10)0.360 (15)
H1A0.304 (2)0.011 (2)0.8194 (19)0.047 (6)*
H1B0.594 (2)0.268 (2)0.8319 (19)0.054 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0584 (3)0.0548 (3)0.0439 (3)0.0224 (3)0.0024 (2)0.0043 (2)
S20.0438 (3)0.0413 (3)0.0502 (3)0.0173 (2)0.0050 (2)0.0018 (2)
N10.0315 (8)0.0370 (8)0.0453 (9)0.0132 (6)0.0011 (7)0.0012 (7)
N20.0392 (9)0.0323 (8)0.0586 (11)0.0122 (7)0.0048 (7)0.0023 (7)
N30.0492 (10)0.0452 (9)0.0525 (10)0.0128 (8)0.0094 (8)0.0020 (8)
N40.0549 (11)0.0486 (10)0.0573 (11)0.0211 (9)0.0074 (9)0.0002 (8)
C10.0543 (13)0.0687 (15)0.0564 (14)0.0219 (12)0.0157 (11)0.0039 (12)
C20.0682 (15)0.0702 (15)0.0518 (13)0.0427 (13)0.0046 (11)0.0035 (11)
C30.0730 (16)0.0469 (12)0.0644 (15)0.0312 (12)0.0016 (12)0.0018 (11)
C40.0514 (12)0.0419 (11)0.0581 (13)0.0150 (9)0.0062 (10)0.0043 (9)
C50.0371 (9)0.0387 (9)0.0408 (10)0.0136 (8)0.0026 (8)0.0004 (8)
C60.0413 (10)0.0366 (9)0.0485 (11)0.0113 (8)0.0059 (8)0.0023 (8)
C70.0433 (11)0.0504 (12)0.0571 (13)0.0170 (9)0.0137 (9)0.0002 (10)
C80.0517 (12)0.0557 (13)0.0560 (13)0.0262 (10)0.0088 (10)0.0051 (10)
C90.0407 (10)0.0459 (11)0.0560 (12)0.0220 (9)0.0065 (9)0.0047 (9)
C100.0532 (12)0.0428 (10)0.0397 (10)0.0182 (9)0.0102 (9)0.0003 (8)
C110.0657 (15)0.0578 (13)0.0571 (14)0.0208 (11)0.0007 (11)0.0194 (11)
C120.0530 (12)0.0455 (11)0.0679 (15)0.0236 (10)0.0001 (11)0.0076 (10)
C130.0576 (13)0.0412 (11)0.0509 (12)0.0167 (9)0.0003 (10)0.0085 (9)
C140.0490 (12)0.0411 (11)0.0590 (13)0.0107 (9)0.0052 (10)0.0081 (9)
C150.0444 (11)0.0405 (11)0.0772 (16)0.0078 (9)0.0129 (11)0.0068 (10)
C160.0371 (10)0.0536 (12)0.0489 (12)0.0151 (9)0.0006 (9)0.0020 (9)
C170.0759 (17)0.0615 (15)0.0601 (15)0.0366 (13)0.0060 (13)0.0072 (12)
C180.0822 (19)0.105 (2)0.0592 (16)0.0554 (19)0.0064 (14)0.0240 (16)
C190.0719 (19)0.119 (3)0.0550 (16)0.0290 (19)0.0155 (14)0.0095 (17)
C200.0587 (15)0.0762 (17)0.0548 (14)0.0143 (13)0.0084 (11)0.0054 (12)
Cl10.0434 (3)0.0362 (2)0.0537 (3)0.01821 (19)0.0054 (2)0.00373 (19)
O10.068 (4)0.084 (3)0.060 (3)0.034 (3)0.012 (2)0.0022 (18)
O20.057 (3)0.047 (3)0.086 (3)0.012 (2)0.016 (2)0.003 (2)
O30.088 (4)0.071 (3)0.101 (4)0.060 (3)0.009 (3)0.005 (3)
O40.076 (3)0.060 (2)0.079 (3)0.0132 (19)0.033 (2)0.003 (2)
O1A0.050 (6)0.044 (4)0.148 (11)0.021 (4)0.039 (6)0.013 (5)
O2A0.040 (5)0.033 (4)0.098 (8)0.013 (3)0.009 (5)0.007 (4)
O3A0.097 (6)0.057 (4)0.091 (8)0.049 (4)0.029 (5)0.014 (5)
O4A0.151 (14)0.085 (6)0.086 (6)0.043 (8)0.051 (7)0.051 (5)
Cl20.0486 (3)0.0477 (3)0.0509 (3)0.0183 (2)0.0043 (2)0.0072 (2)
O50.141 (7)0.260 (13)0.065 (2)0.127 (9)0.025 (3)0.008 (4)
O60.054 (3)0.069 (4)0.092 (4)0.015 (3)0.022 (3)0.026 (3)
O70.135 (4)0.090 (4)0.179 (9)0.028 (3)0.035 (5)0.073 (4)
O80.091 (4)0.101 (5)0.120 (5)0.035 (3)0.048 (3)0.053 (4)
O5A0.108 (7)0.107 (7)0.154 (10)0.055 (6)0.017 (7)0.047 (7)
O6A0.070 (8)0.124 (11)0.099 (8)0.070 (7)0.039 (6)0.035 (7)
O7A0.176 (14)0.24 (2)0.073 (6)0.104 (16)0.007 (6)0.081 (8)
O8A0.039 (3)0.096 (8)0.30 (3)0.005 (4)0.001 (7)0.101 (13)
Geometric parameters (Å, º) top
S1—C81.813 (2)C11—C121.514 (3)
S1—C111.814 (2)C11—H11A0.9700
S2—C101.810 (2)C11—H11B0.9700
S2—C131.814 (2)C12—H12A0.9700
N1—C61.498 (2)C12—H12B0.9700
N1—C91.501 (3)C13—C141.508 (3)
N1—C71.511 (3)C13—H13A0.9700
N1—H1A0.85 (2)C13—H13B0.9700
N2—C121.495 (3)C14—H14A0.9700
N2—C141.504 (3)C14—H14B0.9700
N2—C151.507 (3)C15—C161.508 (3)
N2—H1B0.89 (2)C15—H15A0.9700
N3—C51.328 (3)C15—H15B0.9700
N3—C11.344 (3)C16—C201.373 (3)
N4—C161.330 (3)C17—C181.373 (4)
N4—C171.338 (3)C17—H170.9300
C1—C21.367 (3)C18—C191.368 (5)
C1—H10.9300C18—H180.9300
C2—C31.374 (4)C19—C201.373 (4)
C2—H20.9300C19—H190.9300
C3—C41.378 (3)C20—H200.9300
C3—H30.9300Cl1—O31.410 (6)
C4—C51.381 (3)Cl1—O21.413 (7)
C4—H40.9300Cl1—O4A1.418 (10)
C5—C61.503 (3)Cl1—O1A1.422 (10)
C6—H6A0.9700Cl1—O11.423 (6)
C6—H6B0.9700Cl1—O3A1.424 (11)
C7—C81.508 (3)Cl1—O41.425 (6)
C7—H7A0.9700Cl1—O2A1.437 (11)
C7—H7B0.9700Cl2—O5A1.365 (6)
C8—H8A0.9700Cl2—O7A1.365 (6)
C8—H8B0.9700Cl2—O8A1.366 (5)
C9—C101.505 (3)Cl2—O71.389 (4)
C9—H9A0.9700Cl2—O51.396 (4)
C9—H9B0.9700Cl2—O81.400 (4)
C10—H10A0.9700Cl2—O6A1.403 (7)
C10—H10B0.9700Cl2—O61.421 (4)
C8—S1—C11100.22 (12)H13A—C13—H13B108.2
C10—S2—C13101.11 (10)N2—C14—C13113.20 (17)
C6—N1—C9111.86 (16)N2—C14—H14A108.9
C6—N1—C7110.19 (15)C13—C14—H14A108.9
C9—N1—C7111.66 (16)N2—C14—H14B108.9
C6—N1—H1A108.5 (15)C13—C14—H14B108.9
C9—N1—H1A108.7 (15)H14A—C14—H14B107.8
C7—N1—H1A105.7 (15)N2—C15—C16109.51 (17)
C12—N2—C14112.94 (17)N2—C15—H15A109.8
C12—N2—C15112.52 (18)C16—C15—H15A109.8
C14—N2—C15111.17 (17)N2—C15—H15B109.8
C12—N2—H1B106.4 (15)C16—C15—H15B109.8
C14—N2—H1B109.7 (15)H15A—C15—H15B108.2
C15—N2—H1B103.5 (15)N4—C16—C20123.1 (2)
C5—N3—C1116.90 (19)N4—C16—C15115.22 (19)
C16—N4—C17118.0 (2)C20—C16—C15121.6 (2)
N3—C1—C2123.6 (2)N4—C17—C18122.2 (3)
N3—C1—H1118.2N4—C17—H17118.9
C2—C1—H1118.2C18—C17—H17118.9
C1—C2—C3118.7 (2)C19—C18—C17119.1 (3)
C1—C2—H2120.6C19—C18—H18120.5
C3—C2—H2120.6C17—C18—H18120.5
C2—C3—C4118.8 (2)C18—C19—C20119.4 (3)
C2—C3—H3120.6C18—C19—H19120.3
C4—C3—H3120.6C20—C19—H19120.3
C3—C4—C5118.6 (2)C16—C20—C19118.2 (3)
C3—C4—H4120.7C16—C20—H20120.9
C5—C4—H4120.7C19—C20—H20120.9
N3—C5—C4123.37 (19)O3—Cl1—O2111.7 (3)
N3—C5—C6116.43 (17)O3—Cl1—O4A93.2 (8)
C4—C5—C6120.16 (18)O2—Cl1—O4A100.5 (9)
N1—C6—C5111.39 (16)O3—Cl1—O1A119.0 (9)
N1—C6—H6A109.4O2—Cl1—O1A117.5 (7)
C5—C6—H6A109.4O4A—Cl1—O1A110.3 (5)
N1—C6—H6B109.4O3—Cl1—O1109.2 (3)
C5—C6—H6B109.4O2—Cl1—O1108.7 (3)
H6A—C6—H6B108.0O4A—Cl1—O1132.2 (10)
C8—C7—N1113.97 (16)O2—Cl1—O3A108.6 (10)
C8—C7—H7A108.8O4A—Cl1—O3A109.5 (5)
N1—C7—H7A108.8O1A—Cl1—O3A110.0 (5)
C8—C7—H7B108.8O1—Cl1—O3A96.1 (9)
N1—C7—H7B108.8O3—Cl1—O4109.7 (3)
H7A—C7—H7B107.7O2—Cl1—O4110.1 (3)
C7—C8—S1111.49 (15)O1A—Cl1—O485.3 (9)
C7—C8—H8A109.3O1—Cl1—O4107.4 (3)
S1—C8—H8A109.3O3A—Cl1—O4124.4 (7)
C7—C8—H8B109.3O3—Cl1—O2A115.5 (9)
S1—C8—H8B109.3O4A—Cl1—O2A109.6 (5)
H8A—C8—H8B108.0O1A—Cl1—O2A108.1 (5)
N1—C9—C10113.65 (16)O1—Cl1—O2A98.1 (8)
N1—C9—H9A108.8O3A—Cl1—O2A109.4 (5)
C10—C9—H9A108.8O4—Cl1—O2A115.9 (8)
N1—C9—H9B108.8O5A—Cl2—O7A109.7 (5)
C10—C9—H9B108.8O5A—Cl2—O8A111.1 (5)
H9A—C9—H9B107.7O7A—Cl2—O8A111.1 (5)
C9—C10—S2113.47 (14)O5A—Cl2—O769.0 (5)
C9—C10—H10A108.9O8A—Cl2—O7141.3 (4)
S2—C10—H10A108.9O5A—Cl2—O547.2 (4)
C9—C10—H10B108.9O7A—Cl2—O5136.7 (5)
S2—C10—H10B108.9O8A—Cl2—O565.0 (5)
H10A—C10—H10B107.7O7—Cl2—O5110.9 (3)
C12—C11—S1114.19 (15)O5A—Cl2—O8143.4 (4)
C12—C11—H11A108.7O7A—Cl2—O867.6 (6)
S1—C11—H11A108.7O8A—Cl2—O846.7 (6)
C12—C11—H11B108.7O7—Cl2—O8109.0 (3)
S1—C11—H11B108.7O5—Cl2—O8108.0 (3)
H11A—C11—H11B107.6O5A—Cl2—O6A108.4 (5)
N2—C12—C11111.90 (19)O7A—Cl2—O6A107.7 (4)
N2—C12—H12A109.2O8A—Cl2—O6A108.7 (4)
C11—C12—H12A109.2O7—Cl2—O6A107.5 (5)
N2—C12—H12B109.2O5—Cl2—O6A114.3 (5)
C11—C12—H12B109.2O8—Cl2—O6A106.9 (5)
H12A—C12—H12B107.9O5A—Cl2—O6104.1 (5)
C14—C13—S2109.68 (15)O7A—Cl2—O6112.2 (6)
C14—C13—H13A109.7O8A—Cl2—O6108.6 (4)
S2—C13—H13A109.7O7—Cl2—O6108.8 (3)
C14—C13—H13B109.7O5—Cl2—O6109.5 (3)
S2—C13—H13B109.7O8—Cl2—O6110.6 (3)
C5—N3—C1—C20.3 (4)C8—S1—C11—C1280.8 (2)
N3—C1—C2—C30.5 (4)C14—N2—C12—C11165.53 (18)
C1—C2—C3—C40.7 (4)C15—N2—C12—C1167.6 (2)
C2—C3—C4—C50.6 (4)S1—C11—C12—N262.8 (2)
C1—N3—C5—C40.2 (3)C10—S2—C13—C14159.75 (16)
C1—N3—C5—C6177.6 (2)C12—N2—C14—C1367.5 (2)
C3—C4—C5—N30.4 (3)C15—N2—C14—C13164.93 (18)
C3—C4—C5—C6177.7 (2)S2—C13—C14—N260.1 (2)
C9—N1—C6—C5157.83 (16)C12—N2—C15—C16103.4 (2)
C7—N1—C6—C577.3 (2)C14—N2—C15—C16128.8 (2)
N3—C5—C6—N113.8 (2)C17—N4—C16—C201.5 (3)
C4—C5—C6—N1168.68 (18)C17—N4—C16—C15176.4 (2)
C6—N1—C7—C8163.84 (18)N2—C15—C16—N427.6 (3)
C9—N1—C7—C871.2 (2)N2—C15—C16—C20154.5 (2)
N1—C7—C8—S157.5 (2)C16—N4—C17—C180.9 (4)
C11—S1—C8—C7157.69 (17)N4—C17—C18—C192.1 (4)
C6—N1—C9—C1072.1 (2)C17—C18—C19—C201.0 (5)
C7—N1—C9—C10163.87 (17)N4—C16—C20—C192.5 (4)
N1—C9—C10—S261.1 (2)C15—C16—C20—C19175.2 (2)
C13—S2—C10—C983.22 (16)C18—C19—C20—C161.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1B···N40.89 (2)2.06 (2)2.661 (3)123.6 (19)

Experimental details

Crystal data
Chemical formulaC20H30N4S22+·2(ClO4)
Mr589.52
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.4491 (6), 11.6146 (7), 11.7795 (7)
α, β, γ (°)96.167 (1), 90.340 (1), 113.830 (1)
V3)1298.23 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.850, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
12276, 6516, 4865
Rint0.018
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.04
No. of reflections6516
No. of parameters407
No. of restraints84
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.37

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1B···N40.89 (2)2.06 (2)2.661 (3)123.6 (19)
 

Acknowledgements

The authors acknowledge the Education Department of Jiangxi Province (GJJ11033) and Nanchang University for financial support.

References

First citationBernier, N., Costa, J., Delgado, R., Félix, V., Royal, G. & Tripier, R. (2011). Dalton Trans. 40, 4514–4526.  CrossRef CAS Google Scholar
First citationBilgin, A., Ertem, B. & Gök, Y. (2009). Dyes Pigments, 80, 187–193.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationChak, B. C. M. & McAuley, A. (2006). Can. J. Chem. 84, 187–195.  CrossRef CAS Google Scholar
First citationDe Silva, A. P., McClea, G. D. & Pagliari, S. (2003). Chem. Commun. pp. 2010–2011.  Google Scholar
First citationFabbrizzi, L., Licchelli, M. & Pallavicini, P. (1999). Acc. Chem. Res. 32, 846–853.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFunkemeier, D. & Mattes, R. (1993). J. Chem. Soc. Dalton Trans. pp. 1313–1319.  CrossRef Google Scholar
First citationHabata, Y., Seo, J., Otawa, S., Osaka, F., Noto, K. & Lee, S.-S. (2006). Dalton Trans. pp. 2202–2206.  CrossRef Google Scholar
First citationPeng, Y., Li, Z.-M., Niu, Z.-G., Liu, Y.-Q., Zeng, X.-R., Luo, Q.-Y., Hughes, D. L. & Liu, X.-M. (2009). Inorg. Chim. Acta, 362, 3975–3981.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWasielewski, K. & Mattes, R. (1990). Acta Cryst. C46, 1826–1828.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds