metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1264-m1265

μ-Acetato-μ-(5-chloro-2-{1,3-bis­[2-(5-chloro-2-oxido­benzyl­idene­amino)ethyl]imidazolidin-2-yl}phenolato)-bis­[methanolnickel(II)] methanol monosolvate monohydrate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 9 August 2011; accepted 12 August 2011; online 17 August 2011)

The crystal structure shows that the title compound, [Ni2(CH3CO2)(C27H24Cl3N4O3)(CH4O)2]·CH3OH·H2O, con­tains [Ni2L(OAc)(CH3OH)2] mol­ecules in the unit cell {H3L = 5-chloro-2-{1,3-bis[2-(5-chloro-2-oxidobenzylideneimino)-ethyl]imidazolidin-2-yl}phenolate} with water and methanol as solvates. The title compound is a neutral dinuclear compound, in which the L3− Schiff base acts as a hepta­dentate ligand, using each one of its N2O compartments to coordinate a nickel atom. The acetate anion bridges the two nickel atoms via one O while the distorted octahedral coordination sphere for each nickel atom is completed by a coordinated methanol ligand. One of the coordinated methanol ligands is involved in an intra­molecular hydrogen bond to the uncoordinated O atom of the bridging acetate ligand while the other forms a hydrogen bond with the methanol solvate. The solvate water mol­ecule forms strong hydrogen bonds to both terminal phenolato O atoms. The methanol solvate mol­ecule also forms a hydrogen bond with the water solvate mol­ecule.

Related literature

For dinuclear nickel compounds containing ligands with a predefined ground state, see: Fondo et al. (2005[Fondo, M., Garcia-Deibe, A. M., Corbella, M., Ruiz, E., Tercero, J., Sanmartin, J. & Bermejo, M. R. (2005). Inorg. Chem. 44, 5011-5020.], 2007[Fondo, M., Garcia-Deibe, A. M., Ocampo, N., Sanmartin, J. & Bermejo, M. R. (2007). Dalton Trans. pp. 414-416.], 2009[Fondo, M., Ocampo, N., Garcia-Deibe, A. M., Ruiz, E., Tercero, J. & Sanmartin, J. (2009). Inorg. Chem. 48, 9861-9873.]); Fondo, Garcia-Deibe et al. (2006[Fondo, M., Garcia-Deibe, A. M., Ocampo, N., Sanmartin, J., Bermejo, M. R. & Llamas-Saiz, A. L. (2006). Dalton Trans. pp. 4260-4270.]); Fondo, Ocampo et al. (2006[Fondo, M., Ocampo, N., Garcia-Deibe, A. M., Vicente, R., Corbella, M., Bermejo, M. R. & Sanmartin, J. (2006). Inorg. Chem. 45, 255-262.]); Lu et al. (2007[Lu, L.-P., Lu, X.-P. & Zhu, M.-L. (2007). Acta Cryst. C63, m374-m376.]); Paital et al. (2007[Paital, A. R., Wong, W. T., Aromi, G. & Ray, D. (2007). Inorg. Chem. 46, 5727-5733.], 2009[Paital, A. R., Ribas, J., Barrios, L. A., Aromi, G. & Ray, D. (2009). Dalton Trans. pp. 256-258.]). For density functional theory (DFT) calculations, see: Fondo et al. (2005[Fondo, M., Garcia-Deibe, A. M., Corbella, M., Ruiz, E., Tercero, J., Sanmartin, J. & Bermejo, M. R. (2005). Inorg. Chem. 44, 5011-5020.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C2H3O2)(C27H24Cl3N4O3)(CH4O)2]·CH4O·H2O

  • Mr = 849.46

  • Orthorhombic, P n a 21

  • a = 16.684 (2) Å

  • b = 16.042 (2) Å

  • c = 13.7868 (19) Å

  • V = 3690.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 173 K

  • 0.45 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.685, Tmax = 1.000

  • 23326 measured reflections

  • 8737 independent reflections

  • 7189 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.064

  • S = 0.97

  • 8737 reflections

  • 464 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3935 Friedel pairs

  • Flack parameter: 0.017 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1MA—H1MK⋯O2AA 0.84 1.77 2.586 (3) 162
O1MA—H1MK⋯O1AA 0.84 2.66 3.029 (2) 108
O1W—H1W1⋯O1A 0.82 (2) 1.86 (2) 2.679 (3) 175 (4)
O1W—H1W2⋯O1B 0.81 (2) 1.91 (2) 2.708 (3) 174 (3)
O1M—H1M⋯O1Wi 0.84 1.74 2.577 (3) 170
O1MB—H1MJ⋯O1M 0.84 1.83 2.658 (3) 167
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nickel complexes of the compartmental triprotic heptadentate ligand, 2-hydroxyphenyl)-1,3-bis[4-(2- hydroxyphenyl)-3-azabut- 3-enyl]-1,3-imidazolidine and its derivatives have been of interest for their ability to give rise to dinuclear compounds with a predefined ground state (Fondo et al., 2005, 2007, 2009; Fondo, Garcia-Deibe et al., 2006; Fondo, Ocampo et al., 2006; Lu et al., 2007; Paital, et al., 2007, 2009). Density functional theory (DFT) calculations demonstrated that the Schiff base provides an NCN bridge between the metal ions that helps to mediate the ferromagnetic exchange (Fondo, et al., 2005). Consequently, the use of suitable cross-linking ligands between the dinuclear units could be a route to produce complexes of higher nuclearity, with all of the unpaired electrons aligned parallel to each other. The type of complex obtained depends on the synthesis conditions as the coordination environment about the metals is usually completed by coordinating solvent molecules.

The crystal structure shows that C32H41Cl3N4Ni2O9, (I), contains [Ni2L(OAc)(CH3OH)2] molecules in the unit cell (H3L = 2-(5-chloro-2-hydroxyphenyl)-1,3-bis[4-(5-chloro-2- hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) with water and methanol as solvates. (I) is a neutral dinuclear compound, where the L3- Schiff base acts as a compartmental trianionic heptadentate ligand, using each one of its N2O compartments to coordinate a nickel atom. Thus, the metal atoms are joined to one terminal phenol oxygen (O1A, O1B), an iminic nitrogen (N1A, N1B), and an aminic nitrogen atom (N2A, N2B), with the aminic NCN group (N2A—C7—N2B) acting as a bridge between both nickel ions. In addition, the nickel centers are linked by the endogenous phenolate oxygen atom (O1) of the central ligand arm and by an exogenous bridging monodentate acetate group (O1AA). This gives rise to a nearly planar Ni2O2 metallacycle, with an intramolecular Ni—Ni distance of 3.1078 (6) Å. The coordination spheres of the nickel atoms are completed by methanol molecules. Therefore, the metal centers are hexacoordinated in a N2O4 environment, with an octahedral geometry. The Ni—O and Ni—N distances, as well as the angles about the metal atoms, show quite regular polyhedra around the central ions, with both the Ni—Ophenol—Ni and Ni—Oacetate—Ni angles being similar [97.98 (7)° and 97.37 (8)°, respectively]. There are similar structures reported in the literature which differ only in the nature of the coordinating solvent (H2O) and solvate molecules (H2O, CH3CN) in the lattice (Fondo, Ocampo et al., 2006).

One of the coordinated methanol ligands is involved in an intramolecular hydrogen bond to the uncoordinated O atom (O2AA) of the bridging acetate ligand while the other forms a hydrogen bond with the methanol solvate. The solvate water molecule forms strong hydrogen bonds to both O1A and O1B. The methanol solvate molecule also forms a hydrogen bond with the water solvate molecule.

Related literature top

For dinuclear nickel compounds containing ligands with a predefined ground state, see: Fondo et al. (2005, 2007, 2009); Fondo, Garcia-Deibe et al. (2006); Fondo, Ocampo et al. (2006); Lu et al. (2007); Paital et al. (2007, 2009). For density functional theory (DFT) calculations, see: Fondo et al. (2005).

Experimental top

For the synthesis of the ligand (H3L) methanol solutions of triethylenetetramine and 5-chlorosalicylaldehyde were mixed in 1:3 mol ratio. After heating at 60° C for a few minutes, ether was added to this mixture, and the yellow crystals were separated, filtered and recrystallized from methanol solution. Mp 103–104° C. For synthesis of the complex, to a stirred methanol solution (25 ml) of [Ni(O2CCH3)2]4H2O (1.5 g, 2.67 mmol) was added 1.33 g (5.35 mmol) of the ligand H3L. Slow evaporation of the green filtrate overnight yielded green cystals suitable for X-ray analysis in 75% yield.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with an O—H distance of 0.84 Å and C—H distances of 0.95 - 0.99 Å [Uiso(H) = 1.2Ueq(OH, CH, CH~2~) [Uiso(H) = 1.5Ueq(CH3)]. Water H atoms were refined isotropically with O—H distances restrained to 0.82 Å and H—O—H angle to 104.5° with [Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of C32H41Cl3N4Ni2O9, showing atom labeling. All H atoms except those attached to water, methanol and acetate are removed for clarity. Hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. The molecular packing for C32H41Cl3N4Ni2O9 viewed down the c axis. Hydrogen bonds are shown by dashed lines.
µ-Acetato-µ-(µ-5-chloro-2-{1,3-bis[2-(5-chloro- 2-oxidobenzylideneamino)ethyl]imidazolidin-2-yl}phenolato)- bis[methanolnickel(II)] methanol monosolvate monohydrate top
Crystal data top
[Ni2(C2H3O2)(CH4O)2(C27H24Cl3N4O3)]·CH4O·H2OF(000) = 1760
Mr = 849.46Dx = 1.529 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4340 reflections
a = 16.684 (2) Åθ = 2.3–27.1°
b = 16.042 (2) ŵ = 1.29 mm1
c = 13.7868 (19) ÅT = 173 K
V = 3690.1 (9) Å3Chunk, green
Z = 40.45 × 0.40 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
8737 independent reflections
Radiation source: fine-focus sealed tube7189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1522
Tmin = 0.685, Tmax = 1.000k = 1821
23326 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0269P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
8737 reflectionsΔρmax = 0.34 e Å3
464 parametersΔρmin = 0.23 e Å3
4 restraintsAbsolute structure: Flack (1983), no. of Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (8)
Crystal data top
[Ni2(C2H3O2)(CH4O)2(C27H24Cl3N4O3)]·CH4O·H2OV = 3690.1 (9) Å3
Mr = 849.46Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.684 (2) ŵ = 1.29 mm1
b = 16.042 (2) ÅT = 173 K
c = 13.7868 (19) Å0.45 × 0.40 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
8737 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
7189 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 1.000Rint = 0.037
23326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064Δρmax = 0.34 e Å3
S = 0.97Δρmin = 0.23 e Å3
8737 reflectionsAbsolute structure: Flack (1983), no. of Friedel pairs?
464 parametersAbsolute structure parameter: 0.017 (8)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni1A0.030884 (18)0.86755 (2)0.49661 (3)0.02591 (8)
Ni1B0.038838 (18)0.67711 (2)0.45640 (2)0.02566 (8)
Cl0.00326 (4)0.73145 (5)0.96738 (6)0.04296 (17)
Cl1A0.31065 (5)1.15093 (5)0.53792 (6)0.0493 (2)
Cl1B0.25128 (5)0.34351 (5)0.37379 (8)0.0560 (2)
O10.02255 (10)0.75823 (11)0.54367 (13)0.0258 (4)
O1A0.06659 (10)0.90623 (11)0.42579 (13)0.0305 (4)
O1B0.05824 (11)0.64873 (11)0.37941 (14)0.0308 (4)
O1AA0.05959 (11)0.78731 (10)0.38367 (13)0.0280 (4)
O2AA0.10906 (13)0.87725 (13)0.27867 (15)0.0471 (5)
O1MA0.09955 (10)0.96620 (11)0.43472 (14)0.0371 (5)
H1MK0.10990.94460.38060.044*
O1MB0.11323 (11)0.60759 (11)0.35587 (14)0.0344 (4)
H1MJ0.15420.62740.32900.041*
O1W0.13355 (13)0.78777 (13)0.31538 (18)0.0484 (6)
H1W10.1106 (19)0.8238 (14)0.347 (3)0.073*
H1W20.113 (2)0.7444 (12)0.332 (3)0.073*
O1M0.22768 (12)0.67412 (14)0.24637 (16)0.0470 (5)
H1M0.27030.69090.27230.056*
N1A0.00600 (13)0.94058 (13)0.60946 (16)0.0295 (5)
N2A0.13725 (12)0.83765 (13)0.57830 (16)0.0278 (5)
N1B0.02800 (13)0.57248 (14)0.53500 (17)0.0309 (5)
N2B0.14429 (12)0.69703 (13)0.54912 (15)0.0261 (5)
C10.01809 (15)0.74633 (16)0.63923 (19)0.0256 (6)
C20.08666 (16)0.73573 (16)0.6957 (2)0.0311 (6)
H2A0.13760.73330.66500.037*
C30.08225 (16)0.72863 (17)0.7957 (2)0.0341 (7)
H3A0.12960.72170.83300.041*
C40.00883 (18)0.73162 (17)0.84032 (19)0.0319 (6)
C50.06045 (16)0.73903 (17)0.7878 (2)0.0302 (6)
H5A0.11090.73970.81980.036*
C60.05649 (16)0.74559 (17)0.6871 (2)0.0272 (6)
C70.13219 (15)0.75677 (16)0.63004 (19)0.0284 (6)
H7A0.17880.75240.67540.034*
C80.21070 (15)0.82688 (16)0.5174 (2)0.0346 (7)
H8A0.25910.84550.55290.041*
H8B0.20630.85900.45640.041*
C90.21425 (15)0.73351 (16)0.4968 (2)0.0341 (6)
H9A0.21020.72270.42630.041*
H9B0.26510.70940.52110.041*
C1A0.11614 (15)1.00242 (15)0.5459 (2)0.0283 (6)
C2A0.11907 (14)0.96151 (15)0.4553 (2)0.0268 (5)
C3A0.18261 (15)0.98341 (15)0.3918 (2)0.0298 (6)
H3AA0.18590.95720.33020.036*
C4A0.23901 (15)1.04105 (16)0.4167 (2)0.0327 (6)
H4AA0.28061.05480.37240.039*
C5A0.23586 (15)1.07982 (15)0.5068 (2)0.0336 (6)
C6A0.17552 (16)1.06147 (16)0.5699 (2)0.0346 (7)
H6AA0.17341.08890.63090.041*
C7A0.05340 (16)0.99102 (17)0.6167 (2)0.0330 (6)
H7AA0.05631.02390.67400.040*
C8A0.06633 (17)0.93926 (18)0.6871 (2)0.0359 (7)
H8AA0.04960.90040.73910.043*
H8AB0.07220.99560.71550.043*
C9A0.14602 (16)0.91075 (17)0.6434 (2)0.0360 (7)
H9AA0.16980.95750.60630.043*
H9AB0.18340.89640.69660.043*
C1B0.08523 (15)0.51394 (16)0.4483 (2)0.0331 (6)
C2B0.10109 (15)0.58068 (16)0.3839 (2)0.0283 (6)
C3B0.16738 (16)0.57244 (18)0.3199 (2)0.0357 (7)
H3BA0.18030.61710.27740.043*
C4B0.21304 (17)0.50132 (17)0.3181 (2)0.0380 (7)
H4BA0.25720.49720.27490.046*
C5B0.19473 (17)0.43556 (17)0.3792 (2)0.0399 (7)
C6B0.13271 (16)0.44085 (17)0.4433 (2)0.0383 (7)
H6BA0.12120.39520.48490.046*
C7B0.02163 (16)0.51340 (17)0.5188 (2)0.0341 (7)
H7BA0.01600.46450.55710.041*
C8B0.08865 (17)0.56281 (17)0.6114 (2)0.0350 (7)
H8BA0.10200.50310.61980.042*
H8BB0.06760.58420.67370.042*
C9B0.16279 (17)0.61102 (17)0.5827 (2)0.0352 (7)
H9BA0.19950.61410.63900.042*
H9BB0.19080.58070.53020.042*
C1AA0.07482 (17)0.81086 (19)0.2963 (2)0.0342 (7)
C2AA0.04755 (19)0.7573 (2)0.2136 (2)0.0423 (8)
H2AA0.09180.74990.16760.064*
H2AB0.00230.78410.18080.064*
H2AC0.03070.70280.23840.064*
C1M0.2436 (2)0.6485 (2)0.1504 (3)0.0623 (10)
H1M10.30160.64310.14120.093*
H1M20.22240.69000.10500.093*
H1M30.21780.59460.13830.093*
C1MA0.06774 (19)1.04743 (19)0.4206 (3)0.0523 (9)
H1MA0.09791.07580.36920.078*
H1MB0.07211.07930.48100.078*
H1MC0.01121.04330.40170.078*
C1MB0.08373 (18)0.53940 (19)0.3000 (2)0.0424 (8)
H1MD0.12700.51710.25950.064*
H1ME0.03970.55850.25860.064*
H1MF0.06420.49560.34360.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni1A0.02723 (16)0.02880 (17)0.02170 (16)0.00058 (14)0.00341 (15)0.00147 (15)
Ni1B0.02737 (16)0.02862 (16)0.02098 (16)0.00225 (14)0.00269 (16)0.00049 (15)
Cl0.0478 (4)0.0595 (4)0.0215 (3)0.0089 (4)0.0037 (3)0.0022 (3)
Cl1A0.0481 (4)0.0472 (4)0.0526 (5)0.0197 (4)0.0015 (4)0.0020 (4)
Cl1B0.0358 (4)0.0433 (4)0.0888 (7)0.0108 (4)0.0096 (4)0.0133 (4)
O10.0267 (10)0.0302 (9)0.0206 (9)0.0003 (8)0.0029 (8)0.0008 (8)
O1A0.0322 (10)0.0323 (10)0.0270 (11)0.0054 (8)0.0074 (8)0.0037 (8)
O1B0.0334 (10)0.0295 (9)0.0294 (11)0.0008 (8)0.0069 (8)0.0003 (8)
O1AA0.0337 (10)0.0306 (9)0.0196 (10)0.0001 (8)0.0003 (8)0.0006 (8)
O2AA0.0664 (15)0.0415 (12)0.0334 (12)0.0027 (11)0.0092 (11)0.0108 (10)
O1MA0.0406 (11)0.0353 (11)0.0353 (13)0.0030 (9)0.0002 (9)0.0039 (9)
O1MB0.0335 (11)0.0397 (10)0.0300 (11)0.0022 (9)0.0006 (9)0.0076 (9)
O1W0.0473 (13)0.0372 (12)0.0608 (16)0.0120 (10)0.0267 (11)0.0160 (11)
O1M0.0363 (12)0.0700 (15)0.0346 (13)0.0094 (11)0.0052 (10)0.0008 (11)
N1A0.0333 (12)0.0296 (12)0.0255 (13)0.0019 (10)0.0059 (10)0.0050 (10)
N2A0.0247 (11)0.0330 (12)0.0257 (12)0.0012 (10)0.0023 (9)0.0010 (10)
N1B0.0338 (12)0.0326 (12)0.0263 (12)0.0042 (10)0.0010 (10)0.0002 (10)
N2B0.0255 (11)0.0323 (11)0.0206 (12)0.0051 (9)0.0001 (9)0.0010 (9)
C10.0293 (14)0.0247 (12)0.0227 (14)0.0017 (11)0.0012 (11)0.0026 (11)
C20.0287 (15)0.0358 (15)0.0289 (16)0.0010 (12)0.0007 (12)0.0024 (12)
C30.0290 (15)0.0413 (16)0.0320 (17)0.0020 (12)0.0042 (13)0.0041 (13)
C40.0412 (16)0.0365 (16)0.0181 (14)0.0091 (13)0.0007 (12)0.0001 (11)
C50.0280 (14)0.0402 (16)0.0223 (14)0.0040 (12)0.0031 (12)0.0012 (12)
C60.0281 (14)0.0307 (14)0.0228 (14)0.0042 (12)0.0011 (11)0.0021 (12)
C70.0263 (14)0.0372 (15)0.0217 (14)0.0022 (12)0.0042 (11)0.0019 (12)
C80.0244 (13)0.0456 (16)0.0337 (18)0.0011 (12)0.0012 (12)0.0048 (13)
C90.0237 (13)0.0536 (18)0.0249 (14)0.0019 (12)0.0024 (12)0.0007 (14)
C1A0.0302 (14)0.0252 (13)0.0295 (15)0.0012 (11)0.0041 (12)0.0014 (12)
C2A0.0269 (13)0.0256 (12)0.0280 (13)0.0022 (10)0.0035 (12)0.0038 (12)
C3A0.0312 (14)0.0328 (14)0.0254 (15)0.0012 (12)0.0029 (12)0.0011 (12)
C4A0.0246 (14)0.0362 (15)0.0374 (17)0.0013 (12)0.0065 (12)0.0085 (13)
C5A0.0324 (14)0.0286 (14)0.0397 (18)0.0040 (11)0.0002 (14)0.0011 (13)
C6A0.0406 (16)0.0329 (15)0.0303 (17)0.0025 (13)0.0007 (13)0.0050 (12)
C7A0.0401 (16)0.0323 (14)0.0265 (15)0.0009 (13)0.0044 (13)0.0066 (12)
C8A0.0397 (16)0.0371 (16)0.0308 (16)0.0035 (13)0.0122 (13)0.0061 (13)
C9A0.0357 (15)0.0368 (16)0.0355 (18)0.0012 (13)0.0120 (13)0.0046 (13)
C1B0.0309 (14)0.0307 (14)0.0376 (17)0.0024 (11)0.0047 (13)0.0024 (13)
C2B0.0262 (13)0.0328 (14)0.0260 (15)0.0024 (11)0.0038 (11)0.0063 (12)
C3B0.0318 (15)0.0375 (15)0.0379 (18)0.0038 (13)0.0021 (13)0.0084 (13)
C4B0.0279 (15)0.0436 (17)0.0425 (19)0.0006 (13)0.0034 (13)0.0130 (14)
C5B0.0275 (15)0.0362 (16)0.056 (2)0.0036 (12)0.0103 (15)0.0120 (15)
C6B0.0369 (15)0.0334 (15)0.045 (2)0.0000 (12)0.0084 (15)0.0007 (14)
C7B0.0404 (17)0.0310 (14)0.0310 (17)0.0032 (13)0.0023 (12)0.0020 (12)
C8B0.0413 (16)0.0318 (15)0.0318 (17)0.0087 (13)0.0070 (14)0.0043 (13)
C9B0.0332 (16)0.0406 (16)0.0318 (16)0.0087 (13)0.0066 (12)0.0021 (13)
C1AA0.0337 (15)0.0454 (17)0.0234 (15)0.0116 (13)0.0003 (13)0.0016 (13)
C2AA0.0435 (19)0.060 (2)0.0235 (16)0.0090 (16)0.0042 (13)0.0028 (15)
C1M0.063 (2)0.084 (3)0.040 (2)0.012 (2)0.0005 (18)0.007 (2)
C1MA0.0531 (19)0.0359 (17)0.068 (3)0.0072 (16)0.0005 (18)0.0132 (16)
C1MB0.0385 (17)0.0477 (18)0.0409 (19)0.0031 (14)0.0020 (14)0.0153 (15)
Geometric parameters (Å, º) top
Ni1A—N1A1.991 (2)C8—H8A0.9900
Ni1A—O1A1.9957 (17)C8—H8B0.9900
Ni1A—O12.0716 (18)C9—H9A0.9900
Ni1A—O1AA2.0762 (18)C9—H9B0.9900
Ni1A—O1MA2.1318 (18)C1A—C6A1.410 (4)
Ni1A—N2A2.156 (2)C1A—C2A1.412 (4)
Ni1B—O1B1.9893 (18)C1A—C7A1.443 (4)
Ni1B—N1B2.006 (2)C2A—C3A1.419 (3)
Ni1B—O12.0470 (18)C3A—C4A1.363 (3)
Ni1B—O1AA2.0616 (17)C3A—H3AA0.9500
Ni1B—O1MB2.1692 (19)C4A—C5A1.390 (4)
Ni1B—N2B2.198 (2)C4A—H4AA0.9500
Cl—C41.754 (3)C5A—C6A1.362 (4)
Cl1A—C5A1.744 (3)C6A—H6AA0.9500
Cl1B—C5B1.754 (3)C7A—H7AA0.9500
O1—C11.333 (3)C8A—C9A1.530 (4)
O1A—C2A1.311 (3)C8A—H8AA0.9900
O1B—C2B1.307 (3)C8A—H8AB0.9900
O1AA—C1AA1.287 (3)C9A—H9AA0.9900
O2AA—C1AA1.233 (3)C9A—H9AB0.9900
O1MA—C1MA1.421 (3)C1B—C2B1.415 (4)
O1MA—H1MK0.8400C1B—C6B1.417 (4)
O1MB—C1MB1.425 (3)C1B—C7B1.440 (4)
O1MB—H1MJ0.8400C2B—C3B1.422 (4)
O1W—H1W10.817 (17)C3B—C4B1.372 (4)
O1W—H1W20.805 (17)C3B—H3BA0.9500
O1M—C1M1.411 (4)C4B—C5B1.384 (4)
O1M—H1M0.8400C4B—H4BA0.9500
N1A—C7A1.283 (3)C5B—C6B1.363 (4)
N1A—C8A1.469 (3)C6B—H6BA0.9500
N2A—C71.483 (3)C7B—H7BA0.9500
N2A—C9A1.484 (3)C8B—C9B1.512 (4)
N2A—C81.495 (3)C8B—H8BA0.9900
N1B—C7B1.278 (3)C8B—H8BB0.9900
N1B—C8B1.469 (3)C9B—H9BA0.9900
N2B—C71.485 (3)C9B—H9BB0.9900
N2B—C9B1.488 (3)C1AA—C2AA1.499 (4)
N2B—C91.492 (3)C2AA—H2AA0.9800
C1—C21.395 (4)C2AA—H2AB0.9800
C1—C61.408 (4)C2AA—H2AC0.9800
C2—C31.385 (4)C1M—H1M10.9800
C2—H2A0.9500C1M—H1M20.9800
C3—C41.372 (4)C1M—H1M30.9800
C3—H3A0.9500C1MA—H1MA0.9800
C4—C51.369 (4)C1MA—H1MB0.9800
C5—C61.394 (4)C1MA—H1MC0.9800
C5—H5A0.9500C1MB—H1MD0.9800
C6—C71.498 (4)C1MB—H1ME0.9800
C7—H7A1.0000C1MB—H1MF0.9800
C8—C91.526 (4)
N1A—Ni1A—O1A91.69 (8)N2B—C9—H9B110.7
N1A—Ni1A—O199.42 (8)C8—C9—H9B110.7
O1A—Ni1A—O193.77 (7)H9A—C9—H9B108.8
N1A—Ni1A—O1AA177.14 (8)C6A—C1A—C2A119.7 (2)
O1A—Ni1A—O1AA90.80 (7)C6A—C1A—C7A115.9 (2)
O1—Ni1A—O1AA79.01 (7)C2A—C1A—C7A124.4 (2)
N1A—Ni1A—O1MA89.31 (8)O1A—C2A—C1A124.5 (2)
O1A—Ni1A—O1MA90.65 (7)O1A—C2A—C3A118.3 (2)
O1—Ni1A—O1MA170.08 (7)C1A—C2A—C3A117.2 (2)
O1AA—Ni1A—O1MA92.07 (7)C4A—C3A—C2A121.9 (3)
N1A—Ni1A—N2A83.93 (9)C4A—C3A—H3AA119.1
O1A—Ni1A—N2A174.56 (8)C2A—C3A—H3AA119.1
O1—Ni1A—N2A90.13 (7)C3A—C4A—C5A120.2 (3)
O1AA—Ni1A—N2A93.66 (8)C3A—C4A—H4AA119.9
O1MA—Ni1A—N2A86.10 (8)C5A—C4A—H4AA119.9
O1B—Ni1B—N1B91.34 (8)C6A—C5A—C4A120.1 (2)
O1B—Ni1B—O192.96 (7)C6A—C5A—Cl1A120.9 (2)
N1B—Ni1B—O199.75 (8)C4A—C5A—Cl1A119.0 (2)
O1B—Ni1B—O1AA94.21 (7)C5A—C6A—C1A121.0 (3)
N1B—Ni1B—O1AA174.45 (9)C5A—C6A—H6AA119.5
O1—Ni1B—O1AA79.91 (7)C1A—C6A—H6AA119.5
O1B—Ni1B—O1MB90.42 (7)N1A—C7A—C1A126.0 (3)
N1B—Ni1B—O1MB88.08 (8)N1A—C7A—H7AA117.0
O1—Ni1B—O1MB171.38 (7)C1A—C7A—H7AA117.0
O1AA—Ni1B—O1MB91.95 (7)N1A—C8A—C9A108.2 (2)
O1B—Ni1B—N2B174.43 (8)N1A—C8A—H8AA110.0
N1B—Ni1B—N2B83.09 (8)C9A—C8A—H8AA110.0
O1—Ni1B—N2B88.06 (7)N1A—C8A—H8AB110.0
O1AA—Ni1B—N2B91.36 (7)C9A—C8A—H8AB110.0
O1MB—Ni1B—N2B89.33 (7)H8AA—C8A—H8AB108.4
C1—O1—Ni1B117.51 (15)N2A—C9A—C8A112.9 (2)
C1—O1—Ni1A114.00 (15)N2A—C9A—H9AA109.0
Ni1B—O1—Ni1A97.98 (7)C8A—C9A—H9AA109.0
C2A—O1A—Ni1A127.06 (17)N2A—C9A—H9AB109.0
C2B—O1B—Ni1B127.68 (17)C8A—C9A—H9AB109.0
C1AA—O1AA—Ni1B137.71 (18)H9AA—C9A—H9AB107.8
C1AA—O1AA—Ni1A124.40 (17)C2B—C1B—C6B119.4 (3)
Ni1B—O1AA—Ni1A97.37 (8)C2B—C1B—C7B124.5 (2)
C1MA—O1MA—Ni1A122.36 (17)C6B—C1B—C7B116.1 (3)
C1MA—O1MA—H1MK109.5O1B—C2B—C1B124.0 (2)
Ni1A—O1MA—H1MK99.2O1B—C2B—C3B118.3 (2)
C1MB—O1MB—Ni1B122.82 (16)C1B—C2B—C3B117.7 (2)
C1MB—O1MB—H1MJ109.5C4B—C3B—C2B121.4 (3)
Ni1B—O1MB—H1MJ123.5C4B—C3B—H3BA119.3
H1W1—O1W—H1W2105 (3)C2B—C3B—H3BA119.3
C1M—O1M—H1M109.5C3B—C4B—C5B120.0 (3)
C7A—N1A—C8A118.8 (2)C3B—C4B—H4BA120.0
C7A—N1A—Ni1A126.37 (19)C5B—C4B—H4BA120.0
C8A—N1A—Ni1A114.69 (17)C6B—C5B—C4B121.0 (3)
C7—N2A—C9A114.0 (2)C6B—C5B—Cl1B119.2 (2)
C7—N2A—C8102.45 (19)C4B—C5B—Cl1B119.8 (2)
C9A—N2A—C8110.5 (2)C5B—C6B—C1B120.5 (3)
C7—N2A—Ni1A113.52 (15)C5B—C6B—H6BA119.8
C9A—N2A—Ni1A102.78 (15)C1B—C6B—H6BA119.8
C8—N2A—Ni1A114.02 (17)N1B—C7B—C1B126.2 (3)
C7B—N1B—C8B119.5 (2)N1B—C7B—H7BA116.9
C7B—N1B—Ni1B125.8 (2)C1B—C7B—H7BA116.9
C8B—N1B—Ni1B114.43 (17)N1B—C8B—C9B108.8 (2)
C7—N2B—C9B113.1 (2)N1B—C8B—H8BA109.9
C7—N2B—C9102.51 (19)C9B—C8B—H8BA109.9
C9B—N2B—C9110.6 (2)N1B—C8B—H8BB109.9
C7—N2B—Ni1B114.96 (15)C9B—C8B—H8BB109.9
C9B—N2B—Ni1B102.26 (16)H8BA—C8B—H8BB108.3
C9—N2B—Ni1B113.71 (17)N2B—C9B—C8B112.7 (2)
O1—C1—C2121.6 (2)N2B—C9B—H9BA109.0
O1—C1—C6120.9 (2)C8B—C9B—H9BA109.0
C2—C1—C6117.5 (2)N2B—C9B—H9BB109.0
C3—C2—C1121.5 (3)C8B—C9B—H9BB109.0
C3—C2—H2A119.3H9BA—C9B—H9BB107.8
C1—C2—H2A119.3O2AA—C1AA—O1AA122.0 (3)
C4—C3—C2119.4 (3)O2AA—C1AA—C2AA119.1 (3)
C4—C3—H3A120.3O1AA—C1AA—C2AA118.9 (3)
C2—C3—H3A120.3C1AA—C2AA—H2AA109.5
C5—C4—C3121.3 (3)C1AA—C2AA—H2AB109.5
C5—C4—Cl118.9 (2)H2AA—C2AA—H2AB109.5
C3—C4—Cl119.7 (2)C1AA—C2AA—H2AC109.5
C4—C5—C6119.6 (3)H2AA—C2AA—H2AC109.5
C4—C5—H5A120.2H2AB—C2AA—H2AC109.5
C6—C5—H5A120.2O1M—C1M—H1M1109.5
C5—C6—C1120.6 (2)O1M—C1M—H1M2109.5
C5—C6—C7119.5 (2)H1M1—C1M—H1M2109.5
C1—C6—C7119.9 (2)O1M—C1M—H1M3109.5
N2A—C7—N2B101.3 (2)H1M1—C1M—H1M3109.5
N2A—C7—C6113.9 (2)H1M2—C1M—H1M3109.5
N2B—C7—C6115.6 (2)O1MA—C1MA—H1MA109.5
N2A—C7—H7A108.6O1MA—C1MA—H1MB109.5
N2B—C7—H7A108.6H1MA—C1MA—H1MB109.5
C6—C7—H7A108.6O1MA—C1MA—H1MC109.5
N2A—C8—C9104.5 (2)H1MA—C1MA—H1MC109.5
N2A—C8—H8A110.9H1MB—C1MA—H1MC109.5
C9—C8—H8A110.9O1MB—C1MB—H1MD109.5
N2A—C8—H8B110.9O1MB—C1MB—H1ME109.5
C9—C8—H8B110.9H1MD—C1MB—H1ME109.5
H8A—C8—H8B108.9O1MB—C1MB—H1MF109.5
N2B—C9—C8105.3 (2)H1MD—C1MB—H1MF109.5
N2B—C9—H9A110.7H1ME—C1MB—H1MF109.5
C8—C9—H9A110.7
O1B—Ni1B—O1—C1125.63 (17)Ni1A—O1—C1—C656.3 (3)
N1B—Ni1B—O1—C133.76 (18)O1—C1—C2—C3175.9 (3)
O1AA—Ni1B—O1—C1140.61 (18)C6—C1—C2—C33.0 (4)
N2B—Ni1B—O1—C148.88 (18)C1—C2—C3—C40.3 (4)
O1B—Ni1B—O1—Ni1A111.96 (8)C2—C3—C4—C52.0 (4)
N1B—Ni1B—O1—Ni1A156.17 (8)C2—C3—C4—Cl174.7 (2)
O1AA—Ni1B—O1—Ni1A18.20 (7)C3—C4—C5—C61.5 (4)
N2B—Ni1B—O1—Ni1A73.53 (8)Cl—C4—C5—C6175.2 (2)
N1A—Ni1A—O1—C134.51 (17)C4—C5—C6—C11.3 (4)
O1A—Ni1A—O1—C1126.84 (16)C4—C5—C6—C7177.8 (2)
O1AA—Ni1A—O1—C1143.07 (17)O1—C1—C6—C5175.4 (2)
N2A—Ni1A—O1—C149.37 (17)C2—C1—C6—C53.4 (4)
N1A—Ni1A—O1—Ni1B159.46 (8)O1—C1—C6—C71.1 (4)
O1A—Ni1A—O1—Ni1B108.20 (8)C2—C1—C6—C7179.9 (2)
O1AA—Ni1A—O1—Ni1B18.12 (7)C9A—N2A—C7—N2B166.61 (19)
N2A—Ni1A—O1—Ni1B75.58 (8)C8—N2A—C7—N2B47.3 (2)
N1A—Ni1A—O1A—C2A1.2 (2)Ni1A—N2A—C7—N2B76.2 (2)
O1—Ni1A—O1A—C2A100.7 (2)C9A—N2A—C7—C668.7 (3)
O1AA—Ni1A—O1A—C2A179.77 (19)C8—N2A—C7—C6172.0 (2)
O1MA—Ni1A—O1A—C2A88.2 (2)Ni1A—N2A—C7—C648.6 (3)
N1B—Ni1B—O1B—C2B4.7 (2)C9B—N2B—C7—N2A165.3 (2)
O1—Ni1B—O1B—C2B104.5 (2)C9—N2B—C7—N2A46.2 (2)
O1AA—Ni1B—O1B—C2B175.4 (2)Ni1B—N2B—C7—N2A77.7 (2)
O1MB—Ni1B—O1B—C2B83.4 (2)C9B—N2B—C7—C671.1 (3)
O1B—Ni1B—O1AA—C1AA61.0 (3)C9—N2B—C7—C6169.8 (2)
O1—Ni1B—O1AA—C1AA153.2 (3)Ni1B—N2B—C7—C645.9 (3)
O1MB—Ni1B—O1AA—C1AA29.6 (3)C5—C6—C7—N2A115.5 (3)
N2B—Ni1B—O1AA—C1AA119.0 (3)C1—C6—C7—N2A61.0 (3)
O1B—Ni1B—O1AA—Ni1A110.40 (8)C5—C6—C7—N2B127.8 (3)
O1—Ni1B—O1AA—Ni1A18.13 (7)C1—C6—C7—N2B55.7 (3)
O1MB—Ni1B—O1AA—Ni1A159.04 (8)C7—N2A—C8—C929.8 (3)
N2B—Ni1B—O1AA—Ni1A69.66 (8)C9A—N2A—C8—C9151.5 (2)
O1A—Ni1A—O1AA—C1AA61.3 (2)Ni1A—N2A—C8—C993.3 (2)
O1—Ni1A—O1AA—C1AA155.0 (2)C7—N2B—C9—C827.3 (3)
O1MA—Ni1A—O1AA—C1AA29.4 (2)C9B—N2B—C9—C8148.2 (2)
N2A—Ni1A—O1AA—C1AA115.6 (2)Ni1B—N2B—C9—C897.4 (2)
O1A—Ni1A—O1AA—Ni1B111.65 (8)N2A—C8—C9—N2B1.5 (3)
O1—Ni1A—O1AA—Ni1B17.96 (7)Ni1A—O1A—C2A—C1A1.7 (3)
O1MA—Ni1A—O1AA—Ni1B157.67 (7)Ni1A—O1A—C2A—C3A177.05 (17)
N2A—Ni1A—O1AA—Ni1B71.45 (8)C6A—C1A—C2A—O1A179.4 (2)
N1A—Ni1A—O1MA—C1MA53.4 (2)C7A—C1A—C2A—O1A2.3 (4)
O1A—Ni1A—O1MA—C1MA38.3 (2)C6A—C1A—C2A—C3A0.7 (4)
O1AA—Ni1A—O1MA—C1MA129.1 (2)C7A—C1A—C2A—C3A176.5 (2)
N2A—Ni1A—O1MA—C1MA137.3 (2)O1A—C2A—C3A—C4A179.2 (2)
O1B—Ni1B—O1MB—C1MB27.0 (2)C1A—C2A—C3A—C4A0.4 (4)
N1B—Ni1B—O1MB—C1MB64.4 (2)C2A—C3A—C4A—C5A0.5 (4)
O1AA—Ni1B—O1MB—C1MB121.2 (2)C3A—C4A—C5A—C6A1.2 (4)
N2B—Ni1B—O1MB—C1MB147.5 (2)C3A—C4A—C5A—Cl1A178.1 (2)
O1A—Ni1A—N1A—C7A1.7 (2)C4A—C5A—C6A—C1A0.9 (4)
O1—Ni1A—N1A—C7A95.8 (2)Cl1A—C5A—C6A—C1A178.4 (2)
O1MA—Ni1A—N1A—C7A89.0 (2)C2A—C1A—C6A—C5A0.0 (4)
N2A—Ni1A—N1A—C7A175.1 (2)C7A—C1A—C6A—C5A177.3 (3)
O1A—Ni1A—N1A—C8A176.78 (19)C8A—N1A—C7A—C1A177.7 (3)
O1—Ni1A—N1A—C8A89.1 (2)Ni1A—N1A—C7A—C1A2.8 (4)
O1MA—Ni1A—N1A—C8A86.2 (2)C6A—C1A—C7A—N1A179.9 (3)
N2A—Ni1A—N1A—C8A0.00 (19)C2A—C1A—C7A—N1A2.9 (4)
N1A—Ni1A—N2A—C7100.69 (18)C7A—N1A—C8A—C9A152.7 (2)
O1—Ni1A—N2A—C71.24 (17)Ni1A—N1A—C8A—C9A22.8 (3)
O1AA—Ni1A—N2A—C777.75 (17)C7—N2A—C9A—C8A80.8 (3)
O1MA—Ni1A—N2A—C7169.59 (17)C8—N2A—C9A—C8A164.5 (2)
N1A—Ni1A—N2A—C9A22.88 (17)Ni1A—N2A—C9A—C8A42.5 (2)
O1—Ni1A—N2A—C9A122.33 (16)N1A—C8A—C9A—N2A45.0 (3)
O1AA—Ni1A—N2A—C9A158.67 (16)Ni1B—O1B—C2B—C1B1.1 (4)
O1MA—Ni1A—N2A—C9A66.84 (16)Ni1B—O1B—C2B—C3B178.32 (18)
N1A—Ni1A—N2A—C8142.47 (18)C6B—C1B—C2B—O1B176.3 (2)
O1—Ni1A—N2A—C8118.07 (17)C7B—C1B—C2B—O1B2.0 (4)
O1AA—Ni1A—N2A—C839.08 (17)C6B—C1B—C2B—C3B3.1 (4)
O1MA—Ni1A—N2A—C852.75 (17)C7B—C1B—C2B—C3B178.6 (2)
O1B—Ni1B—N1B—C7B7.6 (2)O1B—C2B—C3B—C4B177.4 (2)
O1—Ni1B—N1B—C7B100.9 (2)C1B—C2B—C3B—C4B2.0 (4)
O1MB—Ni1B—N1B—C7B82.8 (2)C2B—C3B—C4B—C5B0.3 (4)
N2B—Ni1B—N1B—C7B172.3 (2)C3B—C4B—C5B—C6B1.5 (4)
O1B—Ni1B—N1B—C8B178.14 (18)C3B—C4B—C5B—Cl1B177.9 (2)
O1—Ni1B—N1B—C8B84.90 (18)C4B—C5B—C6B—C1B0.4 (4)
O1MB—Ni1B—N1B—C8B91.49 (18)Cl1B—C5B—C6B—C1B179.1 (2)
N2B—Ni1B—N1B—C8B1.93 (18)C2B—C1B—C6B—C5B2.0 (4)
N1B—Ni1B—N2B—C7101.07 (17)C7B—C1B—C6B—C5B179.6 (3)
O1—Ni1B—N2B—C71.00 (17)C8B—N1B—C7B—C1B178.7 (3)
O1AA—Ni1B—N2B—C778.85 (17)Ni1B—N1B—C7B—C1B7.3 (4)
O1MB—Ni1B—N2B—C7170.79 (17)C2B—C1B—C7B—N1B1.5 (5)
N1B—Ni1B—N2B—C9B21.94 (16)C6B—C1B—C7B—N1B179.8 (3)
O1—Ni1B—N2B—C9B122.00 (16)C7B—N1B—C8B—C9B148.9 (2)
O1AA—Ni1B—N2B—C9B158.15 (16)Ni1B—N1B—C8B—C9B25.7 (3)
O1MB—Ni1B—N2B—C9B66.21 (16)C7—N2B—C9B—C8B81.2 (3)
N1B—Ni1B—N2B—C9141.20 (17)C9—N2B—C9B—C8B164.4 (2)
O1—Ni1B—N2B—C9118.74 (17)Ni1B—N2B—C9B—C8B43.0 (2)
O1AA—Ni1B—N2B—C938.89 (17)N1B—C8B—C9B—N2B47.6 (3)
O1MB—Ni1B—N2B—C953.05 (16)Ni1B—O1AA—C1AA—O2AA156.4 (2)
Ni1B—O1—C1—C2123.7 (2)Ni1A—O1AA—C1AA—O2AA34.0 (4)
Ni1A—O1—C1—C2122.5 (2)Ni1B—O1AA—C1AA—C2AA25.8 (4)
Ni1B—O1—C1—C657.5 (3)Ni1A—O1AA—C1AA—C2AA143.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1MA—H1MK···O2AA0.841.772.586 (3)162
O1MA—H1MK···O1AA0.842.663.029 (2)108
O1W—H1W1···O1A0.82 (2)1.86 (2)2.679 (3)175 (4)
O1W—H1W2···O1B0.81 (2)1.91 (2)2.708 (3)174 (3)
O1M—H1M···O1Wi0.841.742.577 (3)170
O1MB—H1MJ···O1M0.841.832.658 (3)167
C6A—H6AA···O2AAii0.952.373.237 (4)152
C7A—H7AA···O2AAii0.952.323.211 (3)156
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni2(C2H3O2)(CH4O)2(C27H24Cl3N4O3)]·CH4O·H2O
Mr849.46
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)16.684 (2), 16.042 (2), 13.7868 (19)
V3)3690.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.45 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.685, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
23326, 8737, 7189
Rint0.037
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.064, 0.97
No. of reflections8737
No. of parameters464
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.23
Absolute structureFlack (1983), no. of Friedel pairs?
Absolute structure parameter0.017 (8)

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1MA—H1MK···O2AA0.841.772.586 (3)162.4
O1MA—H1MK···O1AA0.842.663.029 (2)108.2
O1W—H1W1···O1A0.817 (17)1.864 (18)2.679 (3)175 (4)
O1W—H1W2···O1B0.805 (17)1.906 (19)2.708 (3)174 (3)
O1M—H1M···O1Wi0.841.742.577 (3)170.3
O1MB—H1MJ···O1M0.841.832.658 (3)166.6
C6A—H6AA···O2AAii0.952.373.237 (4)152.3
C7A—H7AA···O2AAii0.952.323.211 (3)156.4
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+2, z+1/2.
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer. ARK and YT wish to acknowledge the Howard University Graduate School of Arts and Sciences for the award of a Teaching Assistanceship.

References

First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFondo, M., Garcia-Deibe, A. M., Corbella, M., Ruiz, E., Tercero, J., Sanmartin, J. & Bermejo, M. R. (2005). Inorg. Chem. 44, 5011–5020.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFondo, M., Garcia-Deibe, A. M., Ocampo, N., Sanmartin, J. & Bermejo, M. R. (2007). Dalton Trans. pp. 414–416.  Web of Science CSD CrossRef Google Scholar
First citationFondo, M., Garcia-Deibe, A. M., Ocampo, N., Sanmartin, J., Bermejo, M. R. & Llamas-Saiz, A. L. (2006). Dalton Trans. pp. 4260–4270.  Google Scholar
First citationFondo, M., Ocampo, N., Garcia-Deibe, A. M., Ruiz, E., Tercero, J. & Sanmartin, J. (2009). Inorg. Chem. 48, 9861–9873.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFondo, M., Ocampo, N., Garcia-Deibe, A. M., Vicente, R., Corbella, M., Bermejo, M. R. & Sanmartin, J. (2006). Inorg. Chem. 45, 255–262.  Google Scholar
First citationLu, L.-P., Lu, X.-P. & Zhu, M.-L. (2007). Acta Cryst. C63, m374–m376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaital, A. R., Ribas, J., Barrios, L. A., Aromi, G. & Ray, D. (2009). Dalton Trans. pp. 256–258.  Web of Science CSD CrossRef Google Scholar
First citationPaital, A. R., Wong, W. T., Aromi, G. & Ray, D. (2007). Inorg. Chem. 46, 5727–5733.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1264-m1265
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds