organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-(7-Meth­­oxy-2-oxo-2H-chromen-8-yl)-2-methyl­butan-2-yl]propionamide

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad, Andhra Pradesh 500 607, India, and cDepartment of Biosciences, Sri Sathya Sai University, Vidya Giri, Puttaparthi, Andhra Pradesh 515 134, India
*Correspondence e-mail: ssrsai@hotmail.com

(Received 18 March 2011; accepted 16 August 2011; online 27 August 2011)

In the crystal structure of the title osthol derivative, C18H23NO4, mol­ecules are linked by N—H⋯O hydrogen bonds into an infinite chain running parallel to the c axis. The CH3CH2– atoms of the propionamide group are disordered over two sets of sites with refined occupancies of 0.689 (12) and 0.311 (12).

Related literature

For the synthesis of the title compound, see: Ritter & Minieri (1948[Ritter, J. J. & Minieri, P. P. (1948). J. Am. Chem. Soc. 70, 4045-4048.]). For the crystal structure of the parent compound osthol [systematic name: 7-meth­oxy-8-(3-methyl­but-2-en­yl)-2-chromenone], see: Borowiak & Wolska (1989[Borowiak, T. & Wolska, I. (1989). Acta Cryst. C45, 620-622.]). For biological applications of osthol and its derivatives, see: Liu et al. (1998[Liu, R., Zschocke, S., Reininger, E. B. & Bauer, R. (1998). Planta Med. 64, 525-529.], 2005[Liu, J., Zhang, W., Zhou, L., Wang, X. & Lian, Q. (2005). Zhong Yao Cai, 28, 1002-1006.]); Okamoto et al. (2007[Okamoto, T., Kobayashi, T. & Yoshida, S. (2007). Med. Chem. 3, 35-44.]); Huang et al. (1996[Huang, R. L., Chen, C. C., Huang, Y. L., Hsieh, D. J., Hu, C. P., Chen, C. F. & Chang, C. (1996). Hepatology, 24, 508-515.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brummer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23NO4

  • Mr = 317.37

  • Monoclinic, P 21 /c

  • a = 11.3555 (11) Å

  • b = 15.5452 (15) Å

  • c = 9.7642 (10) Å

  • β = 95.617 (2)°

  • V = 1715.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.983

  • 16205 measured reflections

  • 3019 independent reflections

  • 2537 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.136

  • S = 1.01

  • 3019 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.87 (2) 2.10 (2) 2.9546 (15) 169.1 (15)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Osthol, isolated from Imperatoria Osthruthium, exhibits anti-inflammatory activity in rats (Liu et al., 2005) and is used in a variety of traditional medicinal preparations in India and China (Liu et al., 1998). A few synthetic derivatives of osthol are used in hepatitis prevention (Okamoto et al., 2007) since osthol specifically increases the glycosylation of the hepatitis antigen and secretion of hepatitis-B virus in vitro (Huang et al., 1996). In this paper we report the synthesis and crystal structure of a semi-synthetic derivative of osthol. The compound was prepared by a Ritter reaction (Ritter & Minieri, 1948) and the resulting derivative contains a single bond instead of a double bond at the isoprenyl unit of osthol. The final product also contains a propionamide group (Fig. 1).

The bond lengths and bond angles of the present Osthol derivative are close to the reported values except for the bond angles at C7. The observed bond angles at C7 (C8—C7—C13 = 110.6 (1)° and C8—C7—C14 = 112.2 (1)°) deviate significantly from the ideal values of 109.5 (1) (Allen et al., 1987). The corresponding bond angles of the parent Osthol molecule are 124.7 (2)° and 120.5 (2)° (Borowiak & Wolska (1989). The bond angle deviation at C7 is attributed to the attached propionamide group and the sp2 to sp3 hybridization change at C7 and C8 atoms. In the present structure the torsion angles C13—C7—C8—C9 and C14—C7—C8—C9 are -64.2 (2)° and 58.4 (2)°, respectively. The corresponding torsion angles in osthol are -1.61 (2)° and -177.8 (2)° (Borowiak & Wolska, 1989). The change in torsion angles is mainly due to the propionamide substitution at C7. C17 and C18 are disordered over two positions with refined occupancies of 0.69 (1) and 0.31 (1). The packing of the molecules is stabilized by the N1—H1N···O4 hydrogen bond, which forms an infinite chain in head to tail mode, running parallel to the c-direction (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Ritter & Minieri (1948). For the crystal structure of the parent compound osthol [systematic name: 7-methoxy-8-(3-methylbut-2-enyl)-2-chromenone], see: Borowiak & Wolska (1989). For biological applications of osthol and its derivatives, see: Liu et al. (1998, 2005); Okamoto et al. (2007); Huang et al. (1996). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Propylnitrile was added to a solution of Osthol (100 mg) dissolved in benzene, and the reaction mixture was cooled at 0°c, followed by slow addition of sulfuric acid. The reaction mixture was stirred at room temperature for 2 to 3 hrs and was quenched after a complete disappearance of Osthol with a saturated solution of sodium bicarbonate. The final compound was extracted with ethyl acetate and dried over sodium sulfate. The compound was purified using column chromatography with 10% ethyl acetate in hexane as a mobile phase. Rod-shaped crystals were obtained using a slow-evaporation technique from a mixture of ethyl acetate and hexane.

Refinement top

The H atom bonded to N was freely refined. H atoms bonded to C were positioned geometrically (C—H = 0.93 - 0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms. The C17 and C18 atoms are disordered over two positions (C17A/C17B and C18A/C18B) with refined occupancies of 0.69 (1) and 0.31 (1).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the molecule with 30% probability displacement ellipsoids and atom numbering scheme.
[Figure 2] Fig. 2. Crystal packing viewed down the a axis.
N-[4-(7-Methoxy-2-oxo-2H-chromen-8-yl)-2-methylbutan-2- yl]propionamide top
Crystal data top
C18H23NO4F(000) = 680
Mr = 317.37Dx = 1.229 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6500 reflections
a = 11.3555 (11) Åθ = 1.8–28.0°
b = 15.5452 (15) ŵ = 0.09 mm1
c = 9.7642 (10) ÅT = 273 K
β = 95.617 (2)°Rod, yellow
V = 1715.3 (3) Å30.22 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3019 independent reflections
Radiation source: fine-focus sealed tube2537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.981, Tmax = 0.983k = 1818
16205 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.2891P]
where P = (Fo2 + 2Fc2)/3
3019 reflections(Δ/σ)max = 0.007
234 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C18H23NO4V = 1715.3 (3) Å3
Mr = 317.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3555 (11) ŵ = 0.09 mm1
b = 15.5452 (15) ÅT = 273 K
c = 9.7642 (10) Å0.22 × 0.20 × 0.20 mm
β = 95.617 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3019 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2537 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.983Rint = 0.019
16205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.16 e Å3
3019 reflectionsΔρmin = 0.13 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.50266 (14)0.38430 (10)0.50309 (19)0.0668 (4)
C20.40239 (14)0.37094 (10)0.41396 (19)0.0670 (4)
C30.49068 (17)0.37660 (11)0.6435 (2)0.0781 (5)
C40.29202 (14)0.35187 (11)0.4587 (2)0.0768 (5)
C50.3822 (2)0.35721 (13)0.6915 (2)0.0911 (6)
H50.37580.35240.78540.109*
C60.28580 (19)0.34547 (12)0.5993 (3)0.0904 (6)
H60.21340.33270.63170.108*
C70.80188 (12)0.36325 (10)0.33969 (14)0.0560 (4)
C80.69360 (12)0.33546 (10)0.41152 (16)0.0604 (4)
H8A0.64520.29720.35100.072*
H8B0.72030.30350.49410.072*
C90.61786 (13)0.41122 (10)0.4504 (2)0.0728 (5)
H9A0.66290.44510.52070.087*
H9B0.60060.44770.37030.087*
C100.5809 (3)0.4006 (2)0.8721 (3)0.1361 (10)
H10A0.52710.44660.88660.204*
H10B0.65730.41350.91860.204*
H10C0.55180.34800.90780.204*
C110.19411 (17)0.34260 (14)0.3580 (3)0.0988 (7)
H110.12000.33000.38580.119*
C120.3184 (2)0.37156 (14)0.1768 (3)0.0996 (6)
C130.76340 (19)0.40583 (15)0.20249 (19)0.0922 (6)
H13A0.83130.41530.15320.138*
H13B0.72620.45990.21820.138*
H13C0.70830.36920.14940.138*
C140.88212 (14)0.42377 (11)0.42793 (19)0.0723 (4)
H14A0.90620.39680.51460.108*
H14B0.84020.47600.44330.108*
H14C0.95070.43680.38160.108*
C150.2058 (2)0.35152 (16)0.2258 (3)0.1089 (8)
H150.13970.34470.16250.131*
C160.92284 (12)0.22894 (10)0.39309 (13)0.0563 (4)
O10.41391 (11)0.37975 (8)0.27610 (13)0.0811 (4)
O30.3391 (2)0.38160 (14)0.0601 (2)0.1400 (7)
O20.59071 (14)0.39123 (11)0.72856 (16)0.1065 (5)
O40.92528 (10)0.23463 (8)0.51856 (9)0.0719 (3)
N10.86888 (10)0.28549 (8)0.30587 (12)0.0572 (3)
H1N0.8755 (14)0.2776 (11)0.2195 (19)0.069 (5)*
C18A0.9166 (6)0.0731 (2)0.3336 (6)0.106 (2)0.689 (12)
H18A0.95760.02720.29280.159*0.689 (12)
H18B0.84080.08160.28260.159*0.689 (12)
H18C0.90560.05860.42710.159*0.689 (12)
C17A0.9890 (10)0.1556 (8)0.3311 (7)0.0664 (16)0.689 (12)
H17A1.06530.14750.38330.080*0.689 (12)
H17B1.00230.16960.23700.080*0.689 (12)
C17B0.962 (2)0.1530 (19)0.316 (2)0.094 (7)0.311 (12)
H17C0.89420.12930.26090.112*0.311 (12)
H17D1.01790.17250.25330.112*0.311 (12)
C18B1.013 (3)0.0901 (11)0.3947 (12)0.217 (12)0.311 (12)
H18D1.04850.04900.33760.326*0.311 (12)
H18E0.95470.06200.44330.326*0.311 (12)
H18F1.07340.11420.45960.326*0.311 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0561 (9)0.0560 (9)0.0928 (11)0.0061 (7)0.0297 (8)0.0001 (7)
C20.0595 (9)0.0552 (9)0.0911 (11)0.0046 (7)0.0312 (8)0.0009 (8)
C30.0759 (11)0.0680 (10)0.0935 (13)0.0148 (8)0.0243 (10)0.0045 (9)
C40.0552 (9)0.0590 (9)0.1213 (15)0.0010 (7)0.0339 (9)0.0018 (9)
C50.0998 (15)0.0776 (12)0.1041 (15)0.0141 (11)0.0519 (13)0.0157 (10)
C60.0769 (12)0.0717 (11)0.1323 (18)0.0023 (9)0.0591 (13)0.0095 (11)
C70.0524 (7)0.0659 (9)0.0521 (8)0.0066 (6)0.0162 (6)0.0041 (6)
C80.0505 (8)0.0604 (9)0.0728 (9)0.0003 (6)0.0185 (6)0.0053 (7)
C90.0539 (8)0.0630 (9)0.1058 (13)0.0010 (7)0.0306 (8)0.0077 (9)
C100.178 (3)0.138 (2)0.0892 (16)0.026 (2)0.0005 (17)0.0000 (15)
C110.0605 (11)0.0806 (13)0.158 (2)0.0012 (9)0.0242 (13)0.0194 (14)
C120.1143 (18)0.0812 (14)0.1025 (17)0.0039 (12)0.0068 (14)0.0089 (11)
C130.1019 (14)0.1103 (15)0.0671 (10)0.0359 (12)0.0217 (9)0.0226 (10)
C140.0611 (9)0.0663 (10)0.0919 (12)0.0056 (7)0.0205 (8)0.0035 (8)
C150.0800 (14)0.0943 (16)0.149 (2)0.0048 (11)0.0057 (15)0.0210 (15)
C160.0574 (8)0.0676 (9)0.0459 (7)0.0040 (7)0.0158 (6)0.0000 (6)
O10.0775 (8)0.0793 (8)0.0902 (9)0.0017 (6)0.0264 (7)0.0045 (6)
O30.179 (2)0.1423 (16)0.0978 (12)0.0107 (14)0.0076 (12)0.0032 (11)
O20.0973 (11)0.1188 (12)0.1031 (11)0.0189 (9)0.0086 (8)0.0041 (9)
O40.0924 (8)0.0822 (8)0.0434 (6)0.0163 (6)0.0180 (5)0.0032 (5)
N10.0585 (7)0.0747 (8)0.0404 (6)0.0101 (6)0.0143 (5)0.0015 (5)
C18A0.156 (4)0.071 (2)0.100 (3)0.010 (2)0.064 (3)0.0056 (19)
C17A0.065 (3)0.089 (3)0.0471 (18)0.026 (2)0.017 (2)0.0018 (19)
C17B0.106 (16)0.082 (8)0.093 (10)0.020 (9)0.012 (7)0.009 (6)
C18B0.37 (3)0.181 (13)0.092 (7)0.187 (18)0.003 (11)0.013 (7)
Geometric parameters (Å, º) top
C1—C21.379 (3)C12—O31.196 (3)
C1—C31.396 (3)C12—O11.388 (3)
C1—C91.511 (2)C12—C151.443 (4)
C2—O11.372 (2)C13—H13A0.9600
C2—C41.399 (2)C13—H13B0.9600
C3—O21.359 (2)C13—H13C0.9600
C3—C51.393 (3)C14—H14A0.9600
C4—C61.385 (3)C14—H14B0.9600
C4—C111.418 (3)C14—H14C0.9600
C5—C61.360 (3)C15—H150.9300
C5—H50.9300C16—O41.2260 (16)
C6—H60.9300C16—N11.3310 (19)
C7—N11.4827 (19)C16—C17B1.49 (3)
C7—C141.518 (2)C16—C17A1.523 (10)
C7—C131.520 (2)N1—H1N0.863 (18)
C7—C81.5359 (19)C18A—C17A1.525 (13)
C8—C91.528 (2)C18A—H18A0.9600
C8—H8A0.9700C18A—H18B0.9600
C8—H8B0.9700C18A—H18C0.9600
C9—H9A0.9700C17A—H17A0.9700
C9—H9B0.9700C17A—H17B0.9700
C10—O21.424 (3)C17B—C18B1.34 (3)
C10—H10A0.9600C17B—H17C0.9700
C10—H10B0.9600C17B—H17D0.9700
C10—H10C0.9600C18B—H18D0.9600
C11—C151.318 (3)C18B—H18E0.9600
C11—H110.9300C18B—H18F0.9600
C2—C1—C3116.94 (15)C7—C13—H13B109.5
C2—C1—C9121.03 (16)H13A—C13—H13B109.5
C3—C1—C9121.94 (17)C7—C13—H13C109.5
O1—C2—C1116.87 (14)H13A—C13—H13C109.5
O1—C2—C4120.14 (17)H13B—C13—H13C109.5
C1—C2—C4122.96 (17)C7—C14—H14A109.5
O2—C3—C5123.00 (19)C7—C14—H14B109.5
O2—C3—C1115.46 (16)H14A—C14—H14B109.5
C5—C3—C1121.5 (2)C7—C14—H14C109.5
C6—C4—C2117.33 (18)H14A—C14—H14C109.5
C6—C4—C11124.59 (18)H14B—C14—H14C109.5
C2—C4—C11118.1 (2)C11—C15—C12121.7 (2)
C6—C5—C3119.19 (19)C11—C15—H15119.2
C6—C5—H5120.4C12—C15—H15119.2
C3—C5—H5120.4O4—C16—N1123.76 (13)
C5—C6—C4122.04 (16)O4—C16—C17B125.6 (9)
C5—C6—H6119.0N1—C16—C17B110.0 (10)
C4—C6—H6119.0O4—C16—C17A119.2 (3)
N1—C7—C14109.82 (12)N1—C16—C17A117.0 (3)
N1—C7—C13105.56 (12)C17B—C16—C17A12.4 (15)
C14—C7—C13109.59 (15)C2—O1—C12122.22 (16)
N1—C7—C8108.88 (12)C3—O2—C10118.5 (2)
C14—C7—C8112.21 (12)C16—N1—C7127.60 (11)
C13—C7—C8110.56 (13)C16—N1—H1N116.9 (11)
C9—C8—C7113.07 (12)C7—N1—H1N115.4 (11)
C9—C8—H8A109.0C17A—C18A—H18A109.5
C7—C8—H8A109.0C17A—C18A—H18B109.5
C9—C8—H8B109.0H18A—C18A—H18B109.5
C7—C8—H8B109.0C17A—C18A—H18C109.5
H8A—C8—H8B107.8H18A—C18A—H18C109.5
C1—C9—C8113.47 (13)H18B—C18A—H18C109.5
C1—C9—H9A108.9C16—C17A—C18A109.6 (6)
C8—C9—H9A108.9C16—C17A—H17A109.8
C1—C9—H9B108.9C18A—C17A—H17A109.8
C8—C9—H9B108.9C16—C17A—H17B109.8
H9A—C9—H9B107.7C18A—C17A—H17B109.8
O2—C10—H10A109.5H17A—C17A—H17B108.2
O2—C10—H10B109.5C18B—C17B—C16115.0 (16)
H10A—C10—H10B109.5C18B—C17B—H17C108.5
O2—C10—H10C109.5C16—C17B—H17C108.5
H10A—C10—H10C109.5C18B—C17B—H17D108.5
H10B—C10—H10C109.5C16—C17B—H17D108.5
C15—C11—C4121.4 (2)H17C—C17B—H17D107.5
C15—C11—H11119.3C17B—C18B—H18D109.5
C4—C11—H11119.3C17B—C18B—H18E109.5
O3—C12—O1116.1 (2)H18D—C18B—H18E109.5
O3—C12—C15127.4 (3)C17B—C18B—H18F109.5
O1—C12—C15116.5 (2)H18D—C18B—H18F109.5
C7—C13—H13A109.5H18E—C18B—H18F109.5
C3—C1—C2—O1179.09 (13)C6—C4—C11—C15178.4 (2)
C9—C1—C2—O12.6 (2)C2—C4—C11—C150.0 (3)
C3—C1—C2—C41.0 (2)C4—C11—C15—C120.3 (4)
C9—C1—C2—C4175.40 (14)O3—C12—C15—C11179.5 (2)
C2—C1—C3—O2179.19 (14)O1—C12—C15—C110.9 (3)
C9—C1—C3—O22.8 (2)C1—C2—O1—C12177.17 (15)
C2—C1—C3—C50.7 (2)C4—C2—O1—C120.9 (2)
C9—C1—C3—C5175.75 (16)O3—C12—O1—C2179.15 (18)
O1—C2—C4—C6178.77 (15)C15—C12—O1—C21.2 (3)
C1—C2—C4—C60.8 (2)C5—C3—O2—C1010.2 (3)
O1—C2—C4—C110.3 (2)C1—C3—O2—C10168.33 (18)
C1—C2—C4—C11177.66 (16)O4—C16—N1—C70.9 (2)
O2—C3—C5—C6178.46 (18)C17B—C16—N1—C7170.6 (12)
C1—C3—C5—C60.0 (3)C17A—C16—N1—C7178.2 (5)
C3—C5—C6—C40.2 (3)C14—C7—N1—C1659.89 (19)
C2—C4—C6—C50.1 (3)C13—C7—N1—C16177.95 (16)
C11—C4—C6—C5178.22 (19)C8—C7—N1—C1663.33 (18)
N1—C7—C8—C9179.76 (13)O4—C16—C17A—C18A78.8 (7)
C14—C7—C8—C958.45 (18)N1—C16—C17A—C18A103.7 (5)
C13—C7—C8—C964.23 (19)C17B—C16—C17A—C18A46 (6)
C2—C1—C9—C887.9 (2)O4—C16—C17B—C18B6 (3)
C3—C1—C9—C895.79 (19)N1—C16—C17B—C18B177 (2)
C7—C8—C9—C1172.05 (14)C17A—C16—C17B—C18B56 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.87 (2)2.10 (2)2.9546 (15)169.1 (15)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H23NO4
Mr317.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)11.3555 (11), 15.5452 (15), 9.7642 (10)
β (°) 95.617 (2)
V3)1715.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
16205, 3019, 2537
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.01
No. of reflections3019
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.13

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.87 (2)2.10 (2)2.9546 (15)169.1 (15)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

LA thanks the University of Madras for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brummer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBorowiak, T. & Wolska, I. (1989). Acta Cryst. C45, 620–622.  CSD CAS Web of Science Google Scholar
First citationBruker (1999). SAINT-Plus . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHuang, R. L., Chen, C. C., Huang, Y. L., Hsieh, D. J., Hu, C. P., Chen, C. F. & Chang, C. (1996). Hepatology, 24, 508–515.  CAS Google Scholar
First citationLiu, J., Zhang, W., Zhou, L., Wang, X. & Lian, Q. (2005). Zhong Yao Cai, 28, 1002–1006.  Google Scholar
First citationLiu, R., Zschocke, S., Reininger, E. B. & Bauer, R. (1998). Planta Med. 64, 525–529.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOkamoto, T., Kobayashi, T. & Yoshida, S. (2007). Med. Chem. 3, 35–44.  CrossRef CAS Google Scholar
First citationRitter, J. J. & Minieri, P. P. (1948). J. Am. Chem. Soc. 70, 4045–4048.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds