metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­(chlorido{2-[(4-ethyl­phen­yl)imino­meth­yl]pyridine-κ2N,N′}copper(II))

aDepartment of Chemistry, Alzahra University, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, cDepartment of Chemistry, Islamic Azad University, Buinzahra Branch, Qazvin, Iran, and dDepartment of Chemistry, Faculty of Science, Urmia University, Urmia, 57159-165, Iran
*Correspondence e-mail: dehganpour_farasha@yahoo.com

(Received 19 July 2011; accepted 8 August 2011; online 27 August 2011)

The binuclear title complex, [Cu2Cl4(C14H14N2)2], is located on a crystallographic inversion centre. The CuII ion is in a distorted square-pyramid coordination environment formed by the bichelating N-heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. One of the bridging Cu—Cl bonds is significantly longer than the other.

Related literature

For the synthesis of the ligand, see: Dehghanpour et al. (2009[Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205-1210.]). For background to diimine complexes and related structures, see: Mahmoudi et al. (2009[Mahmoudi, A., Dehghanpour, S., Khalaj, M. & Pakravan, S. (2009). Acta Cryst. E65, m889.]); Salehzadeh et al. (2011[Salehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl4(C14H14N2)2]

  • Mr = 689.42

  • Monoclinic, P 21 /c

  • a = 10.1254 (3) Å

  • b = 8.8384 (3) Å

  • c = 16.2117 (4) Å

  • β = 100.8830 (18)°

  • V = 1424.73 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 150 K

  • 0.18 × 0.18 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.672, Tmax = 0.795

  • 13286 measured reflections

  • 3246 independent reflections

  • 2568 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.090

  • S = 1.11

  • 3246 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.040 (2)
Cu1—N2 2.046 (2)
Cu1—Cl2 2.2423 (7)
Cu1—Cl1 2.3067 (7)
Cu1—Cl1i 2.5883 (7)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our ongoing studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands (Dehghanpour et al., 2009; Salehzadeh et al., 2011), here we report the crystal structure of the title complex. The title complex was prepared by the reaction of CuCl2 with the bidentate ligand (4-methylphenyl)pyridin-2-ylmethyleneamine (Mahmoudi et al., 2009).

The molecluar structure of the title complex is shown in Fig. 1. The CuII ion is in a distorted squar pyramid environment formed by a bis-chelating ligand, two bridging Cl atoms and one terminal Cl atom. A comparison of the dihedral angles between the planes of the pyridine, chelate and the benzene ring indicate that the ligand is distorted from planarity, with twist of 41.9 (2)° between the chelate (N1C5C6N2) and the benzene (C7C8C9C10C11C12) planes.One of the bridging Cu—Cl bonds is significantly longer than the other.

Related literature top

For the synthesis of the ligand, see: Dehghanpour et al. (2009). For background to diimine complexes and related structures see: Mahmoudi et al. (2009); Salehzadeh et al. (2011).

Experimental top

The title complex was prepared by the reaction of CuCl2 (13.4 mg, 0.1 mmole) and (4-methylphenyl)pyridin-2-ylmethyleneamine (21.0 mg, 0.1) in 15 ml methanol at room temperature. The solution was allowed to stand at room temperature and green crystals of the title compound suitable for X-ray analysis precipitated within few days.

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C-H = 0.95Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for other C-H.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title complex, with displacement ellipsoids drawn at 50% probability level.
Di-µ-chlorido-bis(chlorido{2-[(4-ethylphenyl)iminomethyl]pyridine- κ2N,N'}copper(II)) top
Crystal data top
[Cu2Cl4(C14H14N2)2]F(000) = 700
Mr = 689.42Dx = 1.607 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5841 reflections
a = 10.1254 (3) Åθ = 2.6–27.5°
b = 8.8384 (3) ŵ = 1.89 mm1
c = 16.2117 (4) ÅT = 150 K
β = 100.8830 (18)°Block, green
V = 1424.73 (7) Å30.18 × 0.18 × 0.12 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3246 independent reflections
Radiation source: fine-focus sealed tube2568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.6°
ϕ scans and ω scans with κ offsetsh = 1310
Absorption correction: multi-scan
(SORTAV (Blessing, 1995)
k = 1111
Tmin = 0.672, Tmax = 0.795l = 2021
13286 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.7627P]
where P = (Fo2 + 2Fc2)/3
3246 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cu2Cl4(C14H14N2)2]V = 1424.73 (7) Å3
Mr = 689.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.1254 (3) ŵ = 1.89 mm1
b = 8.8384 (3) ÅT = 150 K
c = 16.2117 (4) Å0.18 × 0.18 × 0.12 mm
β = 100.8830 (18)°
Data collection top
Nonius KappaCCD
diffractometer
3246 independent reflections
Absorption correction: multi-scan
(SORTAV (Blessing, 1995)
2568 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.795Rint = 0.043
13286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.11Δρmax = 0.60 e Å3
3246 reflectionsΔρmin = 0.59 e Å3
173 parameters
Special details top

Experimental. multi-scan from symmetry-related measurements SORTAV (Blessing, 1995)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.49287 (3)0.40798 (4)0.59239 (2)0.01724 (11)
Cl10.65548 (6)0.56294 (8)0.55534 (4)0.01911 (16)
Cl20.41609 (7)0.59028 (8)0.66720 (4)0.02404 (17)
N10.5981 (2)0.2194 (3)0.57146 (14)0.0185 (5)
N20.3756 (2)0.2450 (3)0.63198 (13)0.0178 (5)
C10.7060 (3)0.2085 (3)0.53486 (17)0.0222 (6)
H1A0.73640.29550.50950.027*
C20.7742 (3)0.0725 (3)0.53322 (18)0.0240 (6)
H2A0.85120.06780.50760.029*
C30.7307 (3)0.0556 (3)0.56855 (18)0.0243 (6)
H3A0.77770.14860.56850.029*
C40.6167 (3)0.0455 (3)0.60428 (18)0.0224 (6)
H4A0.58250.13220.62790.027*
C50.5544 (3)0.0924 (3)0.60479 (16)0.0173 (6)
C60.4297 (3)0.1137 (3)0.63732 (17)0.0197 (6)
H6A0.39020.03180.66180.024*
C70.2512 (3)0.2625 (3)0.66176 (17)0.0193 (6)
C80.2360 (3)0.1939 (3)0.73601 (17)0.0226 (6)
H8A0.30850.13990.76880.027*
C90.1134 (3)0.2047 (3)0.76209 (17)0.0225 (6)
H9A0.10290.15660.81290.027*
C100.0059 (3)0.2836 (3)0.71632 (18)0.0228 (6)
C110.0253 (3)0.3551 (4)0.64241 (18)0.0250 (6)
H11A0.04650.41070.61000.030*
C120.1477 (3)0.3464 (3)0.61556 (17)0.0233 (6)
H12A0.16000.39740.56600.028*
C130.1281 (3)0.2884 (4)0.74484 (18)0.0270 (7)
H13A0.17180.18810.73480.032*
H13B0.18680.36330.71030.032*
C140.1168 (3)0.3292 (4)0.83719 (19)0.0332 (7)
H14A0.20690.33360.85100.050*
H14B0.07310.42800.84790.050*
H14C0.06330.25230.87210.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01785 (18)0.0172 (2)0.01712 (18)0.00025 (13)0.00446 (13)0.00089 (13)
Cl10.0199 (3)0.0202 (4)0.0171 (3)0.0028 (3)0.0029 (2)0.0011 (3)
Cl20.0224 (3)0.0254 (4)0.0252 (4)0.0003 (3)0.0070 (3)0.0061 (3)
N10.0169 (11)0.0186 (12)0.0195 (12)0.0009 (9)0.0022 (9)0.0004 (9)
N20.0186 (11)0.0191 (12)0.0158 (11)0.0023 (9)0.0037 (9)0.0004 (9)
C10.0219 (14)0.0231 (16)0.0222 (14)0.0025 (12)0.0053 (11)0.0021 (12)
C20.0212 (14)0.0249 (16)0.0269 (16)0.0016 (12)0.0065 (12)0.0005 (12)
C30.0254 (15)0.0213 (16)0.0259 (16)0.0030 (12)0.0044 (12)0.0015 (12)
C40.0245 (15)0.0173 (14)0.0245 (15)0.0002 (12)0.0021 (12)0.0013 (12)
C50.0182 (13)0.0201 (15)0.0128 (13)0.0013 (11)0.0008 (10)0.0013 (11)
C60.0222 (14)0.0201 (15)0.0168 (14)0.0042 (11)0.0036 (11)0.0022 (11)
C70.0182 (13)0.0203 (15)0.0194 (14)0.0024 (11)0.0038 (11)0.0011 (11)
C80.0225 (14)0.0237 (15)0.0211 (14)0.0015 (12)0.0032 (11)0.0017 (12)
C90.0238 (14)0.0254 (16)0.0190 (14)0.0008 (12)0.0057 (11)0.0012 (12)
C100.0207 (14)0.0230 (16)0.0253 (15)0.0046 (12)0.0062 (12)0.0042 (12)
C110.0192 (14)0.0306 (17)0.0246 (15)0.0020 (12)0.0024 (11)0.0027 (13)
C120.0252 (15)0.0265 (16)0.0181 (14)0.0014 (12)0.0037 (11)0.0045 (12)
C130.0208 (14)0.0346 (18)0.0262 (15)0.0013 (13)0.0061 (12)0.0001 (13)
C140.0292 (16)0.043 (2)0.0295 (17)0.0026 (15)0.0116 (14)0.0006 (15)
Geometric parameters (Å, º) top
Cu1—N12.040 (2)C6—H6A0.9500
Cu1—N22.046 (2)C7—C81.382 (4)
Cu1—Cl22.2423 (7)C7—C121.383 (4)
Cu1—Cl12.3067 (7)C8—C91.388 (4)
Cu1—Cl1i2.5883 (7)C8—H8A0.9500
Cl1—Cu1i2.5883 (7)C9—C101.384 (4)
N1—C11.342 (3)C9—H9A0.9500
N1—C51.356 (3)C10—C111.401 (4)
N2—C61.280 (3)C10—C131.514 (4)
N2—C71.439 (3)C11—C121.390 (4)
C1—C21.388 (4)C11—H11A0.9500
C1—H1A0.9500C12—H12A0.9500
C2—C31.378 (4)C13—C141.523 (4)
C2—H2A0.9500C13—H13A0.9900
C3—C41.389 (4)C13—H13B0.9900
C3—H3A0.9500C14—H14A0.9800
C4—C51.373 (4)C14—H14B0.9800
C4—H4A0.9500C14—H14C0.9800
C5—C61.469 (4)
N1—Cu1—N280.19 (9)N2—C6—H6A120.7
N1—Cu1—Cl2157.23 (7)C5—C6—H6A120.7
N2—Cu1—Cl293.15 (7)C8—C7—C12120.6 (2)
N1—Cu1—Cl191.19 (6)C8—C7—N2119.6 (2)
N2—Cu1—Cl1170.06 (7)C12—C7—N2119.8 (2)
Cl2—Cu1—Cl192.96 (3)C7—C8—C9119.2 (3)
N1—Cu1—Cl1i99.05 (6)C7—C8—H8A120.4
N2—Cu1—Cl1i95.18 (6)C9—C8—H8A120.4
Cl2—Cu1—Cl1i103.25 (3)C10—C9—C8122.0 (3)
Cl1—Cu1—Cl1i91.04 (2)C10—C9—H9A119.0
Cu1—Cl1—Cu1i88.96 (2)C8—C9—H9A119.0
C1—N1—C5118.1 (2)C9—C10—C11117.5 (3)
C1—N1—Cu1128.83 (19)C9—C10—C13120.6 (3)
C5—N1—Cu1112.96 (17)C11—C10—C13121.8 (3)
C6—N2—C7117.7 (2)C12—C11—C10121.3 (3)
C6—N2—Cu1113.14 (18)C12—C11—H11A119.3
C7—N2—Cu1128.77 (18)C10—C11—H11A119.3
N1—C1—C2121.4 (3)C7—C12—C11119.3 (3)
N1—C1—H1A119.3C7—C12—H12A120.3
C2—C1—H1A119.3C11—C12—H12A120.3
C3—C2—C1120.2 (3)C10—C13—C14113.7 (2)
C3—C2—H2A119.9C10—C13—H13A108.8
C1—C2—H2A119.9C14—C13—H13A108.8
C2—C3—C4118.5 (3)C10—C13—H13B108.8
C2—C3—H3A120.8C14—C13—H13B108.8
C4—C3—H3A120.8H13A—C13—H13B107.7
C5—C4—C3118.6 (3)C13—C14—H14A109.5
C5—C4—H4A120.7C13—C14—H14B109.5
C3—C4—H4A120.7H14A—C14—H14B109.5
N1—C5—C4123.2 (2)C13—C14—H14C109.5
N1—C5—C6113.8 (2)H14A—C14—H14C109.5
C4—C5—C6122.9 (2)H14B—C14—H14C109.5
N2—C6—C5118.6 (2)
N1—Cu1—Cl1—Cu1i99.07 (6)Cu1—N1—C5—C68.5 (3)
Cl2—Cu1—Cl1—Cu1i103.33 (3)C3—C4—C5—N10.5 (4)
Cl1i—Cu1—Cl1—Cu1i0.0C3—C4—C5—C6177.0 (3)
N2—Cu1—N1—C1174.6 (2)C7—N2—C6—C5178.1 (2)
Cl2—Cu1—N1—C1110.9 (2)Cu1—N2—C6—C58.1 (3)
Cl1—Cu1—N1—C110.3 (2)N1—C5—C6—N20.3 (4)
Cl1i—Cu1—N1—C180.9 (2)C4—C5—C6—N2177.0 (3)
N2—Cu1—N1—C59.83 (18)C6—N2—C7—C842.2 (4)
Cl2—Cu1—N1—C564.6 (3)Cu1—N2—C7—C8130.5 (2)
Cl1—Cu1—N1—C5165.18 (17)C6—N2—C7—C12137.1 (3)
Cl1i—Cu1—N1—C5103.57 (17)Cu1—N2—C7—C1250.2 (3)
N1—Cu1—N2—C69.73 (19)C12—C7—C8—C92.6 (4)
Cl2—Cu1—N2—C6148.34 (18)N2—C7—C8—C9176.7 (2)
N1—Cu1—N2—C7177.3 (2)C7—C8—C9—C100.6 (4)
Cl2—Cu1—N2—C724.6 (2)C8—C9—C10—C110.9 (4)
C5—N1—C1—C22.0 (4)C8—C9—C10—C13177.7 (3)
Cu1—N1—C1—C2173.3 (2)C9—C10—C11—C120.5 (4)
N1—C1—C2—C30.9 (4)C13—C10—C11—C12178.1 (3)
C1—C2—C3—C41.0 (4)C8—C7—C12—C113.0 (4)
C2—C3—C4—C51.7 (4)N2—C7—C12—C11176.3 (3)
C1—N1—C5—C41.3 (4)C10—C11—C12—C71.5 (4)
Cu1—N1—C5—C4174.7 (2)C9—C10—C13—C1449.0 (4)
C1—N1—C5—C6175.4 (2)C11—C10—C13—C14132.5 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C14H14N2)2]
Mr689.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)10.1254 (3), 8.8384 (3), 16.2117 (4)
β (°) 100.8830 (18)
V3)1424.73 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.18 × 0.18 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV (Blessing, 1995)
Tmin, Tmax0.672, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
13286, 3246, 2568
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.11
No. of reflections3246
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.59

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—N12.040 (2)Cu1—Cl12.3067 (7)
Cu1—N22.046 (2)Cu1—Cl1i2.5883 (7)
Cu1—Cl22.2423 (7)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors would like to acknowledge the Alzahra and Islamic Azad University Research Councils for partial support of this work.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205–1210.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, A., Dehghanpour, S., Khalaj, M. & Pakravan, S. (2009). Acta Cryst. E65, m889.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSalehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds