metal-organic compounds
Di-μ-chlorido-bis(chlorido{2-[(4-ethylphenyl)iminomethyl]pyridine-κ2N,N′}copper(II))
aDepartment of Chemistry, Alzahra University, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, cDepartment of Chemistry, Islamic Azad University, Buinzahra Branch, Qazvin, Iran, and dDepartment of Chemistry, Faculty of Science, Urmia University, Urmia, 57159-165, Iran
*Correspondence e-mail: dehganpour_farasha@yahoo.com
The binuclear title complex, [Cu2Cl4(C14H14N2)2], is located on a crystallographic inversion centre. The CuII ion is in a distorted square-pyramid coordination environment formed by the bichelating N-heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. One of the bridging Cu—Cl bonds is significantly longer than the other.
Related literature
For the synthesis of the ligand, see: Dehghanpour et al. (2009). For background to diimine complexes and related structures, see: Mahmoudi et al. (2009); Salehzadeh et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2002); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811032053/kj2183sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811032053/kj2183Isup2.hkl
The title complex was prepared by the reaction of CuCl2 (13.4 mg, 0.1 mmole) and (4-methylphenyl)pyridin-2-ylmethyleneamine (21.0 mg, 0.1) in 15 ml methanol at room temperature. The solution was allowed to stand at room temperature and green crystals of the title compound suitable for X-ray analysis precipitated within few days.
H atoms bonded to C atoms were placed in calculated positions with C-H = 0.95Å and included in the
in a riding-model approximation with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for other C-H.Data collection: COLLECT (Nonius, 2002); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the structure of the title complex, with displacement ellipsoids drawn at 50% probability level. |
[Cu2Cl4(C14H14N2)2] | F(000) = 700 |
Mr = 689.42 | Dx = 1.607 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5841 reflections |
a = 10.1254 (3) Å | θ = 2.6–27.5° |
b = 8.8384 (3) Å | µ = 1.89 mm−1 |
c = 16.2117 (4) Å | T = 150 K |
β = 100.8830 (18)° | Block, green |
V = 1424.73 (7) Å3 | 0.18 × 0.18 × 0.12 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 3246 independent reflections |
Radiation source: fine-focus sealed tube | 2568 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.6° |
ϕ scans and ω scans with κ offsets | h = −13→10 |
Absorption correction: multi-scan (SORTAV (Blessing, 1995) | k = −11→11 |
Tmin = 0.672, Tmax = 0.795 | l = −20→21 |
13286 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0322P)2 + 1.7627P] where P = (Fo2 + 2Fc2)/3 |
3246 reflections | (Δ/σ)max = 0.001 |
173 parameters | Δρmax = 0.60 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
[Cu2Cl4(C14H14N2)2] | V = 1424.73 (7) Å3 |
Mr = 689.42 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.1254 (3) Å | µ = 1.89 mm−1 |
b = 8.8384 (3) Å | T = 150 K |
c = 16.2117 (4) Å | 0.18 × 0.18 × 0.12 mm |
β = 100.8830 (18)° |
Nonius KappaCCD diffractometer | 3246 independent reflections |
Absorption correction: multi-scan (SORTAV (Blessing, 1995) | 2568 reflections with I > 2σ(I) |
Tmin = 0.672, Tmax = 0.795 | Rint = 0.043 |
13286 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.60 e Å−3 |
3246 reflections | Δρmin = −0.59 e Å−3 |
173 parameters |
Experimental. multi-scan from symmetry-related measurements SORTAV (Blessing, 1995) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.49287 (3) | 0.40798 (4) | 0.59239 (2) | 0.01724 (11) | |
Cl1 | 0.65548 (6) | 0.56294 (8) | 0.55534 (4) | 0.01911 (16) | |
Cl2 | 0.41609 (7) | 0.59028 (8) | 0.66720 (4) | 0.02404 (17) | |
N1 | 0.5981 (2) | 0.2194 (3) | 0.57146 (14) | 0.0185 (5) | |
N2 | 0.3756 (2) | 0.2450 (3) | 0.63198 (13) | 0.0178 (5) | |
C1 | 0.7060 (3) | 0.2085 (3) | 0.53486 (17) | 0.0222 (6) | |
H1A | 0.7364 | 0.2955 | 0.5095 | 0.027* | |
C2 | 0.7742 (3) | 0.0725 (3) | 0.53322 (18) | 0.0240 (6) | |
H2A | 0.8512 | 0.0678 | 0.5076 | 0.029* | |
C3 | 0.7307 (3) | −0.0556 (3) | 0.56855 (18) | 0.0243 (6) | |
H3A | 0.7777 | −0.1486 | 0.5685 | 0.029* | |
C4 | 0.6167 (3) | −0.0455 (3) | 0.60428 (18) | 0.0224 (6) | |
H4A | 0.5825 | −0.1322 | 0.6279 | 0.027* | |
C5 | 0.5544 (3) | 0.0924 (3) | 0.60479 (16) | 0.0173 (6) | |
C6 | 0.4297 (3) | 0.1137 (3) | 0.63732 (17) | 0.0197 (6) | |
H6A | 0.3902 | 0.0318 | 0.6618 | 0.024* | |
C7 | 0.2512 (3) | 0.2625 (3) | 0.66176 (17) | 0.0193 (6) | |
C8 | 0.2360 (3) | 0.1939 (3) | 0.73601 (17) | 0.0226 (6) | |
H8A | 0.3085 | 0.1399 | 0.7688 | 0.027* | |
C9 | 0.1134 (3) | 0.2047 (3) | 0.76209 (17) | 0.0225 (6) | |
H9A | 0.1029 | 0.1566 | 0.8129 | 0.027* | |
C10 | 0.0059 (3) | 0.2836 (3) | 0.71632 (18) | 0.0228 (6) | |
C11 | 0.0253 (3) | 0.3551 (4) | 0.64241 (18) | 0.0250 (6) | |
H11A | −0.0465 | 0.4107 | 0.6100 | 0.030* | |
C12 | 0.1477 (3) | 0.3464 (3) | 0.61556 (17) | 0.0233 (6) | |
H12A | 0.1600 | 0.3974 | 0.5660 | 0.028* | |
C13 | −0.1281 (3) | 0.2884 (4) | 0.74484 (18) | 0.0270 (7) | |
H13A | −0.1718 | 0.1881 | 0.7348 | 0.032* | |
H13B | −0.1868 | 0.3633 | 0.7103 | 0.032* | |
C14 | −0.1168 (3) | 0.3292 (4) | 0.83719 (19) | 0.0332 (7) | |
H14A | −0.2069 | 0.3336 | 0.8510 | 0.050* | |
H14B | −0.0731 | 0.4280 | 0.8479 | 0.050* | |
H14C | −0.0633 | 0.2523 | 0.8721 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01785 (18) | 0.0172 (2) | 0.01712 (18) | −0.00025 (13) | 0.00446 (13) | 0.00089 (13) |
Cl1 | 0.0199 (3) | 0.0202 (4) | 0.0171 (3) | −0.0028 (3) | 0.0029 (2) | 0.0011 (3) |
Cl2 | 0.0224 (3) | 0.0254 (4) | 0.0252 (4) | 0.0003 (3) | 0.0070 (3) | −0.0061 (3) |
N1 | 0.0169 (11) | 0.0186 (12) | 0.0195 (12) | 0.0009 (9) | 0.0022 (9) | 0.0004 (9) |
N2 | 0.0186 (11) | 0.0191 (12) | 0.0158 (11) | −0.0023 (9) | 0.0037 (9) | −0.0004 (9) |
C1 | 0.0219 (14) | 0.0231 (16) | 0.0222 (14) | −0.0025 (12) | 0.0053 (11) | 0.0021 (12) |
C2 | 0.0212 (14) | 0.0249 (16) | 0.0269 (16) | 0.0016 (12) | 0.0065 (12) | −0.0005 (12) |
C3 | 0.0254 (15) | 0.0213 (16) | 0.0259 (16) | 0.0030 (12) | 0.0044 (12) | −0.0015 (12) |
C4 | 0.0245 (15) | 0.0173 (14) | 0.0245 (15) | 0.0002 (12) | 0.0021 (12) | 0.0013 (12) |
C5 | 0.0182 (13) | 0.0201 (15) | 0.0128 (13) | −0.0013 (11) | 0.0008 (10) | 0.0013 (11) |
C6 | 0.0222 (14) | 0.0201 (15) | 0.0168 (14) | −0.0042 (11) | 0.0036 (11) | 0.0022 (11) |
C7 | 0.0182 (13) | 0.0203 (15) | 0.0194 (14) | −0.0024 (11) | 0.0038 (11) | −0.0011 (11) |
C8 | 0.0225 (14) | 0.0237 (15) | 0.0211 (14) | 0.0015 (12) | 0.0032 (11) | 0.0017 (12) |
C9 | 0.0238 (14) | 0.0254 (16) | 0.0190 (14) | −0.0008 (12) | 0.0057 (11) | 0.0012 (12) |
C10 | 0.0207 (14) | 0.0230 (16) | 0.0253 (15) | −0.0046 (12) | 0.0062 (12) | −0.0042 (12) |
C11 | 0.0192 (14) | 0.0306 (17) | 0.0246 (15) | 0.0020 (12) | 0.0024 (11) | 0.0027 (13) |
C12 | 0.0252 (15) | 0.0265 (16) | 0.0181 (14) | 0.0014 (12) | 0.0037 (11) | 0.0045 (12) |
C13 | 0.0208 (14) | 0.0346 (18) | 0.0262 (15) | −0.0013 (13) | 0.0061 (12) | 0.0001 (13) |
C14 | 0.0292 (16) | 0.043 (2) | 0.0295 (17) | 0.0026 (15) | 0.0116 (14) | −0.0006 (15) |
Cu1—N1 | 2.040 (2) | C6—H6A | 0.9500 |
Cu1—N2 | 2.046 (2) | C7—C8 | 1.382 (4) |
Cu1—Cl2 | 2.2423 (7) | C7—C12 | 1.383 (4) |
Cu1—Cl1 | 2.3067 (7) | C8—C9 | 1.388 (4) |
Cu1—Cl1i | 2.5883 (7) | C8—H8A | 0.9500 |
Cl1—Cu1i | 2.5883 (7) | C9—C10 | 1.384 (4) |
N1—C1 | 1.342 (3) | C9—H9A | 0.9500 |
N1—C5 | 1.356 (3) | C10—C11 | 1.401 (4) |
N2—C6 | 1.280 (3) | C10—C13 | 1.514 (4) |
N2—C7 | 1.439 (3) | C11—C12 | 1.390 (4) |
C1—C2 | 1.388 (4) | C11—H11A | 0.9500 |
C1—H1A | 0.9500 | C12—H12A | 0.9500 |
C2—C3 | 1.378 (4) | C13—C14 | 1.523 (4) |
C2—H2A | 0.9500 | C13—H13A | 0.9900 |
C3—C4 | 1.389 (4) | C13—H13B | 0.9900 |
C3—H3A | 0.9500 | C14—H14A | 0.9800 |
C4—C5 | 1.373 (4) | C14—H14B | 0.9800 |
C4—H4A | 0.9500 | C14—H14C | 0.9800 |
C5—C6 | 1.469 (4) | ||
N1—Cu1—N2 | 80.19 (9) | N2—C6—H6A | 120.7 |
N1—Cu1—Cl2 | 157.23 (7) | C5—C6—H6A | 120.7 |
N2—Cu1—Cl2 | 93.15 (7) | C8—C7—C12 | 120.6 (2) |
N1—Cu1—Cl1 | 91.19 (6) | C8—C7—N2 | 119.6 (2) |
N2—Cu1—Cl1 | 170.06 (7) | C12—C7—N2 | 119.8 (2) |
Cl2—Cu1—Cl1 | 92.96 (3) | C7—C8—C9 | 119.2 (3) |
N1—Cu1—Cl1i | 99.05 (6) | C7—C8—H8A | 120.4 |
N2—Cu1—Cl1i | 95.18 (6) | C9—C8—H8A | 120.4 |
Cl2—Cu1—Cl1i | 103.25 (3) | C10—C9—C8 | 122.0 (3) |
Cl1—Cu1—Cl1i | 91.04 (2) | C10—C9—H9A | 119.0 |
Cu1—Cl1—Cu1i | 88.96 (2) | C8—C9—H9A | 119.0 |
C1—N1—C5 | 118.1 (2) | C9—C10—C11 | 117.5 (3) |
C1—N1—Cu1 | 128.83 (19) | C9—C10—C13 | 120.6 (3) |
C5—N1—Cu1 | 112.96 (17) | C11—C10—C13 | 121.8 (3) |
C6—N2—C7 | 117.7 (2) | C12—C11—C10 | 121.3 (3) |
C6—N2—Cu1 | 113.14 (18) | C12—C11—H11A | 119.3 |
C7—N2—Cu1 | 128.77 (18) | C10—C11—H11A | 119.3 |
N1—C1—C2 | 121.4 (3) | C7—C12—C11 | 119.3 (3) |
N1—C1—H1A | 119.3 | C7—C12—H12A | 120.3 |
C2—C1—H1A | 119.3 | C11—C12—H12A | 120.3 |
C3—C2—C1 | 120.2 (3) | C10—C13—C14 | 113.7 (2) |
C3—C2—H2A | 119.9 | C10—C13—H13A | 108.8 |
C1—C2—H2A | 119.9 | C14—C13—H13A | 108.8 |
C2—C3—C4 | 118.5 (3) | C10—C13—H13B | 108.8 |
C2—C3—H3A | 120.8 | C14—C13—H13B | 108.8 |
C4—C3—H3A | 120.8 | H13A—C13—H13B | 107.7 |
C5—C4—C3 | 118.6 (3) | C13—C14—H14A | 109.5 |
C5—C4—H4A | 120.7 | C13—C14—H14B | 109.5 |
C3—C4—H4A | 120.7 | H14A—C14—H14B | 109.5 |
N1—C5—C4 | 123.2 (2) | C13—C14—H14C | 109.5 |
N1—C5—C6 | 113.8 (2) | H14A—C14—H14C | 109.5 |
C4—C5—C6 | 122.9 (2) | H14B—C14—H14C | 109.5 |
N2—C6—C5 | 118.6 (2) | ||
N1—Cu1—Cl1—Cu1i | 99.07 (6) | Cu1—N1—C5—C6 | 8.5 (3) |
Cl2—Cu1—Cl1—Cu1i | −103.33 (3) | C3—C4—C5—N1 | 0.5 (4) |
Cl1i—Cu1—Cl1—Cu1i | 0.0 | C3—C4—C5—C6 | 177.0 (3) |
N2—Cu1—N1—C1 | 174.6 (2) | C7—N2—C6—C5 | 178.1 (2) |
Cl2—Cu1—N1—C1 | −110.9 (2) | Cu1—N2—C6—C5 | −8.1 (3) |
Cl1—Cu1—N1—C1 | −10.3 (2) | N1—C5—C6—N2 | −0.3 (4) |
Cl1i—Cu1—N1—C1 | 80.9 (2) | C4—C5—C6—N2 | −177.0 (3) |
N2—Cu1—N1—C5 | −9.83 (18) | C6—N2—C7—C8 | 42.2 (4) |
Cl2—Cu1—N1—C5 | 64.6 (3) | Cu1—N2—C7—C8 | −130.5 (2) |
Cl1—Cu1—N1—C5 | 165.18 (17) | C6—N2—C7—C12 | −137.1 (3) |
Cl1i—Cu1—N1—C5 | −103.57 (17) | Cu1—N2—C7—C12 | 50.2 (3) |
N1—Cu1—N2—C6 | 9.73 (19) | C12—C7—C8—C9 | 2.6 (4) |
Cl2—Cu1—N2—C6 | −148.34 (18) | N2—C7—C8—C9 | −176.7 (2) |
N1—Cu1—N2—C7 | −177.3 (2) | C7—C8—C9—C10 | −0.6 (4) |
Cl2—Cu1—N2—C7 | 24.6 (2) | C8—C9—C10—C11 | −0.9 (4) |
C5—N1—C1—C2 | −2.0 (4) | C8—C9—C10—C13 | 177.7 (3) |
Cu1—N1—C1—C2 | 173.3 (2) | C9—C10—C11—C12 | 0.5 (4) |
N1—C1—C2—C3 | 0.9 (4) | C13—C10—C11—C12 | −178.1 (3) |
C1—C2—C3—C4 | 1.0 (4) | C8—C7—C12—C11 | −3.0 (4) |
C2—C3—C4—C5 | −1.7 (4) | N2—C7—C12—C11 | 176.3 (3) |
C1—N1—C5—C4 | 1.3 (4) | C10—C11—C12—C7 | 1.5 (4) |
Cu1—N1—C5—C4 | −174.7 (2) | C9—C10—C13—C14 | 49.0 (4) |
C1—N1—C5—C6 | −175.4 (2) | C11—C10—C13—C14 | −132.5 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Cl4(C14H14N2)2] |
Mr | 689.42 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 10.1254 (3), 8.8384 (3), 16.2117 (4) |
β (°) | 100.8830 (18) |
V (Å3) | 1424.73 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.89 |
Crystal size (mm) | 0.18 × 0.18 × 0.12 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV (Blessing, 1995) |
Tmin, Tmax | 0.672, 0.795 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13286, 3246, 2568 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.090, 1.11 |
No. of reflections | 3246 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.60, −0.59 |
Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).
Cu1—N1 | 2.040 (2) | Cu1—Cl1 | 2.3067 (7) |
Cu1—N2 | 2.046 (2) | Cu1—Cl1i | 2.5883 (7) |
Cu1—Cl2 | 2.2423 (7) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors would like to acknowledge the Alzahra and Islamic Azad University Research Councils for partial support of this work.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205–1210. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, A., Dehghanpour, S., Khalaj, M. & Pakravan, S. (2009). Acta Cryst. E65, m889. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Salehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In our ongoing studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands (Dehghanpour et al., 2009; Salehzadeh et al., 2011), here we report the crystal structure of the title complex. The title complex was prepared by the reaction of CuCl2 with the bidentate ligand (4-methylphenyl)pyridin-2-ylmethyleneamine (Mahmoudi et al., 2009).
The molecluar structure of the title complex is shown in Fig. 1. The CuII ion is in a distorted squar pyramid environment formed by a bis-chelating ligand, two bridging Cl atoms and one terminal Cl atom. A comparison of the dihedral angles between the planes of the pyridine, chelate and the benzene ring indicate that the ligand is distorted from planarity, with twist of 41.9 (2)° between the chelate (N1C5C6N2) and the benzene (C7C8C9C10C11C12) planes.One of the bridging Cu—Cl bonds is significantly longer than the other.