organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,3,4,4-Tetra­fluoro­pyrrolidin-1-yl)aniline

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
*Correspondence e-mail: zhuosioc@yahoo.com.cn

(Received 1 July 2011; accepted 27 July 2011; online 2 August 2011)

In the title fluorinated pyrrolidine derivative, C10H10F4N2, the dihedral angle between the best planes of the benzene and pyrrolidine rings is 62.6 (1)°. The crystal packing features inter­molecular N—H⋯F hydrogen bonds.

Related literature

For applications of fluorinated pyrrolidine derivatives, see: Hulin et al. (2005[Hulin, B., Cabral, S., Lopaze, M. G., Van Volkenburg, M. A., Andrews, K. M. & Parker, J. C. (2005). Bioorg. Med. Chem. Lett. 15, 4770-4773.]); Kerekes et al. (2011[Kerekes, A. D., Esposite, S. J., Doll, R. J., Tagat, J. R., Yu, T., Xiao, Y. S., Zhang, Y. L., Prelusky, D. B., Tevar, S., Gray, K., Terracina, G. A., Lee, S. N., Jones, J., Liu, M., Basso, A. D. & Smith, E. B. (2011). J. Med. Chem. 54, 201-210.]); Marson (2005[Marson, C. M. (2005). J. Org. Chem. 70, 9771-9779.]); Santora et al. (2008[Santora, V. J., Covel, J. A., Hayashi, R., Hofilena, B. J., Ibarra, J. B., Pulley, M. D., Weinhouse, M. I., Sengupta, D., Duffield, J. J., Semple, G., Webb, R. R., Sage, C., Ren, A., Pereira, G., Knudsen, J., Edwards, J. E., Suarez, M., Frazer, J., Thomsen, W., Hauser, E., Whelan, K. & Grottick, A. J. (2008). Bioorg. Med. Chem. Lett. 18, 1490-1494.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10F4N2

  • Mr = 234.20

  • Orthorhombic, P 21 21 21

  • a = 6.791 (13) Å

  • b = 8.185 (16) Å

  • c = 18.66 (4) Å

  • V = 1037 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.970

  • 6022 measured reflections

  • 1342 independent reflections

  • 748 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.02

  • 1342 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯F1i 0.84 (5) 2.59 (5) 3.295 (8) 142 (4)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Fluorinated pyrrolidine derivatives have attracted much attention due to their potential applications as dipeptidyl peptidase IV inhibitors (Hulin et al., 2005), asymmetric synthesis catalysts (Marson, 2005), aurora kinase inhibitors (Kerekes et al., 2011), and H3 receptor antagonists (Santora et al., 2008). Herein, we report the crystal structure of the title compound (Fig. 1), obtained by the reaction of o-phenylenediamine with trifluoromethanesulfonic acid 2,2,3,3-tretrafluoro-1,4-butanediyl ester.

The dihedral angle between the plane of phenyl ring and the least-squares plane of pyrrolidine ring is 62.63 (14)°. The pyrrolidine ring adopts a distorted N1-envelope conformation with folding angle 40.6 (2)°. The crystal packing (Fig. 2) is characterized by intermolecular N—H···F—C bonds linking molecules in zigzag chains along b.

Related literature top

For applications of fluorinated pyrrolidine derivatives, see: Hulin et al. (2005); Kerekes et al. (2011); Marson (2005); Santora et al. (2008).

Experimental top

A mixture of trifluoromethanesulfonic acid 2,2,3,3,-tretrafluoro-1,4-butanediyl ester(1 mmol), o-phenylenediamine (1.5 mmol), Et3N (3 mmol) and ethanol(15 ml) was placed in a round-bottomed flask fitted with a reflux condenser, and then heated at reflux for 30 h. After cooling, the organic solvent was removed under reduced pressure and to the residue was solved in dichloromethane then washed with water, and the organic layer was dried over anhydrous Na2SO4. After the solvent was removed, the residue was purified by flash chromatography on silica gel to afford a purple solid (164 mg), yield 70%. Crystals suitable for X-ray structural analysis were grown from CH3CN solution at room temperature.

Refinement top

H-atoms were placed in calculated positions with C—H = 0.93 Å; the H atoms of amino group were refined freely.

Since this is a light-atom structure (it does not contain any atoms heavier than F) and since the data collection was carried out using Mo radiation, it was not possible to unambiguously determine the absolute configuration of this molecule. In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELTLX (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing.
2-(3,3,4,4-Tetrafluoropyrrolidin-1-yl)aniline top
Crystal data top
C10H10F4N2F(000) = 480
Mr = 234.20Dx = 1.500 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 6.791 (13) ŵ = 0.14 mm1
b = 8.185 (16) ÅT = 298 K
c = 18.66 (4) ÅBlock, purple
V = 1037 (3) Å30.30 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1342 independent reflections
Radiation source: fine-focus sealed tube748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.959, Tmax = 0.970k = 810
6022 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.038P)2 + 0.0935P]
where P = (Fo2 + 2Fc2)/3
1342 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C10H10F4N2V = 1037 (3) Å3
Mr = 234.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.791 (13) ŵ = 0.14 mm1
b = 8.185 (16) ÅT = 298 K
c = 18.66 (4) Å0.30 × 0.28 × 0.22 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1342 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
748 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.970Rint = 0.061
6022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.14 e Å3
1342 reflectionsΔρmin = 0.15 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Since this is a light atom structure (does not contain any atoms heavier than Si) and since the data collection was carried out using Mo radiation, it is not possible to unambiguously determine the absolute configuration of this molecule.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F20.5502 (4)0.9533 (4)0.28755 (12)0.0946 (9)
F40.9856 (4)0.9465 (4)0.22927 (13)0.0938 (9)
F30.7878 (4)1.1542 (3)0.23004 (13)0.0903 (9)
F10.7058 (4)0.7458 (3)0.24699 (12)0.0897 (8)
C50.5124 (5)0.9963 (4)0.04139 (17)0.0451 (8)
C60.3393 (5)1.0854 (4)0.02680 (18)0.0491 (9)
C30.8125 (6)1.0019 (5)0.2037 (2)0.0608 (10)
C20.6375 (6)0.8962 (5)0.22754 (19)0.0595 (11)
C100.6062 (6)0.9131 (5)0.01323 (19)0.0575 (10)
H100.71990.85410.00310.069*
C70.2663 (6)1.0832 (5)0.0431 (2)0.0605 (11)
H70.15011.13830.05360.073*
C80.3635 (7)1.0009 (5)0.0966 (2)0.0688 (12)
H80.31331.00270.14300.083*
C90.5346 (7)0.9155 (5)0.0827 (2)0.0716 (13)
H90.60040.86080.11920.086*
C40.7993 (5)0.9997 (5)0.12353 (18)0.0583 (10)
H4A0.86231.09460.10250.070*
H4B0.85690.90130.10360.070*
C10.5016 (6)0.8845 (5)0.16406 (19)0.0665 (12)
H1A0.50210.77520.14400.080*
H1B0.36790.91360.17710.080*
N10.5854 (4)1.0035 (4)0.11341 (14)0.0466 (7)
N20.2447 (6)1.1710 (5)0.0805 (2)0.0653 (10)
H2A0.312 (7)1.201 (6)0.116 (3)0.091 (19)*
H2B0.171 (9)1.254 (9)0.068 (3)0.17 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F20.093 (2)0.123 (2)0.0670 (14)0.0049 (17)0.0166 (15)0.0149 (14)
F40.0610 (15)0.127 (2)0.0934 (19)0.0073 (16)0.0274 (15)0.0235 (16)
F30.118 (2)0.0611 (15)0.0915 (17)0.0124 (16)0.0215 (16)0.0148 (13)
F10.111 (2)0.0665 (15)0.0915 (17)0.0003 (16)0.0187 (16)0.0234 (14)
C50.041 (2)0.047 (2)0.0470 (18)0.0033 (19)0.0009 (17)0.0050 (16)
C60.047 (2)0.046 (2)0.054 (2)0.0019 (18)0.0030 (19)0.0006 (18)
C30.056 (3)0.058 (3)0.068 (2)0.007 (2)0.016 (2)0.004 (2)
C20.069 (3)0.062 (3)0.048 (2)0.006 (2)0.002 (2)0.008 (2)
C100.058 (2)0.055 (2)0.059 (2)0.004 (2)0.003 (2)0.0032 (19)
C70.057 (3)0.061 (2)0.064 (2)0.000 (2)0.016 (2)0.009 (2)
C80.090 (3)0.069 (3)0.047 (2)0.013 (3)0.013 (2)0.000 (2)
C90.087 (4)0.069 (3)0.058 (3)0.005 (3)0.005 (2)0.011 (2)
C40.044 (2)0.070 (3)0.061 (2)0.004 (2)0.0026 (19)0.010 (2)
C10.064 (3)0.074 (3)0.061 (2)0.017 (2)0.005 (2)0.017 (2)
N10.0369 (16)0.0548 (18)0.0480 (16)0.0026 (15)0.0024 (14)0.0073 (15)
N20.052 (2)0.073 (2)0.071 (2)0.011 (2)0.001 (2)0.004 (2)
Geometric parameters (Å, º) top
F2—C21.350 (5)C7—C81.374 (6)
F4—C31.347 (5)C7—H70.9300
F3—C31.350 (5)C8—C91.380 (6)
F1—C21.365 (5)C8—H80.9300
C5—C101.382 (5)C9—H90.9300
C5—C61.409 (5)C4—N11.465 (5)
C5—N11.434 (5)C4—H4A0.9700
C6—N21.381 (5)C4—H4B0.9700
C6—C71.395 (5)C1—N11.472 (5)
C3—C41.498 (6)C1—H1A0.9700
C3—C21.536 (6)C1—H1B0.9700
C2—C11.505 (6)N2—H2A0.84 (5)
C10—C91.384 (6)N2—H2B0.87 (7)
C10—H100.9300
C10—C5—C6119.8 (3)C7—C8—C9121.1 (4)
C10—C5—N1123.5 (3)C7—C8—H8119.5
C6—C5—N1116.6 (3)C9—C8—H8119.5
N2—C6—C7121.3 (4)C8—C9—C10118.6 (4)
N2—C6—C5120.7 (3)C8—C9—H9120.7
C7—C6—C5118.1 (3)C10—C9—H9120.7
F4—C3—F3106.8 (3)N1—C4—C3100.8 (3)
F4—C3—C4113.7 (3)N1—C4—H4A111.6
F3—C3—C4111.6 (3)C3—C4—H4A111.6
F4—C3—C2112.5 (3)N1—C4—H4B111.6
F3—C3—C2108.6 (3)C3—C4—H4B111.6
C4—C3—C2103.7 (3)H4A—C4—H4B109.4
F2—C2—F1103.9 (3)N1—C1—C2103.1 (3)
F2—C2—C1113.9 (4)N1—C1—H1A111.2
F1—C2—C1111.1 (3)C2—C1—H1A111.2
F2—C2—C3112.7 (4)N1—C1—H1B111.2
F1—C2—C3108.8 (3)C2—C1—H1B111.2
C1—C2—C3106.4 (3)H1A—C1—H1B109.1
C5—C10—C9121.5 (4)C5—N1—C4117.6 (3)
C5—C10—H10119.3C5—N1—C1116.2 (3)
C9—C10—H10119.3C4—N1—C1106.7 (3)
C8—C7—C6121.0 (4)C6—N2—H2A117 (3)
C8—C7—H7119.5C6—N2—H2B118 (4)
C6—C7—H7119.5H2A—N2—H2B107 (5)
C10—C5—C6—N2179.2 (4)C6—C7—C8—C91.1 (6)
N1—C5—C6—N21.6 (5)C7—C8—C9—C100.6 (6)
C10—C5—C6—C71.3 (5)C5—C10—C9—C81.3 (6)
N1—C5—C6—C7178.9 (3)F4—C3—C4—N1159.5 (3)
F4—C3—C2—F293.9 (4)F3—C3—C4—N179.6 (4)
F3—C3—C2—F224.1 (4)C2—C3—C4—N137.0 (4)
C4—C3—C2—F2142.8 (3)F2—C2—C1—N1115.4 (4)
F4—C3—C2—F120.8 (4)F1—C2—C1—N1127.7 (4)
F3—C3—C2—F1138.8 (3)C3—C2—C1—N19.4 (4)
C4—C3—C2—F1102.5 (3)C10—C5—N1—C431.8 (5)
F4—C3—C2—C1140.6 (4)C6—C5—N1—C4145.8 (4)
F3—C3—C2—C1101.4 (4)C10—C5—N1—C196.3 (4)
C4—C3—C2—C117.3 (4)C6—C5—N1—C186.2 (4)
C6—C5—C10—C90.3 (5)C3—C4—N1—C5177.7 (3)
N1—C5—C10—C9177.1 (4)C3—C4—N1—C145.2 (4)
N2—C6—C7—C8178.5 (4)C2—C1—N1—C5167.3 (3)
C5—C6—C7—C82.0 (6)C2—C1—N1—C434.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···F1i0.84 (5)2.59 (5)3.295 (8)142 (4)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H10F4N2
Mr234.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.791 (13), 8.185 (16), 18.66 (4)
V3)1037 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.30 × 0.28 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
6022, 1342, 748
Rint0.061
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.02
No. of reflections1342
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELTLX (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···F1i0.84 (5)2.59 (5)3.295 (8)142 (4)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the support of the Department of Science and Technology, Guangdong Province (grant No. 2010 A020507001–76, 5300410, FIPL-05–003).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHulin, B., Cabral, S., Lopaze, M. G., Van Volkenburg, M. A., Andrews, K. M. & Parker, J. C. (2005). Bioorg. Med. Chem. Lett. 15, 4770–4773.  CrossRef CAS Google Scholar
First citationKerekes, A. D., Esposite, S. J., Doll, R. J., Tagat, J. R., Yu, T., Xiao, Y. S., Zhang, Y. L., Prelusky, D. B., Tevar, S., Gray, K., Terracina, G. A., Lee, S. N., Jones, J., Liu, M., Basso, A. D. & Smith, E. B. (2011). J. Med. Chem. 54, 201–210.  Web of Science CrossRef CAS Google Scholar
First citationMarson, C. M. (2005). J. Org. Chem. 70, 9771–9779.  CrossRef CAS Google Scholar
First citationSantora, V. J., Covel, J. A., Hayashi, R., Hofilena, B. J., Ibarra, J. B., Pulley, M. D., Weinhouse, M. I., Sengupta, D., Duffield, J. J., Semple, G., Webb, R. R., Sage, C., Ren, A., Pereira, G., Knudsen, J., Edwards, J. E., Suarez, M., Frazer, J., Thomsen, W., Hauser, E., Whelan, K. & Grottick, A. J. (2008). Bioorg. Med. Chem. Lett. 18, 1490–1494.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds