organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-[(5-nitro­thio­phen-2-yl)methyl­­idene]aniline

aDepartment of Chemistry, Tangshan Normal University, Tangshan 063000, People's Republic of China
*Correspondence e-mail: cmj_1237@yahoo.com.cn

(Received 12 July 2011; accepted 27 July 2011; online 2 August 2011)

The title compound, C12H10N2O2S, is a Schiff base formed from p-toluidine and 5-nitro­thio­phene-2-carbaldehyde. The C=N bond adopts an E configuration. The benzene and thio­phene rings form a dihedral angle of 9.2 (1)°.

Related literature

For the use of Schiff bases as polydentate ligands, see: Bourget-Merle et al.(2002[Bourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031-3065.]); Halbach & Hamaker (2006[Halbach, D. P. & Hamaker, C. G. (2006). J. Organomet. Chem. 691, 3349-3361.]); Meiswinkel & Werner (2004[Meiswinkel, A. & Werner, H. (2004). Inorg. Chim. Acta, 357, 2855-2862.]); Xiao et al. (2006[Xiao, F. R., Chen, L., Wang, J. D., Wu, R. L., Yue, F. & Li, J. (2006). Acta Chim. Sin. 64, 1517-1522.]); Lagadic (2006[Lagadic, I. L. (2006). Microporous Mesoporous Mater. 95, 226-233.]). For their biological activity, see: Siddiqui et al. (2006[Siddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, G. W. (2006). Molecules, 11, 206-211.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O2S

  • Mr = 246.28

  • Monoclinic, P 21 /n

  • a = 4.7606 (4) Å

  • b = 22.415 (2) Å

  • c = 10.7008 (15) Å

  • β = 92.566 (13)°

  • V = 1140.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.947, Tmax = 0.968

  • 14437 measured reflections

  • 2699 independent reflections

  • 2325 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.09

  • 2699 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2009[Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

In recent years, heterocycle-containing Schiff bases have gained much attention as versatile polydentate ligands suitable for various metal chelations resulting in a variety of interesting coordination modes (Xiao et al., 2006; Bourget-Merle et al., 2002; Meiswinkel & Werner, 2004; Halbach & Hamaker, 2006; Lagadic, 2006). They also represent an important class of biologically active compounds (Siddiqui et al., 2006). Herein, we report the synthesis and crystal structure of the title compound (I), a new heterocycle-containing Schiff base. The molecular structure of (I) is shown on Fig. 1. In the molecule of (I), the two aromatic benzene and thiophene rings form a dihedral angle of 9.2 (1)°. The deviation from planarity can be explained by steric repulsion between the phenyl ring and methylene group.

Related literature top

For the use of Schiff bases as polydentate ligands, see: Bourget-Merle et al.(2002); Halbach & Hamaker (2006); Meiswinkel & Werner (2004); Xiao et al. (2006); Lagadic (2006). For their biological activity, see: Siddiqui et al. (2006).

Experimental top

The solution of p-toluidine and 5-nitrothiophene-2-carbaldehyde in methanol was stirred for 10 h at ambient temperature. Then the crude product was isolated by filtration and recrystallized from methanol to yield yellowish title compound. Finally, the compound was dissolved in a small amount of acetone and the solution was kept for 3 days at ambient temperature to give rise to yellowish needle-like crystals by slowly evaporating the solvent.

Refinement top

All H atoms were positioned geometrically(C—H=0.93–0.98 Å),and refined as riding with Uiso(H)=1.2Ueq of the adjacent carbon atom (1.5Ueq for methyl hydrogens). The positions of methyl hydrogens were rotationally optimized (AFIX 137).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
4-Methyl-N-[(5-nitrothiophen-2-yl)methylidene]aniline top
Crystal data top
C12H10N2O2SF(000) = 512
Mr = 246.28Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.7606 (4) ÅCell parameters from 4173 reflections
b = 22.415 (2) Åθ = 1.8–27.9°
c = 10.7008 (15) ŵ = 0.27 mm1
β = 92.566 (13)°T = 113 K
V = 1140.7 (2) Å3Prism, colorless
Z = 40.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
2699 independent reflections
Radiation source: rotating anode2325 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.043
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 1.8°
ω and ϕ scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
k = 2929
Tmin = 0.947, Tmax = 0.968l = 1314
14437 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.1298P]
where P = (Fo2 + 2Fc2)/3
2699 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C12H10N2O2SV = 1140.7 (2) Å3
Mr = 246.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.7606 (4) ŵ = 0.27 mm1
b = 22.415 (2) ÅT = 113 K
c = 10.7008 (15) Å0.20 × 0.18 × 0.12 mm
β = 92.566 (13)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
2699 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
2325 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.968Rint = 0.043
14437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.09Δρmax = 0.30 e Å3
2699 reflectionsΔρmin = 0.27 e Å3
155 parameters
Special details top

Experimental. Rigaku CrystalClear-SM Expert 2.0 r2

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12948 (8)0.223694 (17)0.24141 (3)0.01725 (12)
O10.4301 (2)0.10562 (5)0.14443 (11)0.0279 (3)
O20.2638 (2)0.13512 (5)0.32720 (10)0.0257 (3)
N10.5743 (3)0.32247 (6)0.21001 (11)0.0170 (3)
N20.2748 (3)0.13695 (6)0.21144 (12)0.0200 (3)
C11.3858 (3)0.51381 (7)0.21589 (19)0.0294 (4)
H1A1.55100.50200.17040.044*
H1B1.44320.52300.30280.044*
H1C1.29980.54920.17630.044*
C21.1750 (3)0.46324 (7)0.21303 (16)0.0220 (3)
C31.0879 (3)0.43701 (7)0.10002 (15)0.0223 (3)
H31.16450.45070.02480.027*
C40.8909 (3)0.39115 (7)0.09487 (14)0.0197 (3)
H40.83370.37420.01640.024*
C50.7759 (3)0.36966 (7)0.20461 (14)0.0169 (3)
C60.8680 (3)0.39494 (7)0.31778 (14)0.0199 (3)
H60.79650.38040.39350.024*
C71.0628 (3)0.44113 (7)0.32203 (16)0.0233 (4)
H71.12070.45790.40050.028*
C80.4454 (3)0.30556 (7)0.10888 (14)0.0189 (3)
H80.48590.32480.03270.023*
C90.2385 (3)0.25772 (7)0.10682 (14)0.0173 (3)
C100.1041 (3)0.23474 (7)0.00118 (14)0.0208 (3)
H100.13820.24830.08090.025*
C110.0895 (3)0.18913 (7)0.02644 (14)0.0194 (3)
H110.20030.16830.03540.023*
C120.0955 (3)0.17906 (7)0.15201 (14)0.0166 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0186 (2)0.0195 (2)0.01358 (19)0.00044 (15)0.00004 (15)0.00052 (14)
O10.0285 (6)0.0275 (6)0.0275 (6)0.0102 (5)0.0009 (5)0.0022 (5)
O20.0313 (7)0.0288 (6)0.0174 (6)0.0008 (5)0.0046 (5)0.0029 (5)
N10.0166 (6)0.0168 (6)0.0174 (6)0.0015 (5)0.0004 (5)0.0009 (5)
N20.0205 (7)0.0200 (7)0.0195 (7)0.0020 (5)0.0019 (5)0.0003 (5)
C10.0210 (8)0.0204 (8)0.0472 (11)0.0026 (7)0.0047 (8)0.0001 (8)
C20.0153 (7)0.0165 (8)0.0345 (9)0.0031 (6)0.0018 (7)0.0011 (7)
C30.0198 (8)0.0211 (8)0.0264 (8)0.0025 (6)0.0061 (7)0.0057 (7)
C40.0202 (8)0.0203 (8)0.0187 (8)0.0022 (6)0.0008 (6)0.0005 (6)
C50.0134 (7)0.0162 (7)0.0210 (8)0.0022 (6)0.0002 (6)0.0009 (6)
C60.0191 (7)0.0218 (8)0.0187 (7)0.0004 (6)0.0004 (6)0.0023 (6)
C70.0222 (8)0.0230 (8)0.0245 (8)0.0011 (7)0.0025 (7)0.0018 (7)
C80.0194 (7)0.0206 (8)0.0168 (7)0.0007 (6)0.0019 (6)0.0025 (6)
C90.0172 (7)0.0189 (7)0.0158 (7)0.0018 (6)0.0013 (6)0.0005 (6)
C100.0211 (8)0.0272 (8)0.0142 (7)0.0010 (7)0.0004 (6)0.0013 (6)
C110.0185 (7)0.0224 (8)0.0173 (7)0.0005 (6)0.0007 (6)0.0032 (6)
C120.0157 (7)0.0168 (7)0.0173 (7)0.0007 (6)0.0013 (6)0.0016 (6)
Geometric parameters (Å, º) top
S1—C121.7237 (15)C3—H30.9500
S1—C91.7298 (15)C4—C51.403 (2)
O1—N21.2271 (16)C4—H40.9500
O2—N21.2382 (16)C5—C61.390 (2)
N1—C81.277 (2)C6—C71.389 (2)
N1—C51.4312 (19)C6—H60.9500
N2—C121.4398 (19)C7—H70.9500
C1—C21.513 (2)C8—C91.456 (2)
C1—H1A0.9800C8—H80.9500
C1—H1B0.9800C9—C101.374 (2)
C1—H1C0.9800C10—C111.411 (2)
C2—C31.391 (2)C10—H100.9500
C2—C71.395 (2)C11—C121.364 (2)
C3—C41.391 (2)C11—H110.9500
C12—S1—C989.77 (7)C4—C5—N1125.10 (13)
C8—N1—C5118.86 (13)C7—C6—C5121.08 (15)
O1—N2—O2124.27 (13)C7—C6—H6119.5
O1—N2—C12118.08 (13)C5—C6—H6119.5
O2—N2—C12117.65 (13)C6—C7—C2121.15 (15)
C2—C1—H1A109.5C6—C7—H7119.4
C2—C1—H1B109.5C2—C7—H7119.4
H1A—C1—H1B109.5N1—C8—C9122.04 (14)
C2—C1—H1C109.5N1—C8—H8119.0
H1A—C1—H1C109.5C9—C8—H8119.0
H1B—C1—H1C109.5C10—C9—C8125.35 (14)
C3—C2—C7117.78 (14)C10—C9—S1111.94 (12)
C3—C2—C1120.39 (15)C8—C9—S1122.70 (11)
C7—C2—C1121.84 (15)C9—C10—C11113.47 (14)
C4—C3—C2121.40 (15)C9—C10—H10123.3
C4—C3—H3119.3C11—C10—H10123.3
C2—C3—H3119.3C12—C11—C10110.57 (14)
C3—C4—C5120.55 (14)C12—C11—H11124.7
C3—C4—H4119.7C10—C11—H11124.7
C5—C4—H4119.7C11—C12—N2125.62 (14)
C6—C5—C4118.01 (14)C11—C12—S1114.25 (12)
C6—C5—N1116.87 (13)N2—C12—S1120.10 (11)
C7—C2—C3—C41.4 (2)N1—C8—C9—S15.1 (2)
C1—C2—C3—C4178.92 (14)C12—S1—C9—C100.04 (12)
C2—C3—C4—C50.6 (2)C12—S1—C9—C8179.15 (13)
C3—C4—C5—C60.9 (2)C8—C9—C10—C11179.16 (14)
C3—C4—C5—N1179.45 (13)S1—C9—C10—C110.08 (17)
C8—N1—C5—C6167.13 (14)C9—C10—C11—C120.09 (19)
C8—N1—C5—C414.3 (2)C10—C11—C12—N2178.01 (13)
C4—C5—C6—C71.6 (2)C10—C11—C12—S10.06 (17)
N1—C5—C6—C7179.80 (14)O1—N2—C12—C112.7 (2)
C5—C6—C7—C20.7 (2)O2—N2—C12—C11176.72 (14)
C3—C2—C7—C60.8 (2)O1—N2—C12—S1179.35 (11)
C1—C2—C7—C6179.55 (14)O2—N2—C12—S11.25 (18)
C5—N1—C8—C9179.73 (13)C9—S1—C12—C110.01 (12)
N1—C8—C9—C10175.90 (15)C9—S1—C12—N2178.17 (12)

Experimental details

Crystal data
Chemical formulaC12H10N2O2S
Mr246.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)4.7606 (4), 22.415 (2), 10.7008 (15)
β (°) 92.566 (13)
V3)1140.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2002)
Tmin, Tmax0.947, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
14437, 2699, 2325
Rint0.043
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.09
No. of reflections2699
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.27

Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), CrystalStructure (Rigaku/MSC, 2006).

 

References

First citationBourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031–3065.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCrystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHalbach, D. P. & Hamaker, C. G. (2006). J. Organomet. Chem. 691, 3349–3361.  Web of Science CSD CrossRef CAS Google Scholar
First citationLagadic, I. L. (2006). Microporous Mesoporous Mater. 95, 226–233.  Web of Science CrossRef CAS Google Scholar
First citationMeiswinkel, A. & Werner, H. (2004). Inorg. Chim. Acta, 357, 2855–2862.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, G. W. (2006). Molecules, 11, 206–211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, F. R., Chen, L., Wang, J. D., Wu, R. L., Yue, F. & Li, J. (2006). Acta Chim. Sin. 64, 1517–1522.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds