organic compounds
4-Methyl-N-[(5-nitrothiophen-2-yl)methylidene]aniline
aDepartment of Chemistry, Tangshan Normal University, Tangshan 063000, People's Republic of China
*Correspondence e-mail: cmj_1237@yahoo.com.cn
The title compound, C12H10N2O2S, is a Schiff base formed from p-toluidine and 5-nitrothiophene-2-carbaldehyde. The C=N bond adopts an E configuration. The benzene and thiophene rings form a dihedral angle of 9.2 (1)°.
Related literature
For the use of et al.(2002); Halbach & Hamaker (2006); Meiswinkel & Werner (2004); Xiao et al. (2006); Lagadic (2006). For their biological activity, see: Siddiqui et al. (2006).
as polydentate ligands, see: Bourget-MerleExperimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2002); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).
Supporting information
10.1107/S1600536811030297/ld2020sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811030297/ld2020Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811030297/ld2020Isup3.cml
The solution of p-toluidine and 5-nitrothiophene-2-carbaldehyde in methanol was stirred for 10 h at ambient temperature. Then the crude product was isolated by filtration and recrystallized from methanol to yield yellowish title compound. Finally, the compound was dissolved in a small amount of acetone and the solution was kept for 3 days at ambient temperature to give rise to yellowish needle-like crystals by slowly evaporating the solvent.
All H atoms were positioned geometrically(C—H=0.93–0.98 Å),and refined as riding with Uiso(H)=1.2Ueq of the adjacent carbon atom (1.5Ueq for methyl hydrogens). The positions of methyl hydrogens were rotationally optimized (AFIX 137).
Data collection: CrystalClear (Rigaku/MSC, 2002); cell
CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. |
C12H10N2O2S | F(000) = 512 |
Mr = 246.28 | Dx = 1.434 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 4.7606 (4) Å | Cell parameters from 4173 reflections |
b = 22.415 (2) Å | θ = 1.8–27.9° |
c = 10.7008 (15) Å | µ = 0.27 mm−1 |
β = 92.566 (13)° | T = 113 K |
V = 1140.7 (2) Å3 | Prism, colorless |
Z = 4 | 0.20 × 0.18 × 0.12 mm |
Rigaku Saturn724 CCD diffractometer | 2699 independent reflections |
Radiation source: rotating anode | 2325 reflections with I > 2σ(I) |
Multilayer monochromator | Rint = 0.043 |
Detector resolution: 14.22 pixels mm-1 | θmax = 27.9°, θmin = 1.8° |
ω and ϕ scans | h = −6→6 |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) | k = −29→29 |
Tmin = 0.947, Tmax = 0.968 | l = −13→14 |
14437 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0505P)2 + 0.1298P] where P = (Fo2 + 2Fc2)/3 |
2699 reflections | (Δ/σ)max < 0.001 |
155 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C12H10N2O2S | V = 1140.7 (2) Å3 |
Mr = 246.28 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 4.7606 (4) Å | µ = 0.27 mm−1 |
b = 22.415 (2) Å | T = 113 K |
c = 10.7008 (15) Å | 0.20 × 0.18 × 0.12 mm |
β = 92.566 (13)° |
Rigaku Saturn724 CCD diffractometer | 2699 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) | 2325 reflections with I > 2σ(I) |
Tmin = 0.947, Tmax = 0.968 | Rint = 0.043 |
14437 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.30 e Å−3 |
2699 reflections | Δρmin = −0.27 e Å−3 |
155 parameters |
Experimental. Rigaku CrystalClear-SM Expert 2.0 r2 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.12948 (8) | 0.223694 (17) | 0.24141 (3) | 0.01725 (12) | |
O1 | −0.4301 (2) | 0.10562 (5) | 0.14443 (11) | 0.0279 (3) | |
O2 | −0.2638 (2) | 0.13512 (5) | 0.32720 (10) | 0.0257 (3) | |
N1 | 0.5743 (3) | 0.32247 (6) | 0.21001 (11) | 0.0170 (3) | |
N2 | −0.2748 (3) | 0.13695 (6) | 0.21144 (12) | 0.0200 (3) | |
C1 | 1.3858 (3) | 0.51381 (7) | 0.21589 (19) | 0.0294 (4) | |
H1A | 1.5510 | 0.5020 | 0.1704 | 0.044* | |
H1B | 1.4432 | 0.5230 | 0.3028 | 0.044* | |
H1C | 1.2998 | 0.5492 | 0.1763 | 0.044* | |
C2 | 1.1750 (3) | 0.46324 (7) | 0.21303 (16) | 0.0220 (3) | |
C3 | 1.0879 (3) | 0.43701 (7) | 0.10002 (15) | 0.0223 (3) | |
H3 | 1.1645 | 0.4507 | 0.0248 | 0.027* | |
C4 | 0.8909 (3) | 0.39115 (7) | 0.09487 (14) | 0.0197 (3) | |
H4 | 0.8337 | 0.3742 | 0.0164 | 0.024* | |
C5 | 0.7759 (3) | 0.36966 (7) | 0.20461 (14) | 0.0169 (3) | |
C6 | 0.8680 (3) | 0.39494 (7) | 0.31778 (14) | 0.0199 (3) | |
H6 | 0.7965 | 0.3804 | 0.3935 | 0.024* | |
C7 | 1.0628 (3) | 0.44113 (7) | 0.32203 (16) | 0.0233 (4) | |
H7 | 1.1207 | 0.4579 | 0.4005 | 0.028* | |
C8 | 0.4454 (3) | 0.30556 (7) | 0.10888 (14) | 0.0189 (3) | |
H8 | 0.4859 | 0.3248 | 0.0327 | 0.023* | |
C9 | 0.2385 (3) | 0.25772 (7) | 0.10682 (14) | 0.0173 (3) | |
C10 | 0.1041 (3) | 0.23474 (7) | 0.00118 (14) | 0.0208 (3) | |
H10 | 0.1382 | 0.2483 | −0.0809 | 0.025* | |
C11 | −0.0895 (3) | 0.18913 (7) | 0.02644 (14) | 0.0194 (3) | |
H11 | −0.2003 | 0.1683 | −0.0354 | 0.023* | |
C12 | −0.0955 (3) | 0.17906 (7) | 0.15201 (14) | 0.0166 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0186 (2) | 0.0195 (2) | 0.01358 (19) | 0.00044 (15) | −0.00004 (15) | −0.00052 (14) |
O1 | 0.0285 (6) | 0.0275 (6) | 0.0275 (6) | −0.0102 (5) | −0.0009 (5) | −0.0022 (5) |
O2 | 0.0313 (7) | 0.0288 (6) | 0.0174 (6) | −0.0008 (5) | 0.0046 (5) | 0.0029 (5) |
N1 | 0.0166 (6) | 0.0168 (6) | 0.0174 (6) | 0.0015 (5) | 0.0004 (5) | 0.0009 (5) |
N2 | 0.0205 (7) | 0.0200 (7) | 0.0195 (7) | 0.0020 (5) | 0.0019 (5) | 0.0003 (5) |
C1 | 0.0210 (8) | 0.0204 (8) | 0.0472 (11) | −0.0026 (7) | 0.0047 (8) | 0.0001 (8) |
C2 | 0.0153 (7) | 0.0165 (8) | 0.0345 (9) | 0.0031 (6) | 0.0018 (7) | 0.0011 (7) |
C3 | 0.0198 (8) | 0.0211 (8) | 0.0264 (8) | 0.0025 (6) | 0.0061 (7) | 0.0057 (7) |
C4 | 0.0202 (8) | 0.0203 (8) | 0.0187 (8) | 0.0022 (6) | 0.0008 (6) | −0.0005 (6) |
C5 | 0.0134 (7) | 0.0162 (7) | 0.0210 (8) | 0.0022 (6) | 0.0002 (6) | 0.0009 (6) |
C6 | 0.0191 (7) | 0.0218 (8) | 0.0187 (7) | −0.0004 (6) | −0.0004 (6) | 0.0023 (6) |
C7 | 0.0222 (8) | 0.0230 (8) | 0.0245 (8) | −0.0011 (7) | −0.0025 (7) | −0.0018 (7) |
C8 | 0.0194 (7) | 0.0206 (8) | 0.0168 (7) | 0.0007 (6) | 0.0019 (6) | 0.0025 (6) |
C9 | 0.0172 (7) | 0.0189 (7) | 0.0158 (7) | 0.0018 (6) | 0.0013 (6) | 0.0005 (6) |
C10 | 0.0211 (8) | 0.0272 (8) | 0.0142 (7) | −0.0010 (7) | 0.0004 (6) | 0.0013 (6) |
C11 | 0.0185 (7) | 0.0224 (8) | 0.0173 (7) | −0.0005 (6) | 0.0007 (6) | −0.0032 (6) |
C12 | 0.0157 (7) | 0.0168 (7) | 0.0173 (7) | 0.0007 (6) | 0.0013 (6) | −0.0016 (6) |
S1—C12 | 1.7237 (15) | C3—H3 | 0.9500 |
S1—C9 | 1.7298 (15) | C4—C5 | 1.403 (2) |
O1—N2 | 1.2271 (16) | C4—H4 | 0.9500 |
O2—N2 | 1.2382 (16) | C5—C6 | 1.390 (2) |
N1—C8 | 1.277 (2) | C6—C7 | 1.389 (2) |
N1—C5 | 1.4312 (19) | C6—H6 | 0.9500 |
N2—C12 | 1.4398 (19) | C7—H7 | 0.9500 |
C1—C2 | 1.513 (2) | C8—C9 | 1.456 (2) |
C1—H1A | 0.9800 | C8—H8 | 0.9500 |
C1—H1B | 0.9800 | C9—C10 | 1.374 (2) |
C1—H1C | 0.9800 | C10—C11 | 1.411 (2) |
C2—C3 | 1.391 (2) | C10—H10 | 0.9500 |
C2—C7 | 1.395 (2) | C11—C12 | 1.364 (2) |
C3—C4 | 1.391 (2) | C11—H11 | 0.9500 |
C12—S1—C9 | 89.77 (7) | C4—C5—N1 | 125.10 (13) |
C8—N1—C5 | 118.86 (13) | C7—C6—C5 | 121.08 (15) |
O1—N2—O2 | 124.27 (13) | C7—C6—H6 | 119.5 |
O1—N2—C12 | 118.08 (13) | C5—C6—H6 | 119.5 |
O2—N2—C12 | 117.65 (13) | C6—C7—C2 | 121.15 (15) |
C2—C1—H1A | 109.5 | C6—C7—H7 | 119.4 |
C2—C1—H1B | 109.5 | C2—C7—H7 | 119.4 |
H1A—C1—H1B | 109.5 | N1—C8—C9 | 122.04 (14) |
C2—C1—H1C | 109.5 | N1—C8—H8 | 119.0 |
H1A—C1—H1C | 109.5 | C9—C8—H8 | 119.0 |
H1B—C1—H1C | 109.5 | C10—C9—C8 | 125.35 (14) |
C3—C2—C7 | 117.78 (14) | C10—C9—S1 | 111.94 (12) |
C3—C2—C1 | 120.39 (15) | C8—C9—S1 | 122.70 (11) |
C7—C2—C1 | 121.84 (15) | C9—C10—C11 | 113.47 (14) |
C4—C3—C2 | 121.40 (15) | C9—C10—H10 | 123.3 |
C4—C3—H3 | 119.3 | C11—C10—H10 | 123.3 |
C2—C3—H3 | 119.3 | C12—C11—C10 | 110.57 (14) |
C3—C4—C5 | 120.55 (14) | C12—C11—H11 | 124.7 |
C3—C4—H4 | 119.7 | C10—C11—H11 | 124.7 |
C5—C4—H4 | 119.7 | C11—C12—N2 | 125.62 (14) |
C6—C5—C4 | 118.01 (14) | C11—C12—S1 | 114.25 (12) |
C6—C5—N1 | 116.87 (13) | N2—C12—S1 | 120.10 (11) |
C7—C2—C3—C4 | 1.4 (2) | N1—C8—C9—S1 | 5.1 (2) |
C1—C2—C3—C4 | −178.92 (14) | C12—S1—C9—C10 | 0.04 (12) |
C2—C3—C4—C5 | −0.6 (2) | C12—S1—C9—C8 | 179.15 (13) |
C3—C4—C5—C6 | −0.9 (2) | C8—C9—C10—C11 | −179.16 (14) |
C3—C4—C5—N1 | −179.45 (13) | S1—C9—C10—C11 | −0.08 (17) |
C8—N1—C5—C6 | 167.13 (14) | C9—C10—C11—C12 | 0.09 (19) |
C8—N1—C5—C4 | −14.3 (2) | C10—C11—C12—N2 | 178.01 (13) |
C4—C5—C6—C7 | 1.6 (2) | C10—C11—C12—S1 | −0.06 (17) |
N1—C5—C6—C7 | −179.80 (14) | O1—N2—C12—C11 | 2.7 (2) |
C5—C6—C7—C2 | −0.7 (2) | O2—N2—C12—C11 | −176.72 (14) |
C3—C2—C7—C6 | −0.8 (2) | O1—N2—C12—S1 | −179.35 (11) |
C1—C2—C7—C6 | 179.55 (14) | O2—N2—C12—S1 | 1.25 (18) |
C5—N1—C8—C9 | 179.73 (13) | C9—S1—C12—C11 | 0.01 (12) |
N1—C8—C9—C10 | −175.90 (15) | C9—S1—C12—N2 | −178.17 (12) |
Experimental details
Crystal data | |
Chemical formula | C12H10N2O2S |
Mr | 246.28 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 113 |
a, b, c (Å) | 4.7606 (4), 22.415 (2), 10.7008 (15) |
β (°) | 92.566 (13) |
V (Å3) | 1140.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.20 × 0.18 × 0.12 |
Data collection | |
Diffractometer | Rigaku Saturn724 CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku/MSC, 2002) |
Tmin, Tmax | 0.947, 0.968 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14437, 2699, 2325 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.098, 1.09 |
No. of reflections | 2699 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.27 |
Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), CrystalStructure (Rigaku/MSC, 2006).
References
Bourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031–3065. Web of Science CrossRef PubMed CAS Google Scholar
Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Halbach, D. P. & Hamaker, C. G. (2006). J. Organomet. Chem. 691, 3349–3361. Web of Science CSD CrossRef CAS Google Scholar
Lagadic, I. L. (2006). Microporous Mesoporous Mater. 95, 226–233. Web of Science CrossRef CAS Google Scholar
Meiswinkel, A. & Werner, H. (2004). Inorg. Chim. Acta, 357, 2855–2862. Web of Science CrossRef CAS Google Scholar
Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, G. W. (2006). Molecules, 11, 206–211. Web of Science CrossRef PubMed CAS Google Scholar
Xiao, F. R., Chen, L., Wang, J. D., Wu, R. L., Yue, F. & Li, J. (2006). Acta Chim. Sin. 64, 1517–1522. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, heterocycle-containing Schiff bases have gained much attention as versatile polydentate ligands suitable for various metal chelations resulting in a variety of interesting coordination modes (Xiao et al., 2006; Bourget-Merle et al., 2002; Meiswinkel & Werner, 2004; Halbach & Hamaker, 2006; Lagadic, 2006). They also represent an important class of biologically active compounds (Siddiqui et al., 2006). Herein, we report the synthesis and crystal structure of the title compound (I), a new heterocycle-containing Schiff base. The molecular structure of (I) is shown on Fig. 1. In the molecule of (I), the two aromatic benzene and thiophene rings form a dihedral angle of 9.2 (1)°. The deviation from planarity can be explained by steric repulsion between the phenyl ring and methylene group.