organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-(1,2-Di­chloro­vin­yl)di­phenyl­phosphine oxide

aCollege of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China, and bCollege of Chemistry & Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, People's Republic of China
*Correspondence e-mail: wumingshu@126.com

(Received 15 July 2011; accepted 31 July 2011; online 6 August 2011)

The title compound, C14H11Cl2OP, was synthesized by the reaction of diphenyl­phosphine oxide with 1,2-dichloro­ethyne under CuI catalysis. The reaction provided the Z isomer regioselectively. Two O—P—C bond angles [114.3 (1) and 112.5 (1)°] are significantly larger than the C—P—C [107.7 (1), 105.6 (1) and 106.6 (1)°] and another O—P—C angle [109.5 (1)°], indicating significant distortion of the tetra­hedral configuration of the P atom. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds into centrosymmetric dimers, which are connected by further C—H⋯O inter­actions into chains along [101].

Related literature

For the anti­microbial, insecticidal and anti-inflammatory activity of alkenylphosphine oxides, see: Haynes et al. (1989[Haynes, R. K., Vonwiller, S. C. & Hambley, T. W. (1989). J. Org. Chem. 54, 5162-5170.], 1991[Haynes, R. K., Loughlin, W. A. & Hambley, T. W. (1991). J. Org. Chem. 56, 5785-5790.]); Shi et al. (2000[Shi, D. Q., Wang, Y. M. & Chen, R. Y. (2000). Heteroat. Chem. 11, 261-266.]); Taylor et al. (2006[Taylor, S. D., Mirzaei, F. & Bearne, S. L. (2006). Org. Lett. 8, 4243-424.]); Rahman et al. (2000[Rahman, M. S., Steed, J. W. & Hii, K. K. (2000). Synthesis, pp. 1320-1326.]). For their use as inter­mediates in the preparation of some palladium catalysts, see: Inoue et al. (2002[Inoue, H., Nagaoka, H. & Tomioka, K. (2002). J. Org. Chem. 67, 5864-5876.]). Nucleophiles, such as amines (Rahman et al., 2000[Rahman, M. S., Steed, J. W. & Hii, K. K. (2000). Synthesis, pp. 1320-1326.], 2004[Rahman, M. S., Oliana, M. & Hii, K. K. (2004). Tetrahedron Asymmetry, 15, 1835-1840.]), phosphines (Barbaro et al., 2002[Barbaro, P., Bianchini, C., Giambastiani, G. & Togni, A. (2002). Chem. Commun. 22, 2672-2673.]; Alajarin et al., 2004[Alajarin, M., Lopez-Leonardo, C. & Llamas-Lorente, P. (2004). Let. Org. Chem., 6, 145-148.]; Han & Zhao, 2005[Han, L. B. & Zhao, C. Q. (2005). J. Org. Chem. 70, 10121-10123.]) and carbanion species readily add to the olefinic bond in alkenylphosphine oxides to give useful bifunctional adducts.

[Scheme 1]

Experimental

Crystal data
  • C14H11Cl2OP

  • Mr = 297.10

  • Monoclinic, P 21 /n

  • a = 12.0621 (11) Å

  • b = 7.9521 (8) Å

  • c = 14.9913 (15) Å

  • β = 102.858 (1)°

  • V = 1401.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 298 K

  • 0.45 × 0.40 × 0.32 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.786, Tmax = 0.841

  • 6788 measured reflections

  • 2475 independent reflections

  • 2009 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.08

  • 2475 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.51 3.138 (3) 125
C8—H8⋯O1ii 0.93 2.57 3.344 (4) 141
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Alkenylphosphine oxides have attracted much attention because they are used as biologically active compounds (Haynes et al., 1989; Haynes et al., 1991; Shi et al., 2000), and are the key intermediates for preparation of some palladium catalysts (Inoue et al.,2002). Nucleophiles, such as amines (Rahman et al., 2000; Rahman et al., 2004), phosphines (Barbaro et al., 2002; Alajarin et al., 2004; Han & Zhao, 2005) and carbanion species readily add to the olefinic bond in alkenylphosphine oxides to give useful bifunctional adducts. In order to further confirm stereostructure and structure-activity relationship of alkenylphosphine oxides, we performed the synthesis of the title compound by addition reaction of the diphenylphosphine oxide with 1,2-dichloroethyne under catalysis of commercially available CuI at room temperature. The reaction provided (Z)-(1,2-dichlorovinyl)diphenylphosphine oxide regioselectively. The study of the crystal structure of the title compound was commenced to establish its structural features that can be helpful for its practical applications. In the title molecule (Fig. 1), the bond angles O(1)–P(1)–C(11)(114.31 (10)°) and O(1)–P(1)–C(5)(112.55 (10)°) are significantly larger than C(11)–P(1)–C(5)(107.75 (10)°), O(1)–P(1)–C(1)(109.54 (10)°), C(11)–P(1)–C(1)(105.58 (10)°), and C(5)–P(1)–C(1) (106.62 (10)°), indicating that sp3-hybridized P atom adopts distorted tetrahedral configuration. In the crystal, molecules are linked by weak intermolecular C-H···O hydrogen bonds in centrosymmetric dimers further connected in chains along [1 0 1].

Related literature top

For the antimicrobial, insecticidal and anti-inflammatory activity of alkenylphosphine oxides, see: Haynes et al. (1989, 1991); Shi et al. (2000); Taylor et al. (2006); Rahman et al. (2000). For their use as intermediates in the preparation of some palladium catalysts, see: Inoue et al. (2002). Nucleophiles, such as amines (Rahman et al., 2000, 2004), phosphines (Barbaro et al., 2002; Alajarin et al., 2004; Han & Zhao, 2005) and carbanion species readily add to the olefinic bond in alkenylphosphine oxides to give useful bifunctional adducts.

Experimental top

To a stirred solution of 1,2-dichloroethyne (1.88 g, 20 mmol) in anhydrous ether (40 ml), a solution of diphenylphosphine oxide (2.23g, 12mmol) in ether (10 ml) was added dropwise in the presence of CuI (0.229g, 1.2 mmol) at room temperature in nitrogen atmosphere for 4h. After completion of the reaction as indicated by thin-layer chromatography, the mixture was filtered and rinsed with ethyl acetate. The organic layer was washed with brine and dried over MgSO4. The title product was obtained by crystallization as colourless solid. The product obtained was purified by flash chromatograghy. Single crystals of the title compound suitable for single-crystal X-ray analysis were obtained by recrystallization from ether.

Refinement top

The H atoms were positioned geometrically and refined using a riding model with C—H = 0.93-0.98 Å and with Uiso(H)= 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the b direction Intermolecular hydrogen bonds are shown as dashed lines.
(Z)-(1,2-Dichlorovinyl)diphenylphosphine oxide top
Crystal data top
C14H11Cl2OPF(000) = 608
Mr = 297.10Dx = 1.408 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.0621 (11) ÅCell parameters from 3636 reflections
b = 7.9521 (8) Åθ = 2.5–28.0°
c = 14.9913 (15) ŵ = 0.56 mm1
β = 102.858 (1)°T = 298 K
V = 1401.9 (2) Å3Prism, colourless
Z = 40.45 × 0.40 × 0.32 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2475 independent reflections
Radiation source: fine-focus sealed tube2009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1411
Tmin = 0.786, Tmax = 0.841k = 99
6788 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.729P]
where P = (Fo2 + 2Fc2)/3
2475 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C14H11Cl2OPV = 1401.9 (2) Å3
Mr = 297.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0621 (11) ŵ = 0.56 mm1
b = 7.9521 (8) ÅT = 298 K
c = 14.9913 (15) Å0.45 × 0.40 × 0.32 mm
β = 102.858 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2475 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2009 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.841Rint = 0.022
6788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.08Δρmax = 0.28 e Å3
2475 reflectionsΔρmin = 0.37 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.64091 (5)0.30633 (8)0.48897 (6)0.0610 (2)
Cl20.87750 (6)0.09961 (8)0.52709 (5)0.0558 (2)
O10.90014 (13)0.6840 (2)0.53670 (11)0.0441 (4)
P10.77986 (4)0.62950 (7)0.51027 (4)0.03243 (16)
C10.77287 (18)0.4017 (3)0.51179 (15)0.0340 (5)
C20.8685 (2)0.3151 (3)0.52622 (15)0.0386 (5)
H20.93630.37540.53670.046*
C50.71157 (19)0.6946 (3)0.39607 (15)0.0358 (5)
C60.7790 (2)0.7721 (3)0.34425 (18)0.0528 (7)
H60.85570.79090.36940.063*
C70.7327 (3)0.8213 (4)0.2555 (2)0.0726 (9)
H70.77820.87330.22110.087*
C80.6190 (3)0.7938 (4)0.2178 (2)0.0693 (9)
H80.58830.82660.15790.083*
C90.5516 (2)0.7187 (4)0.26807 (19)0.0580 (7)
H90.47490.70110.24220.070*
C100.5964 (2)0.6681 (3)0.35770 (17)0.0462 (6)
H100.55000.61710.39180.055*
C110.69328 (18)0.7001 (3)0.58622 (15)0.0357 (5)
C120.6898 (3)0.6104 (3)0.66513 (18)0.0570 (7)
H120.72700.50760.67610.068*
C130.6313 (3)0.6733 (4)0.7274 (2)0.0720 (9)
H130.62870.61220.77980.086*
C140.5770 (3)0.8255 (4)0.7119 (2)0.0646 (8)
H140.53750.86720.75380.078*
C150.5807 (2)0.9163 (4)0.6352 (2)0.0574 (7)
H150.54461.02020.62550.069*
C160.6382 (2)0.8539 (3)0.57215 (17)0.0450 (6)
H160.63990.91570.51980.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0402 (4)0.0432 (4)0.0962 (6)0.0081 (3)0.0078 (3)0.0024 (3)
Cl20.0635 (4)0.0370 (3)0.0740 (5)0.0102 (3)0.0305 (4)0.0031 (3)
O10.0339 (8)0.0455 (9)0.0512 (10)0.0043 (7)0.0057 (7)0.0002 (8)
P10.0304 (3)0.0327 (3)0.0339 (3)0.0002 (2)0.0064 (2)0.0015 (2)
C10.0356 (12)0.0325 (11)0.0348 (12)0.0024 (9)0.0100 (9)0.0005 (9)
C20.0436 (13)0.0330 (12)0.0430 (14)0.0015 (10)0.0181 (11)0.0019 (10)
C50.0396 (12)0.0333 (11)0.0351 (12)0.0037 (9)0.0095 (10)0.0002 (9)
C60.0531 (15)0.0594 (16)0.0476 (15)0.0026 (13)0.0152 (12)0.0103 (13)
C70.088 (2)0.086 (2)0.0489 (18)0.0013 (18)0.0252 (16)0.0236 (16)
C80.088 (2)0.078 (2)0.0381 (16)0.0183 (18)0.0070 (16)0.0105 (15)
C90.0536 (16)0.0668 (18)0.0458 (16)0.0115 (14)0.0053 (13)0.0015 (14)
C100.0438 (14)0.0517 (14)0.0422 (14)0.0045 (11)0.0078 (11)0.0023 (12)
C110.0358 (12)0.0386 (12)0.0313 (12)0.0010 (9)0.0046 (9)0.0027 (10)
C120.0811 (19)0.0525 (15)0.0396 (14)0.0128 (14)0.0181 (13)0.0058 (12)
C130.104 (3)0.078 (2)0.0404 (16)0.0032 (19)0.0308 (17)0.0010 (15)
C140.0630 (18)0.082 (2)0.0546 (18)0.0031 (16)0.0253 (14)0.0256 (16)
C150.0553 (16)0.0576 (16)0.0591 (18)0.0106 (13)0.0122 (14)0.0158 (14)
C160.0478 (14)0.0424 (13)0.0443 (14)0.0025 (11)0.0089 (11)0.0008 (11)
Geometric parameters (Å, º) top
Cl1—C11.727 (2)C8—H80.9300
Cl2—C21.717 (2)C9—C101.391 (4)
O1—P11.4813 (16)C9—H90.9300
P1—C111.798 (2)C10—H100.9300
P1—C51.803 (2)C11—C161.385 (3)
P1—C11.814 (2)C11—C121.390 (3)
C1—C21.319 (3)C12—C131.382 (4)
C2—H20.9300C12—H120.9300
C5—C61.388 (3)C13—C141.371 (5)
C5—C101.397 (3)C13—H130.9300
C6—C71.380 (4)C14—C151.366 (4)
C6—H60.9300C14—H140.9300
C7—C81.379 (5)C15—C161.384 (4)
C7—H70.9300C15—H150.9300
C8—C91.364 (4)C16—H160.9300
O1—P1—C11114.31 (10)C8—C9—C10120.6 (3)
O1—P1—C5112.55 (10)C8—C9—H9119.7
C11—P1—C5107.75 (10)C10—C9—H9119.7
O1—P1—C1109.54 (10)C9—C10—C5119.4 (2)
C11—P1—C1105.58 (10)C9—C10—H10120.3
C5—P1—C1106.62 (10)C5—C10—H10120.3
C2—C1—Cl1122.49 (18)C16—C11—C12118.6 (2)
C2—C1—P1118.80 (17)C16—C11—P1120.36 (18)
Cl1—C1—P1118.64 (12)C12—C11—P1120.72 (18)
C1—C2—Cl2124.99 (19)C13—C12—C11120.4 (3)
C1—C2—H2117.5C13—C12—H12119.8
Cl2—C2—H2117.5C11—C12—H12119.8
C6—C5—C10119.3 (2)C14—C13—C12120.1 (3)
C6—C5—P1117.27 (18)C14—C13—H13120.0
C10—C5—P1123.39 (18)C12—C13—H13120.0
C7—C6—C5120.2 (3)C15—C14—C13120.4 (3)
C7—C6—H6119.9C15—C14—H14119.8
C5—C6—H6119.9C13—C14—H14119.8
C8—C7—C6120.2 (3)C14—C15—C16120.0 (3)
C8—C7—H7119.9C14—C15—H15120.0
C6—C7—H7119.9C16—C15—H15120.0
C9—C8—C7120.2 (3)C15—C16—C11120.6 (2)
C9—C8—H8119.9C15—C16—H16119.7
C7—C8—H8119.9C11—C16—H16119.7
O1—P1—C1—C26.2 (2)C7—C8—C9—C100.3 (5)
C11—P1—C1—C2129.75 (19)C8—C9—C10—C50.1 (4)
C5—P1—C1—C2115.8 (2)C6—C5—C10—C90.5 (4)
O1—P1—C1—Cl1176.78 (12)P1—C5—C10—C9178.29 (19)
C11—P1—C1—Cl153.24 (16)O1—P1—C11—C1688.7 (2)
C5—P1—C1—Cl161.18 (16)C5—P1—C11—C1637.2 (2)
Cl1—C1—C2—Cl21.4 (3)C1—P1—C11—C16150.85 (19)
P1—C1—C2—Cl2178.31 (13)O1—P1—C11—C1284.5 (2)
O1—P1—C5—C65.5 (2)C5—P1—C11—C12149.6 (2)
C11—P1—C5—C6132.48 (19)C1—P1—C11—C1235.9 (2)
C1—P1—C5—C6114.6 (2)C16—C11—C12—C130.8 (4)
O1—P1—C5—C10175.63 (18)P1—C11—C12—C13174.1 (2)
C11—P1—C5—C1048.7 (2)C11—C12—C13—C140.6 (5)
C1—P1—C5—C1064.3 (2)C12—C13—C14—C150.2 (5)
C10—C5—C6—C70.4 (4)C13—C14—C15—C160.8 (5)
P1—C5—C6—C7178.4 (2)C14—C15—C16—C110.6 (4)
C5—C6—C7—C80.0 (5)C12—C11—C16—C150.2 (4)
C6—C7—C8—C90.4 (5)P1—C11—C16—C15173.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.513.138 (3)125
C8—H8···O1ii0.932.573.344 (4)141
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11Cl2OP
Mr297.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.0621 (11), 7.9521 (8), 14.9913 (15)
β (°) 102.858 (1)
V3)1401.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.45 × 0.40 × 0.32
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.786, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
6788, 2475, 2009
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.08
No. of reflections2475
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.37

Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.513.138 (3)125.2
C8—H8···O1ii0.932.573.344 (4)140.6
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1/2, y+3/2, z1/2.
 

Acknowledgements

This work was supported financially by the construction project of the unit granting doctorates of Hainan Normal University

References

First citationAlajarin, M., Lopez-Leonardo, C. & Llamas-Lorente, P. (2004). Let. Org. Chem., 6, 145-148.  CrossRef Google Scholar
First citationBarbaro, P., Bianchini, C., Giambastiani, G. & Togni, A. (2002). Chem. Commun. 22, 2672-2673.  CSD CrossRef Google Scholar
First citationBruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, L. B. & Zhao, C. Q. (2005). J. Org. Chem. 70, 10121–10123.  CrossRef CAS Google Scholar
First citationHaynes, R. K., Loughlin, W. A. & Hambley, T. W. (1991). J. Org. Chem. 56, 5785–5790.  CSD CrossRef CAS Web of Science Google Scholar
First citationHaynes, R. K., Vonwiller, S. C. & Hambley, T. W. (1989). J. Org. Chem. 54, 5162–5170.  CSD CrossRef CAS Web of Science Google Scholar
First citationInoue, H., Nagaoka, H. & Tomioka, K. (2002). J. Org. Chem. 67, 5864–5876.  CrossRef CAS Google Scholar
First citationRahman, M. S., Oliana, M. & Hii, K. K. (2004). Tetrahedron Asymmetry, 15, 1835–1840.  CAS Google Scholar
First citationRahman, M. S., Steed, J. W. & Hii, K. K. (2000). Synthesis, pp. 1320–1326.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D. Q., Wang, Y. M. & Chen, R. Y. (2000). Heteroat. Chem. 11, 261–266.  Web of Science CrossRef CAS Google Scholar
First citationTaylor, S. D., Mirzaei, F. & Bearne, S. L. (2006). Org. Lett. 8, 4243–424.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds