organic compounds
(E)-N-[(6-Bromopyridin-2-yl)methylidene]-4-methylaniline
aDepartment of Chemistry, Tangshan Normal University, Tangshan 063000, People's Republic of China, and bLanzhou Petrochemical Research Center, PetroChina Lanzhou, Gansu 300072, People's Republic of China
*Correspondence e-mail: cmj_1237@yahoo.com.cn
The title compound, C13H11BrN2, a Schiff base obtained from 6-bromopicolinaldehyde and p-toluidine, has an E configuration about the C=N bond. The dihedral angle between the benzene and pyridine rings is 30.4 (1)°.
Related literature
For Schiff base complexes with transition metals, see: Burkhardt & Plass (2008); Keypour et al. (2011); Tarafder et al. (2002). For their complexing ability towards toxic metals, see: Kocyigit et al. (2010);
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2002); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).
Supporting information
10.1107/S1600536811031825/ld2022sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811031825/ld2022Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811031825/ld2022Isup3.cml
The solution of 6-bromopicolinaldehyde and p-toluidine in methanol was refluxed for 2 h, and then the crude product was isolated by filtration and recrystallized from methanol to yield yellowish title compound. Finally, the title compound was dissolved in a small amount of methanol and the solution was kept for 5 days at ambient temperature to give rise to yellowish block-like crystals on slowly evaporating the solvent.
The hydrogen atoms were positioned geometrically (C—H=0.93–0.98 Å) and refined using a riding model, with Uiso(H)=1.2 or 1.5Ueq(C) (methyl group). The methyl group position was rotationally optimized (AFIX 137)
Data collection: CrystalClear (Rigaku/MSC, 2002); cell
CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. |
C13H11BrN2 | Dx = 1.588 Mg m−3 |
Mr = 275.15 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 6762 reflections |
a = 13.542 (3) Å | θ = 2.1–28.0° |
b = 6.1544 (15) Å | µ = 3.54 mm−1 |
c = 27.620 (7) Å | T = 113 K |
V = 2301.9 (10) Å3 | Prism, colorless |
Z = 8 | 0.20 × 0.08 × 0.04 mm |
F(000) = 1104 |
Rigaku Saturn724 CCD diffractometer | 2750 independent reflections |
Radiation source: rotating anode | 2251 reflections with I > 2σ(I) |
Multilayer monochromator | Rint = 0.044 |
Detector resolution: 14.22 pixels mm-1 | θmax = 27.9°, θmin = 2.1° |
ω and ϕ scans | h = −17→17 |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) | k = −7→8 |
Tmin = 0.538, Tmax = 0.871 | l = −36→36 |
21379 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0529P)2] where P = (Fo2 + 2Fc2)/3 |
2750 reflections | (Δ/σ)max = 0.002 |
146 parameters | Δρmax = 0.91 e Å−3 |
0 restraints | Δρmin = −0.66 e Å−3 |
C13H11BrN2 | V = 2301.9 (10) Å3 |
Mr = 275.15 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.542 (3) Å | µ = 3.54 mm−1 |
b = 6.1544 (15) Å | T = 113 K |
c = 27.620 (7) Å | 0.20 × 0.08 × 0.04 mm |
Rigaku Saturn724 CCD diffractometer | 2750 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) | 2251 reflections with I > 2σ(I) |
Tmin = 0.538, Tmax = 0.871 | Rint = 0.044 |
21379 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.91 e Å−3 |
2750 reflections | Δρmin = −0.66 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt)etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.38420 (2) | 0.10293 (5) | 0.750452 (7) | 0.03018 (13) | |
N1 | 0.38367 (13) | 0.1724 (3) | 0.65201 (6) | 0.0218 (4) | |
N2 | 0.38262 (12) | 0.2660 (3) | 0.52490 (7) | 0.0219 (4) | |
C1 | 0.37666 (14) | 0.2783 (4) | 0.69322 (8) | 0.0215 (5) | |
C2 | 0.36569 (15) | 0.5001 (4) | 0.69829 (8) | 0.0247 (5) | |
H2 | 0.3618 | 0.5667 | 0.7293 | 0.030* | |
C3 | 0.36066 (16) | 0.6208 (4) | 0.65619 (9) | 0.0250 (5) | |
H3 | 0.3531 | 0.7742 | 0.6576 | 0.030* | |
C4 | 0.36681 (14) | 0.5157 (4) | 0.61200 (8) | 0.0224 (5) | |
H4 | 0.3629 | 0.5959 | 0.5827 | 0.027* | |
C5 | 0.37868 (14) | 0.2921 (4) | 0.61109 (8) | 0.0209 (5) | |
C6 | 0.38647 (15) | 0.1703 (4) | 0.56563 (8) | 0.0221 (5) | |
H6 | 0.3945 | 0.0171 | 0.5666 | 0.027* | |
C7 | 0.38278 (14) | 0.1445 (4) | 0.48137 (8) | 0.0219 (5) | |
C8 | 0.41670 (16) | 0.2481 (4) | 0.43969 (7) | 0.0234 (5) | |
H8 | 0.4428 | 0.3912 | 0.4417 | 0.028* | |
C9 | 0.41266 (17) | 0.1437 (4) | 0.39534 (8) | 0.0272 (5) | |
H9 | 0.4372 | 0.2151 | 0.3673 | 0.033* | |
C10 | 0.37303 (14) | −0.0649 (4) | 0.39118 (9) | 0.0228 (5) | |
C11 | 0.33938 (16) | −0.1659 (4) | 0.43272 (8) | 0.0246 (5) | |
H11 | 0.3123 | −0.3079 | 0.4305 | 0.030* | |
C12 | 0.34413 (15) | −0.0651 (4) | 0.47738 (8) | 0.0224 (5) | |
H12 | 0.3211 | −0.1387 | 0.5054 | 0.027* | |
C14 | 0.36452 (17) | −0.1756 (5) | 0.34244 (9) | 0.0332 (6) | |
H14A | 0.2966 | −0.1623 | 0.3305 | 0.050* | |
H14B | 0.3816 | −0.3296 | 0.3458 | 0.050* | |
H14C | 0.4098 | −0.1065 | 0.3195 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0412 (2) | 0.0310 (2) | 0.01834 (17) | 0.00145 (10) | −0.00218 (9) | 0.00303 (9) |
N1 | 0.0239 (10) | 0.0212 (11) | 0.0203 (10) | 0.0009 (7) | −0.0008 (7) | 0.0006 (8) |
N2 | 0.0218 (10) | 0.0232 (12) | 0.0207 (10) | −0.0010 (8) | 0.0013 (7) | −0.0021 (8) |
C1 | 0.0207 (11) | 0.0236 (13) | 0.0202 (11) | −0.0007 (9) | −0.0009 (8) | 0.0007 (9) |
C2 | 0.0257 (12) | 0.0267 (14) | 0.0217 (12) | −0.0008 (9) | 0.0000 (9) | −0.0063 (10) |
C3 | 0.0302 (13) | 0.0200 (13) | 0.0247 (13) | 0.0017 (9) | −0.0008 (9) | −0.0018 (10) |
C4 | 0.0251 (11) | 0.0218 (14) | 0.0203 (12) | 0.0004 (9) | 0.0011 (8) | 0.0012 (10) |
C5 | 0.0180 (11) | 0.0243 (13) | 0.0203 (11) | 0.0000 (9) | 0.0000 (7) | 0.0003 (10) |
C6 | 0.0234 (11) | 0.0196 (13) | 0.0234 (12) | 0.0022 (9) | −0.0011 (8) | −0.0026 (9) |
C7 | 0.0177 (11) | 0.0277 (14) | 0.0202 (12) | 0.0034 (9) | −0.0005 (8) | −0.0002 (9) |
C8 | 0.0229 (11) | 0.0228 (13) | 0.0246 (11) | −0.0002 (9) | 0.0027 (9) | 0.0034 (9) |
C9 | 0.0245 (12) | 0.0361 (15) | 0.0209 (11) | −0.0004 (10) | 0.0042 (9) | 0.0034 (10) |
C10 | 0.0182 (11) | 0.0300 (14) | 0.0201 (12) | 0.0019 (9) | −0.0004 (8) | −0.0048 (10) |
C11 | 0.0223 (11) | 0.0236 (13) | 0.0279 (12) | −0.0002 (9) | −0.0030 (9) | −0.0026 (9) |
C12 | 0.0226 (11) | 0.0231 (13) | 0.0214 (11) | −0.0010 (9) | −0.0011 (8) | 0.0028 (9) |
C14 | 0.0325 (14) | 0.0452 (17) | 0.0220 (13) | −0.0019 (11) | −0.0001 (9) | −0.0088 (12) |
Br1—C1 | 1.917 (2) | C7—C8 | 1.394 (3) |
N1—C1 | 1.316 (3) | C7—C12 | 1.397 (3) |
N1—C5 | 1.351 (3) | C8—C9 | 1.384 (3) |
N2—C6 | 1.271 (3) | C8—H8 | 0.9500 |
N2—C7 | 1.416 (3) | C9—C10 | 1.397 (3) |
C1—C2 | 1.380 (3) | C9—H9 | 0.9500 |
C2—C3 | 1.382 (3) | C10—C11 | 1.382 (3) |
C2—H2 | 0.9500 | C10—C14 | 1.513 (3) |
C3—C4 | 1.384 (3) | C11—C12 | 1.382 (3) |
C3—H3 | 0.9500 | C11—H11 | 0.9500 |
C4—C5 | 1.386 (4) | C12—H12 | 0.9500 |
C4—H4 | 0.9500 | C14—H14A | 0.9800 |
C5—C6 | 1.466 (3) | C14—H14B | 0.9800 |
C6—H6 | 0.9500 | C14—H14C | 0.9800 |
C1—N1—C5 | 116.7 (2) | C12—C7—N2 | 123.7 (2) |
C6—N2—C7 | 120.5 (2) | C9—C8—C7 | 120.4 (2) |
N1—C1—C2 | 125.9 (2) | C9—C8—H8 | 119.8 |
N1—C1—Br1 | 115.50 (17) | C7—C8—H8 | 119.8 |
C2—C1—Br1 | 118.63 (17) | C8—C9—C10 | 121.0 (2) |
C1—C2—C3 | 116.8 (2) | C8—C9—H9 | 119.5 |
C1—C2—H2 | 121.6 | C10—C9—H9 | 119.5 |
C3—C2—H2 | 121.6 | C11—C10—C9 | 118.2 (2) |
C2—C3—C4 | 119.2 (2) | C11—C10—C14 | 120.8 (2) |
C2—C3—H3 | 120.4 | C9—C10—C14 | 121.1 (2) |
C4—C3—H3 | 120.4 | C10—C11—C12 | 121.6 (2) |
C3—C4—C5 | 119.1 (2) | C10—C11—H11 | 119.2 |
C3—C4—H4 | 120.4 | C12—C11—H11 | 119.2 |
C5—C4—H4 | 120.4 | C11—C12—C7 | 120.1 (2) |
N1—C5—C4 | 122.2 (2) | C11—C12—H12 | 119.9 |
N1—C5—C6 | 115.7 (2) | C7—C12—H12 | 119.9 |
C4—C5—C6 | 122.1 (2) | C10—C14—H14A | 109.5 |
N2—C6—C5 | 121.2 (2) | C10—C14—H14B | 109.5 |
N2—C6—H6 | 119.4 | H14A—C14—H14B | 109.5 |
C5—C6—H6 | 119.4 | C10—C14—H14C | 109.5 |
C8—C7—C12 | 118.7 (2) | H14A—C14—H14C | 109.5 |
C8—C7—N2 | 117.4 (2) | H14B—C14—H14C | 109.5 |
C5—N1—C1—C2 | −0.7 (3) | C6—N2—C7—C8 | −155.5 (2) |
C5—N1—C1—Br1 | −179.94 (14) | C6—N2—C7—C12 | 29.6 (3) |
N1—C1—C2—C3 | 0.7 (3) | C12—C7—C8—C9 | −0.5 (3) |
Br1—C1—C2—C3 | 179.93 (15) | N2—C7—C8—C9 | −175.66 (19) |
C1—C2—C3—C4 | −0.1 (3) | C7—C8—C9—C10 | 1.2 (3) |
C2—C3—C4—C5 | −0.5 (3) | C8—C9—C10—C11 | −1.0 (3) |
C1—N1—C5—C4 | 0.0 (3) | C8—C9—C10—C14 | 177.4 (2) |
C1—N1—C5—C6 | −179.88 (17) | C9—C10—C11—C12 | 0.1 (3) |
C3—C4—C5—N1 | 0.6 (3) | C14—C10—C11—C12 | −178.3 (2) |
C3—C4—C5—C6 | −179.54 (19) | C10—C11—C12—C7 | 0.6 (3) |
C7—N2—C6—C5 | −175.22 (17) | C8—C7—C12—C11 | −0.4 (3) |
N1—C5—C6—N2 | 179.92 (19) | N2—C7—C12—C11 | 174.45 (19) |
C4—C5—C6—N2 | 0.0 (3) |
Experimental details
Crystal data | |
Chemical formula | C13H11BrN2 |
Mr | 275.15 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 113 |
a, b, c (Å) | 13.542 (3), 6.1544 (15), 27.620 (7) |
V (Å3) | 2301.9 (10) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 3.54 |
Crystal size (mm) | 0.20 × 0.08 × 0.04 |
Data collection | |
Diffractometer | Rigaku Saturn724 CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku/MSC, 2002) |
Tmin, Tmax | 0.538, 0.871 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21379, 2750, 2251 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.104, 1.08 |
No. of reflections | 2750 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.91, −0.66 |
Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), CrystalStructure (Rigaku/MSC, 2006).
References
Burkhardt, A. & Plass, W. (2008). Inorg. Chem. Commun. 11, 303–306. Web of Science CSD CrossRef CAS Google Scholar
Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Keypour, H., Arzhangi, P., Rahpeyma, N., Rezaeivala, M., Elerman, Y. & Khavasi, H. R. (2011). Inorg. Chim. Acta, 367, 9–14. Web of Science CSD CrossRef CAS Google Scholar
Kocyigit, O., Kursunlu, A. N. & Guler, E. (2010). J. Hazard. Mater. 183, 334–340. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2691–2698. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals (Burkhardt & Plass, 2008; Keypour, et al., 2011; Tarafder, et al., 2002). They show important properties, e.g. an ability to reversibly bind oxygen, catalytic activity in hydrogenation of olefins, transfer of amino group, photochromic properties and complexing ability towards toxic metals (Kocyigit et al., 2010). In this paper, the structure of the new Schiff base derived from condensation of 6-bromopicolinaldehyde with p-toluidine is reported. The molecule of the title compound, Fig. 1, possesses an E configuration about the C6=N2 bond.