organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-[(6-Bromo­pyridin-2-yl)methyl­­idene]-4-methyl­aniline

aDepartment of Chemistry, Tangshan Normal University, Tangshan 063000, People's Republic of China, and bLanzhou Petrochemical Research Center, PetroChina Lanzhou, Gansu 300072, People's Republic of China
*Correspondence e-mail: cmj_1237@yahoo.com.cn

(Received 2 August 2011; accepted 6 August 2011; online 17 August 2011)

The title compound, C13H11BrN2, a Schiff base obtained from 6-bromo­picolinaldehyde and p-toluidine, has an E configuration about the C=N bond. The dihedral angle between the benzene and pyridine rings is 30.4 (1)°.

Related literature

For Schiff base complexes with transition metals, see: Burkhardt & Plass (2008[Burkhardt, A. & Plass, W. (2008). Inorg. Chem. Commun. 11, 303-306.]); Keypour et al. (2011[Keypour, H., Arzhangi, P., Rahpeyma, N., Rezaeivala, M., Elerman, Y. & Khavasi, H. R. (2011). Inorg. Chim. Acta, 367, 9-14.]); Tarafder et al. (2002[Tarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2691-2698.]). For their complexing ability towards toxic metals, see: Kocyigit et al. (2010[Kocyigit, O., Kursunlu, A. N. & Guler, E. (2010). J. Hazard. Mater. 183, 334-340.]);

[Scheme 1]

Experimental

Crystal data
  • C13H11BrN2

  • Mr = 275.15

  • Orthorhombic, P b c a

  • a = 13.542 (3) Å

  • b = 6.1544 (15) Å

  • c = 27.620 (7) Å

  • V = 2301.9 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 113 K

  • 0.20 × 0.08 × 0.04 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.538, Tmax = 0.871

  • 21379 measured reflections

  • 2750 independent reflections

  • 2251 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.08

  • 2750 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2009[Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Schiff bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals (Burkhardt & Plass, 2008; Keypour, et al., 2011; Tarafder, et al., 2002). They show important properties, e.g. an ability to reversibly bind oxygen, catalytic activity in hydrogenation of olefins, transfer of amino group, photochromic properties and complexing ability towards toxic metals (Kocyigit et al., 2010). In this paper, the structure of the new Schiff base derived from condensation of 6-bromopicolinaldehyde with p-toluidine is reported. The molecule of the title compound, Fig. 1, possesses an E configuration about the C6=N2 bond.

Related literature top

For Schiff base complexes with transition metals, see: Burkhardt & Plass (2008); Keypour et al. (2011); Tarafder et al. (2002). For their complexing ability towards toxic metals, see: Kocyigit et al. (2010);

Experimental top

The solution of 6-bromopicolinaldehyde and p-toluidine in methanol was refluxed for 2 h, and then the crude product was isolated by filtration and recrystallized from methanol to yield yellowish title compound. Finally, the title compound was dissolved in a small amount of methanol and the solution was kept for 5 days at ambient temperature to give rise to yellowish block-like crystals on slowly evaporating the solvent.

Refinement top

The hydrogen atoms were positioned geometrically (C—H=0.93–0.98 Å) and refined using a riding model, with Uiso(H)=1.2 or 1.5Ueq(C) (methyl group). The methyl group position was rotationally optimized (AFIX 137)

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
(E)-N-[(6-Bromopyridin-2-yl)methylidene]-4-methylaniline top
Crystal data top
C13H11BrN2Dx = 1.588 Mg m3
Mr = 275.15Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 6762 reflections
a = 13.542 (3) Åθ = 2.1–28.0°
b = 6.1544 (15) ŵ = 3.54 mm1
c = 27.620 (7) ÅT = 113 K
V = 2301.9 (10) Å3Prism, colorless
Z = 80.20 × 0.08 × 0.04 mm
F(000) = 1104
Data collection top
Rigaku Saturn724 CCD
diffractometer
2750 independent reflections
Radiation source: rotating anode2251 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.044
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω and ϕ scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
k = 78
Tmin = 0.538, Tmax = 0.871l = 3636
21379 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0529P)2]
where P = (Fo2 + 2Fc2)/3
2750 reflections(Δ/σ)max = 0.002
146 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C13H11BrN2V = 2301.9 (10) Å3
Mr = 275.15Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.542 (3) ŵ = 3.54 mm1
b = 6.1544 (15) ÅT = 113 K
c = 27.620 (7) Å0.20 × 0.08 × 0.04 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
2750 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
2251 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.871Rint = 0.044
21379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.08Δρmax = 0.91 e Å3
2750 reflectionsΔρmin = 0.66 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt)etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.38420 (2)0.10293 (5)0.750452 (7)0.03018 (13)
N10.38367 (13)0.1724 (3)0.65201 (6)0.0218 (4)
N20.38262 (12)0.2660 (3)0.52490 (7)0.0219 (4)
C10.37666 (14)0.2783 (4)0.69322 (8)0.0215 (5)
C20.36569 (15)0.5001 (4)0.69829 (8)0.0247 (5)
H20.36180.56670.72930.030*
C30.36066 (16)0.6208 (4)0.65619 (9)0.0250 (5)
H30.35310.77420.65760.030*
C40.36681 (14)0.5157 (4)0.61200 (8)0.0224 (5)
H40.36290.59590.58270.027*
C50.37868 (14)0.2921 (4)0.61109 (8)0.0209 (5)
C60.38647 (15)0.1703 (4)0.56563 (8)0.0221 (5)
H60.39450.01710.56660.027*
C70.38278 (14)0.1445 (4)0.48137 (8)0.0219 (5)
C80.41670 (16)0.2481 (4)0.43969 (7)0.0234 (5)
H80.44280.39120.44170.028*
C90.41266 (17)0.1437 (4)0.39534 (8)0.0272 (5)
H90.43720.21510.36730.033*
C100.37303 (14)0.0649 (4)0.39118 (9)0.0228 (5)
C110.33938 (16)0.1659 (4)0.43272 (8)0.0246 (5)
H110.31230.30790.43050.030*
C120.34413 (15)0.0651 (4)0.47738 (8)0.0224 (5)
H120.32110.13870.50540.027*
C140.36452 (17)0.1756 (5)0.34244 (9)0.0332 (6)
H14A0.29660.16230.33050.050*
H14B0.38160.32960.34580.050*
H14C0.40980.10650.31950.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0412 (2)0.0310 (2)0.01834 (17)0.00145 (10)0.00218 (9)0.00303 (9)
N10.0239 (10)0.0212 (11)0.0203 (10)0.0009 (7)0.0008 (7)0.0006 (8)
N20.0218 (10)0.0232 (12)0.0207 (10)0.0010 (8)0.0013 (7)0.0021 (8)
C10.0207 (11)0.0236 (13)0.0202 (11)0.0007 (9)0.0009 (8)0.0007 (9)
C20.0257 (12)0.0267 (14)0.0217 (12)0.0008 (9)0.0000 (9)0.0063 (10)
C30.0302 (13)0.0200 (13)0.0247 (13)0.0017 (9)0.0008 (9)0.0018 (10)
C40.0251 (11)0.0218 (14)0.0203 (12)0.0004 (9)0.0011 (8)0.0012 (10)
C50.0180 (11)0.0243 (13)0.0203 (11)0.0000 (9)0.0000 (7)0.0003 (10)
C60.0234 (11)0.0196 (13)0.0234 (12)0.0022 (9)0.0011 (8)0.0026 (9)
C70.0177 (11)0.0277 (14)0.0202 (12)0.0034 (9)0.0005 (8)0.0002 (9)
C80.0229 (11)0.0228 (13)0.0246 (11)0.0002 (9)0.0027 (9)0.0034 (9)
C90.0245 (12)0.0361 (15)0.0209 (11)0.0004 (10)0.0042 (9)0.0034 (10)
C100.0182 (11)0.0300 (14)0.0201 (12)0.0019 (9)0.0004 (8)0.0048 (10)
C110.0223 (11)0.0236 (13)0.0279 (12)0.0002 (9)0.0030 (9)0.0026 (9)
C120.0226 (11)0.0231 (13)0.0214 (11)0.0010 (9)0.0011 (8)0.0028 (9)
C140.0325 (14)0.0452 (17)0.0220 (13)0.0019 (11)0.0001 (9)0.0088 (12)
Geometric parameters (Å, º) top
Br1—C11.917 (2)C7—C81.394 (3)
N1—C11.316 (3)C7—C121.397 (3)
N1—C51.351 (3)C8—C91.384 (3)
N2—C61.271 (3)C8—H80.9500
N2—C71.416 (3)C9—C101.397 (3)
C1—C21.380 (3)C9—H90.9500
C2—C31.382 (3)C10—C111.382 (3)
C2—H20.9500C10—C141.513 (3)
C3—C41.384 (3)C11—C121.382 (3)
C3—H30.9500C11—H110.9500
C4—C51.386 (4)C12—H120.9500
C4—H40.9500C14—H14A0.9800
C5—C61.466 (3)C14—H14B0.9800
C6—H60.9500C14—H14C0.9800
C1—N1—C5116.7 (2)C12—C7—N2123.7 (2)
C6—N2—C7120.5 (2)C9—C8—C7120.4 (2)
N1—C1—C2125.9 (2)C9—C8—H8119.8
N1—C1—Br1115.50 (17)C7—C8—H8119.8
C2—C1—Br1118.63 (17)C8—C9—C10121.0 (2)
C1—C2—C3116.8 (2)C8—C9—H9119.5
C1—C2—H2121.6C10—C9—H9119.5
C3—C2—H2121.6C11—C10—C9118.2 (2)
C2—C3—C4119.2 (2)C11—C10—C14120.8 (2)
C2—C3—H3120.4C9—C10—C14121.1 (2)
C4—C3—H3120.4C10—C11—C12121.6 (2)
C3—C4—C5119.1 (2)C10—C11—H11119.2
C3—C4—H4120.4C12—C11—H11119.2
C5—C4—H4120.4C11—C12—C7120.1 (2)
N1—C5—C4122.2 (2)C11—C12—H12119.9
N1—C5—C6115.7 (2)C7—C12—H12119.9
C4—C5—C6122.1 (2)C10—C14—H14A109.5
N2—C6—C5121.2 (2)C10—C14—H14B109.5
N2—C6—H6119.4H14A—C14—H14B109.5
C5—C6—H6119.4C10—C14—H14C109.5
C8—C7—C12118.7 (2)H14A—C14—H14C109.5
C8—C7—N2117.4 (2)H14B—C14—H14C109.5
C5—N1—C1—C20.7 (3)C6—N2—C7—C8155.5 (2)
C5—N1—C1—Br1179.94 (14)C6—N2—C7—C1229.6 (3)
N1—C1—C2—C30.7 (3)C12—C7—C8—C90.5 (3)
Br1—C1—C2—C3179.93 (15)N2—C7—C8—C9175.66 (19)
C1—C2—C3—C40.1 (3)C7—C8—C9—C101.2 (3)
C2—C3—C4—C50.5 (3)C8—C9—C10—C111.0 (3)
C1—N1—C5—C40.0 (3)C8—C9—C10—C14177.4 (2)
C1—N1—C5—C6179.88 (17)C9—C10—C11—C120.1 (3)
C3—C4—C5—N10.6 (3)C14—C10—C11—C12178.3 (2)
C3—C4—C5—C6179.54 (19)C10—C11—C12—C70.6 (3)
C7—N2—C6—C5175.22 (17)C8—C7—C12—C110.4 (3)
N1—C5—C6—N2179.92 (19)N2—C7—C12—C11174.45 (19)
C4—C5—C6—N20.0 (3)

Experimental details

Crystal data
Chemical formulaC13H11BrN2
Mr275.15
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)13.542 (3), 6.1544 (15), 27.620 (7)
V3)2301.9 (10)
Z8
Radiation typeMo Kα
µ (mm1)3.54
Crystal size (mm)0.20 × 0.08 × 0.04
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2002)
Tmin, Tmax0.538, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
21379, 2750, 2251
Rint0.044
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.08
No. of reflections2750
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.66

Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), CrystalStructure (Rigaku/MSC, 2006).

 

References

First citationBurkhardt, A. & Plass, W. (2008). Inorg. Chem. Commun. 11, 303–306.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKeypour, H., Arzhangi, P., Rahpeyma, N., Rezaeivala, M., Elerman, Y. & Khavasi, H. R. (2011). Inorg. Chim. Acta, 367, 9–14.  Web of Science CSD CrossRef CAS Google Scholar
First citationKocyigit, O., Kursunlu, A. N. & Guler, E. (2010). J. Hazard. Mater. 183, 334–340.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds