metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­(chloro­acetato-κO)bis­(tri­methyl­silylmethyl)tin(IV)

aDepartment of Pharmacy, Jining Medical College, Xueyuan Road 669, Rizhao, People's Republic of China
*Correspondence e-mail: wqb_wangqibao@163.com

(Received 12 June 2011; accepted 17 July 2011; online 2 August 2011)

In the title complex, [Sn(C2H2ClO2)2(C4H11Si)2], the SnIV ion is coordinated in a distorted tetra­hedral environment formed by two O atoms from two monodenate chloro­acetato ligands and two C atoms from two trimethyl silyl ligands. Two further weak intra­molecular Sn⋯O contacts [2.744 (2) and 2.655 (2) Å] are formed by the chloro­acetato ligands.

Related literature

For a related structure, see: Parvez et al. (1997[Parvez, M., Ali, S., Masood, T. M., Mazhar, M. & Danish, M. (1997). Acta Cryst. C53, 1211-1213.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C2H2ClO2)2(C4H11Si)2]

  • Mr = 480.10

  • Triclinic, [P \overline 1]

  • a = 10.258 (3) Å

  • b = 10.767 (3) Å

  • c = 10.808 (3) Å

  • α = 71.529 (2)°

  • β = 88.733 (3)°

  • γ = 74.457 (3)°

  • V = 1088.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 293 K

  • 0.28 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997)[Bruker (1997). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.673, Tmax = 0.780

  • 6849 measured reflections

  • 3792 independent reflections

  • 3311 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.04

  • 3792 reflections

  • 197 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 1997)[Bruker (1997). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 1997)[Bruker (1997). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (1997). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1. The SnIV ion is coordinated in a distorted tetrahedral environment formed by two O atoms from two monodenate chloroacetato ligands and two C atoms from two trimethyl silyl ligands. There are two further weak intramolecular Sn···O contacts [2.744 (2) and 2.655 (2)Å] formed by the chloroacetato ligands. These weak contacts are also observed in a related structure (Parvez et al., 1997) but are longer in the title compound.

Related literature top

For a related structure, see: Parvez et al. (1997). AUTHOR: please resend scheme - file is corrupted

Experimental top

A mixture of bis(trimethylsilylmethyl) diphenyltin (0.447 g, 1.0 mmol) and dichloroacetic acid (0.251 g, 2.0 mmol) were gradually heated in a oil bath to 433K the temperature was maintained 20 min. After the reaction mixture had cooled to room temperature, hexane (50 ml) was added and the mixture to dissolve the solid. Cooling the filtered solution to room temperature gave colorless crystals 0.676 g suitable for X-ray analysis, yield 96.8%.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.96–0.97 Å and with Uiso(H) = 1.2 times Ueq(C) (Uiso(H) = 1.5 times Ueq(C) for methyl groups). The anisotropic displacement parameters of the C atoms of the t-butyl groups are larger than normal and this might be expected. It was not considered necessary to model these as disordered atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are not shown.
Bis(chloroacetato-κO)bis(trimethylsilylmethyl)tin(IV) top
Crystal data top
[Sn(C2H2ClO2)2(C4H11Si)2]Z = 2
Mr = 480.10F(000) = 484
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.258 (3) ÅCell parameters from 4282 reflections
b = 10.767 (3) Åθ = 2.4–26.2°
c = 10.808 (3) ŵ = 1.54 mm1
α = 71.529 (2)°T = 293 K
β = 88.733 (3)°Block, colorless
γ = 74.457 (3)°0.28 × 0.22 × 0.17 mm
V = 1088.2 (5) Å3
Data collection top
Bruker SMART CCD
diffractometer
3792 independent reflections
Radiation source: fine-focus sealed tube3311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1212
Tmin = 0.673, Tmax = 0.780k = 1212
6849 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.2466P]
where P = (Fo2 + 2Fc2)/3
3792 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Sn(C2H2ClO2)2(C4H11Si)2]γ = 74.457 (3)°
Mr = 480.10V = 1088.2 (5) Å3
Triclinic, P1Z = 2
a = 10.258 (3) ÅMo Kα radiation
b = 10.767 (3) ŵ = 1.54 mm1
c = 10.808 (3) ÅT = 293 K
α = 71.529 (2)°0.28 × 0.22 × 0.17 mm
β = 88.733 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3792 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3311 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.780Rint = 0.029
6849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.04Δρmax = 0.66 e Å3
3792 reflectionsΔρmin = 0.47 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.01272 (2)0.16291 (2)0.24712 (2)0.04461 (12)
Cl10.12820 (13)0.38500 (12)0.28104 (11)0.0775 (3)
Cl20.21959 (14)0.16555 (14)0.68827 (12)0.0881 (4)
Si10.30636 (12)0.02143 (12)0.20680 (13)0.0655 (3)
Si20.32332 (11)0.38179 (11)0.26896 (12)0.0557 (3)
O10.0062 (3)0.3146 (3)0.0762 (2)0.0587 (7)
O20.1018 (3)0.2024 (3)0.0036 (3)0.0728 (8)
O30.0812 (3)0.2754 (3)0.3262 (2)0.0551 (6)
O40.0642 (3)0.1058 (3)0.4965 (3)0.0639 (7)
C10.0506 (4)0.2954 (4)0.0207 (4)0.0553 (9)
C20.0398 (5)0.3963 (4)0.1488 (4)0.0705 (12)
H2A0.05520.38330.16640.085*
H2B0.07450.48720.14290.085*
C30.1012 (4)0.2083 (4)0.4492 (4)0.0490 (8)
C40.1715 (5)0.2691 (5)0.5255 (4)0.0690 (11)
H4A0.11150.35600.52500.083*
H4B0.25170.28650.48230.083*
C50.1288 (4)0.0193 (3)0.2482 (4)0.0522 (9)
H5A0.13320.08460.33490.063*
H5B0.09180.05360.18810.063*
C60.3067 (8)0.0900 (10)0.0410 (8)0.273 (9)
H6A0.39840.07950.01580.409*
H6B0.26650.18290.03670.409*
H6C0.25550.06680.01730.409*
C70.4046 (5)0.1965 (5)0.2236 (7)0.1012 (18)
H7A0.36170.23100.16870.152*
H7B0.40860.25300.31300.152*
H7C0.49490.19710.19780.152*
C80.3879 (6)0.0365 (10)0.3186 (11)0.214 (6)
H8A0.48250.02300.30340.320*
H8B0.37830.01460.40730.320*
H8C0.34580.13160.30390.320*
C90.2193 (4)0.2046 (4)0.2868 (4)0.0571 (9)
H9A0.26430.17160.23090.069*
H9B0.22420.14910.37610.069*
C100.3256 (6)0.4976 (5)0.0999 (5)0.0943 (17)
H10A0.34850.45730.03890.141*
H10B0.23770.51250.08420.141*
H10C0.39180.58310.08900.141*
C110.4989 (5)0.3740 (6)0.3089 (7)0.106 (2)
H11A0.53100.32970.25630.158*
H11B0.55720.46470.29110.158*
H11C0.49910.32350.39970.158*
C120.2531 (6)0.4483 (6)0.3835 (6)0.0938 (17)
H12A0.31840.52820.39000.141*
H12B0.17160.47110.35160.141*
H12C0.23290.38010.46820.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04811 (17)0.03622 (16)0.04990 (18)0.00954 (11)0.00200 (11)0.01605 (11)
Cl10.0991 (9)0.0731 (7)0.0580 (6)0.0221 (6)0.0174 (6)0.0180 (5)
Cl20.1022 (9)0.0869 (8)0.0676 (7)0.0131 (7)0.0258 (6)0.0234 (6)
Si10.0532 (6)0.0532 (6)0.0860 (8)0.0106 (5)0.0203 (6)0.0210 (6)
Si20.0491 (6)0.0472 (6)0.0674 (7)0.0030 (5)0.0021 (5)0.0221 (5)
O10.0770 (18)0.0549 (15)0.0437 (14)0.0206 (13)0.0012 (13)0.0131 (12)
O20.099 (2)0.0588 (18)0.0646 (18)0.0337 (16)0.0015 (16)0.0157 (14)
O30.0723 (17)0.0488 (14)0.0472 (15)0.0191 (12)0.0033 (12)0.0169 (12)
O40.0792 (19)0.0548 (16)0.0637 (17)0.0303 (14)0.0067 (14)0.0177 (13)
C10.068 (2)0.043 (2)0.052 (2)0.0127 (18)0.0034 (18)0.0148 (17)
C20.106 (3)0.065 (3)0.046 (2)0.038 (2)0.005 (2)0.0133 (19)
C30.049 (2)0.0449 (19)0.056 (2)0.0107 (16)0.0041 (16)0.0215 (17)
C40.093 (3)0.067 (3)0.056 (2)0.033 (2)0.004 (2)0.022 (2)
C50.057 (2)0.0384 (18)0.059 (2)0.0105 (16)0.0070 (17)0.0167 (16)
C60.148 (7)0.238 (11)0.212 (10)0.066 (7)0.128 (7)0.121 (8)
C70.073 (3)0.077 (3)0.155 (6)0.008 (3)0.024 (3)0.051 (4)
C80.067 (4)0.272 (12)0.420 (17)0.044 (5)0.025 (7)0.276 (13)
C90.050 (2)0.0434 (19)0.074 (3)0.0112 (16)0.0034 (18)0.0165 (18)
C100.097 (4)0.063 (3)0.089 (4)0.008 (3)0.012 (3)0.004 (3)
C110.058 (3)0.084 (4)0.174 (6)0.010 (3)0.024 (3)0.049 (4)
C120.095 (4)0.094 (4)0.106 (4)0.010 (3)0.002 (3)0.064 (3)
Geometric parameters (Å, º) top
Sn1—O12.088 (3)C4—H4B0.9700
Sn1—C52.102 (3)C5—H5A0.9700
Sn1—O32.108 (2)C5—H5B0.9700
Sn1—C92.108 (4)C6—H6A0.9600
Cl1—C21.762 (4)C6—H6B0.9600
Cl2—C41.755 (4)C6—H6C0.9600
Si1—C61.814 (7)C7—H7A0.9600
Si1—C81.831 (7)C7—H7B0.9600
Si1—C71.837 (5)C7—H7C0.9600
Si1—C51.862 (4)C8—H8A0.9600
Si2—C101.854 (5)C8—H8B0.9600
Si2—C121.855 (5)C8—H8C0.9600
Si2—C111.860 (5)C9—H9A0.9700
Si2—C91.871 (4)C9—H9B0.9700
O1—C11.306 (5)C10—H10A0.9600
O2—C11.214 (5)C10—H10B0.9600
O3—C31.287 (4)C10—H10C0.9600
O4—C31.217 (4)C11—H11A0.9600
C1—C21.488 (5)C11—H11B0.9600
C2—H2A0.9700C11—H11C0.9600
C2—H2B0.9700C12—H12A0.9600
C3—C41.500 (5)C12—H12B0.9600
C4—H4A0.9700C12—H12C0.9600
O1—Sn1—C5107.45 (13)H5A—C5—H5B106.9
O1—Sn1—O379.95 (10)Si1—C6—H6A109.5
C5—Sn1—O3109.82 (13)Si1—C6—H6B109.5
O1—Sn1—C9107.52 (13)H6A—C6—H6B109.5
C5—Sn1—C9131.13 (15)Si1—C6—H6C109.5
O3—Sn1—C9109.00 (13)H6A—C6—H6C109.5
C6—Si1—C8108.8 (6)H6B—C6—H6C109.5
C6—Si1—C7110.4 (4)Si1—C7—H7A109.5
C8—Si1—C7107.7 (3)Si1—C7—H7B109.5
C6—Si1—C5109.7 (3)H7A—C7—H7B109.5
C8—Si1—C5110.8 (3)Si1—C7—H7C109.5
C7—Si1—C5109.4 (2)H7A—C7—H7C109.5
C10—Si2—C12108.7 (3)H7B—C7—H7C109.5
C10—Si2—C11109.7 (3)Si1—C8—H8A109.5
C12—Si2—C11109.7 (3)Si1—C8—H8B109.5
C10—Si2—C9111.1 (2)H8A—C8—H8B109.5
C12—Si2—C9110.1 (2)Si1—C8—H8C109.5
C11—Si2—C9107.5 (2)H8A—C8—H8C109.5
C1—O1—Sn1107.4 (2)H8B—C8—H8C109.5
C3—O3—Sn1104.6 (2)Si2—C9—Sn1121.39 (19)
O2—C1—O1121.8 (4)Si2—C9—H9A107.0
O2—C1—C2126.1 (4)Sn1—C9—H9A107.0
O1—C1—C2112.1 (3)Si2—C9—H9B107.0
C1—C2—Cl1114.0 (3)Sn1—C9—H9B107.0
C1—C2—H2A108.8H9A—C9—H9B106.7
Cl1—C2—H2A108.8Si2—C10—H10A109.5
C1—C2—H2B108.8Si2—C10—H10B109.5
Cl1—C2—H2B108.8H10A—C10—H10B109.5
H2A—C2—H2B107.7Si2—C10—H10C109.5
O4—C3—O3121.6 (3)H10A—C10—H10C109.5
O4—C3—C4124.6 (4)H10B—C10—H10C109.5
O3—C3—C4113.8 (3)Si2—C11—H11A109.5
C3—C4—Cl2113.7 (3)Si2—C11—H11B109.5
C3—C4—H4A108.8H11A—C11—H11B109.5
Cl2—C4—H4A108.8Si2—C11—H11C109.5
C3—C4—H4B108.8H11A—C11—H11C109.5
Cl2—C4—H4B108.8H11B—C11—H11C109.5
H4A—C4—H4B107.7Si2—C12—H12A109.5
Si1—C5—Sn1120.42 (18)Si2—C12—H12B109.5
Si1—C5—H5A107.2H12A—C12—H12B109.5
Sn1—C5—H5A107.2Si2—C12—H12C109.5
Si1—C5—H5B107.2H12A—C12—H12C109.5
Sn1—C5—H5B107.2H12B—C12—H12C109.5
C5—Sn1—O1—C175.3 (3)O3—C3—C4—Cl2171.7 (3)
O3—Sn1—O1—C1176.9 (3)C6—Si1—C5—Sn161.1 (5)
C9—Sn1—O1—C170.0 (3)C8—Si1—C5—Sn159.1 (5)
O1—Sn1—O3—C3176.4 (2)C7—Si1—C5—Sn1177.7 (3)
C5—Sn1—O3—C371.3 (2)O1—Sn1—C5—Si145.7 (2)
C9—Sn1—O3—C378.4 (2)O3—Sn1—C5—Si139.7 (3)
Sn1—O1—C1—O20.3 (5)C9—Sn1—C5—Si1179.58 (19)
Sn1—O1—C1—C2178.5 (3)C10—Si2—C9—Sn158.6 (3)
O2—C1—C2—Cl17.5 (6)C12—Si2—C9—Sn162.0 (3)
O1—C1—C2—Cl1174.5 (3)C11—Si2—C9—Sn1178.6 (3)
Sn1—O3—C3—O42.1 (4)O1—Sn1—C9—Si242.7 (3)
Sn1—O3—C3—C4178.5 (3)C5—Sn1—C9—Si2176.64 (19)
O4—C3—C4—Cl29.0 (6)O3—Sn1—C9—Si242.4 (3)

Experimental details

Crystal data
Chemical formula[Sn(C2H2ClO2)2(C4H11Si)2]
Mr480.10
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.258 (3), 10.767 (3), 10.808 (3)
α, β, γ (°)71.529 (2), 88.733 (3), 74.457 (3)
V3)1088.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.28 × 0.22 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.673, 0.780
No. of measured, independent and
observed [I > 2σ(I)] reflections
6849, 3792, 3311
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.04
No. of reflections3792
No. of parameters197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.47

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Shandong Province Natural Science Foundation (No. ZR2010BL031).

References

First citationBruker (1997). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationParvez, M., Ali, S., Masood, T. M., Mazhar, M. & Danish, M. (1997). Acta Cryst. C53, 1211–1213.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds