organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2216-o2217

Methyl 2,2′-di­methyl-4′-[2-(methyl­sulfan­yl)eth­yl]-1,3-dioxo-2,3-di­hydro-1H,4′H-spiro­[iso­quinoline-4,5′-oxazole]-4′-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 20 July 2011; accepted 26 July 2011; online 2 August 2011)

In the isoquinoline ring system of the title mol­ecule, C18H20N2O5S, the fused N-heterocyclic ring is distorted towards a half-boat conformation. The methyl formate moiety is disordered over two sets of sites with refined occupancies of 0.882 (5) and 0.118 (5). In the crystal, mol­ecules are linked via weak inter­molecular C—H⋯O hydrogen bonds into one-dimensional chains along [010].

Related literature

For general background to and the biological activity of isoquinoline- and oxazole-containing compounds, see: Yu et al. (2010[Yu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989-3001.]); Huang et al. (2011[Huang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629-3631.]); Harris et al. (2005[Harris, P. A., Cheung, M., Hunter, R. N., Brown, M. L., Veal, J. M., Nolte, R. T., Wang, L., Liu, W., Crosby, R. M., Johnson, J. H., Epperly, A. H., Kumar, R., Luttrell, D. K. & Stafford, J. A. (2005). J. Med. Chem. 48, 1610-1619.]); Vintonyak et al. (2010[Vintonyak, V., Warburg, K., Kruse, H., Grimme, S., Hübel, K., Rauh, D. & Waldmann, H. (2010). Angew. Chem. Int. Ed. 49, 5902-5905.]); Badillo et al. (2010[Badillo, J. J., Hanhan, N. V. & Franz, A. K. (2010). Curr. Opin. Drug Discov. Dev. 13, 758-766.], 2011[Badillo, J. J., Arevalo, G. E., Fettinger, J. C. & Franz, A. K. (2011). Org. Lett. 13, 418-421.]); Wang et al. (2010[Wang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757-7768.]); Nair et al. (2002[Nair, V., Sethumadhavan, D., Nair, S. M., Viji, S. & Rath, P. (2002). Tetrahedron, 58, 3003-3007.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011a). Acta Cryst. E67, o1271-o1272.],b[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011b). Acta Cryst. E67, o1273-o1274.],c[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011c). Acta Cryst. E67, o1311-o1312.],d[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011d). Acta Cryst. E67, o1340-o1341.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O5S

  • Mr = 376.42

  • Monoclinic, P 21 /c

  • a = 15.0052 (15) Å

  • b = 8.4548 (8) Å

  • c = 15.4915 (15) Å

  • β = 114.621 (2)°

  • V = 1786.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.18 × 0.17 × 0.14 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.971

  • 14571 measured reflections

  • 4063 independent reflections

  • 3343 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.03

  • 4063 reflections

  • 251 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18C⋯O2i 0.96 2.49 3.436 (2) 167
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Photocycloaddition of isoquinoline-1,3,4-trione combined with following transformation of the photocycloadducts has become facile method to build various scaffold containing isoquinoline moiety (Yu et al., 2010; Huang et al., 2011). Oxazoles can be used to inhibit the activity of malignant tumors (Harris et al., 2005). Spirocyclic oxindoles have emerged as attractive synthetic targets because of their prevalence in numerous natural products and important biological activity (Badillo et al., 2010; Vintonyak et al., 2010). Among them, the synthesis of spirooxindole oxazoles is of great intrest (Badillo et al., 2011; Wang et al., 2010; Nair et al., 2002). Many bioactive natural products especially alkaloids contain an isoquinoline or oxazole ring. It is necessary to develop methodologies to construct such moieties. The title compound which was derived from isoquinoline-1,3,4-trione and an oxazole and may have potential use in biochemical and pharmaceutical fields.

In the racemic title compound, Fig. 1, atoms C9 and C11 are the chiral centers. The isoquinoline ring system (N1/C1-C9) is not completely planar, the N-heterocyclic ring (N1/C1-C3/C8/C9) being distorted towards a half-boat conformation with atom C9 deviating by 0.213 (2) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.3237 (18) Å, Θ = 67.0 (3)° and ϕ = 102.1 (3)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to related structures (Fun et al., 2011a, b, c, d). The methyl formate moiety (O4/O5/C15/C16) is disordered over two positions with refined site-occupancies of 0.882 (5) and 0.118 (5).

In the crystal, Fig. 2, molecules are linked via intermolecular C18–H18C···O2i hydrogen bonds (Table 1) into infinite one-dimensional chains along [010].

Related literature top

For general background to and the biological activity of isoquinoline- and oxazole-containing compounds, see: Yu et al. (2010); Huang et al. (2011); Harris et al. (2005); Vintonyak et al. (2010); Badillo et al. (2010, 2011); Wang et al. (2010); Nair et al. (2002). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2011a,b,c,d).

Experimental top

The title compound was the main product from the acid-catalyzed transformation of the photocyclo adduct of isoquinoline-1,3,4-trione and 4-(2-(methylthio)ethyl)-5-methoxy-2-methyloxazole. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:4) as eluents. X-ray quality crystals of the title compound were obtained from slow evaporation of an acetone and petroleum ether solution (1:5) of the title compound (m.p. 440-142 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 - 0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). The highest residual electron density peak is located at 0.76 Å from C2 and the deepest hole is located at 0.70 Å from S1. The same Uij parameters were used for atom pair C15B/C16B. The methyl formate moiety (O4/O5/C15/C16) is disordered over two positions with refined site-occupancies of 0.882 (5) : 0.118 (5). All minor disordered components were refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. The minor component of disorder is shown as open bonds.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only the major disorder component is shown.
Methyl 2,2'-dimethyl-4'-[2-(methylsulfanyl)ethyl]-1,3-dioxo-2,3- dihydro-1H,4'H-spiro[isoquinoline-4,5'-oxazole]-4'-carboxylate top
Crystal data top
C18H20N2O5SF(000) = 792
Mr = 376.42Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4051 reflections
a = 15.0052 (15) Åθ = 2.8–32.2°
b = 8.4548 (8) ŵ = 0.21 mm1
c = 15.4915 (15) ÅT = 100 K
β = 114.621 (2)°Block, colourless
V = 1786.7 (3) Å30.18 × 0.17 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4063 independent reflections
Radiation source: fine-focus sealed tube3343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.963, Tmax = 0.971k = 1010
14571 measured reflectionsl = 2011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.5509P]
where P = (Fo2 + 2Fc2)/3
4063 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 0.37 e Å3
5 restraintsΔρmin = 0.32 e Å3
Crystal data top
C18H20N2O5SV = 1786.7 (3) Å3
Mr = 376.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0052 (15) ŵ = 0.21 mm1
b = 8.4548 (8) ÅT = 100 K
c = 15.4915 (15) Å0.18 × 0.17 × 0.14 mm
β = 114.621 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4063 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3343 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.971Rint = 0.046
14571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0425 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
4063 reflectionsΔρmin = 0.32 e Å3
251 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.27696 (3)1.10762 (5)0.32691 (3)0.02485 (13)
O10.33441 (10)0.50297 (14)0.39092 (8)0.0279 (3)
O20.46168 (9)0.36107 (18)0.18390 (11)0.0383 (3)
O30.14782 (8)0.46617 (13)0.26111 (8)0.0221 (3)
N10.39944 (10)0.44834 (16)0.28567 (10)0.0217 (3)
N20.10538 (10)0.70860 (16)0.19482 (10)0.0235 (3)
C10.32154 (12)0.47773 (18)0.30951 (11)0.0194 (3)
C20.38950 (12)0.38490 (19)0.19925 (12)0.0231 (3)
C30.28965 (11)0.33921 (18)0.13157 (11)0.0185 (3)
C40.27876 (13)0.24490 (19)0.05343 (12)0.0244 (4)
H4A0.33350.21560.04350.029*
C50.18662 (14)0.1955 (2)0.00886 (12)0.0295 (4)
H5A0.17920.13240.06060.035*
C60.10523 (14)0.2401 (2)0.00594 (13)0.0306 (4)
H6A0.04330.20560.03570.037*
C70.11511 (12)0.3360 (2)0.08231 (12)0.0248 (4)
H7A0.05990.36680.09100.030*
C80.20750 (11)0.38568 (17)0.14568 (11)0.0168 (3)
C90.22153 (11)0.49560 (18)0.22694 (11)0.0168 (3)
C100.08495 (13)0.5926 (2)0.23464 (13)0.0257 (4)
C110.20146 (11)0.67886 (18)0.19522 (11)0.0176 (3)
C120.27506 (12)0.79601 (18)0.26518 (11)0.0201 (3)
H12A0.27470.78400.32730.024*
H12B0.34050.77190.27100.024*
C130.24935 (14)0.96755 (19)0.23154 (12)0.0244 (4)
H13A0.17990.97360.19030.029*
H13B0.28510.99710.19440.029*
C140.40732 (16)1.0840 (2)0.38860 (16)0.0436 (5)
H14A0.43201.15410.44220.065*
H14B0.43761.10860.34650.065*
H14C0.42210.97670.41010.065*
O4A0.2865 (2)0.6950 (4)0.0984 (2)0.0223 (6)0.882 (5)
O5A0.1227 (3)0.7245 (6)0.0253 (2)0.0350 (8)0.882 (5)
C15A0.19637 (16)0.7028 (3)0.09603 (17)0.0182 (5)0.882 (5)
C16A0.29113 (18)0.7026 (3)0.00803 (15)0.0350 (6)0.882 (5)
H16A0.35830.69620.01690.053*0.882 (5)
H16B0.26330.80070.02250.053*0.882 (5)
H16C0.25490.61600.03080.053*0.882 (5)
O4B0.1389 (17)0.715 (4)0.0255 (17)0.018 (5)*0.118 (5)
O5B0.3045 (17)0.707 (4)0.114 (2)0.028 (7)*0.118 (5)
C15B0.2218 (18)0.697 (5)0.104 (2)0.045 (5)*0.118 (5)
C16B0.1512 (14)0.732 (2)0.0598 (13)0.045 (5)*0.118 (5)
H16D0.08830.74330.11210.067*0.118 (5)
H16E0.18340.63940.06950.067*0.118 (5)
H16F0.19050.82340.05560.067*0.118 (5)
C170.00079 (17)0.5767 (3)0.2584 (2)0.0491 (6)
H17A0.04110.66940.23770.074*
H17B0.02150.56500.32580.074*
H17C0.03830.48530.22700.074*
C180.49909 (13)0.4745 (2)0.35923 (15)0.0379 (5)
H18A0.54430.40750.34720.057*
H18B0.50080.45000.42040.057*
H18C0.51720.58320.35810.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0334 (2)0.0158 (2)0.0250 (2)0.00124 (15)0.01191 (19)0.00212 (15)
O10.0415 (7)0.0212 (6)0.0162 (6)0.0016 (5)0.0073 (5)0.0005 (4)
O20.0252 (7)0.0440 (8)0.0519 (9)0.0037 (6)0.0221 (7)0.0092 (7)
O30.0268 (6)0.0174 (6)0.0292 (6)0.0042 (4)0.0187 (5)0.0061 (5)
N10.0173 (6)0.0205 (7)0.0218 (7)0.0020 (5)0.0025 (6)0.0003 (5)
N20.0232 (7)0.0200 (7)0.0289 (8)0.0031 (5)0.0125 (6)0.0038 (6)
C10.0255 (8)0.0123 (7)0.0182 (8)0.0006 (6)0.0070 (7)0.0008 (6)
C20.0227 (8)0.0197 (8)0.0286 (9)0.0000 (6)0.0122 (7)0.0012 (6)
C30.0226 (8)0.0161 (7)0.0172 (7)0.0009 (6)0.0088 (6)0.0021 (6)
C40.0341 (9)0.0205 (8)0.0222 (8)0.0049 (7)0.0153 (7)0.0009 (6)
C50.0424 (10)0.0229 (9)0.0185 (8)0.0027 (7)0.0080 (8)0.0040 (6)
C60.0290 (9)0.0268 (9)0.0242 (9)0.0017 (7)0.0009 (8)0.0044 (7)
C70.0204 (8)0.0228 (8)0.0265 (9)0.0011 (6)0.0052 (7)0.0005 (7)
C80.0197 (7)0.0137 (7)0.0159 (7)0.0007 (5)0.0064 (6)0.0017 (5)
C90.0202 (7)0.0145 (7)0.0174 (7)0.0001 (5)0.0095 (6)0.0002 (5)
C100.0273 (9)0.0205 (8)0.0329 (9)0.0050 (6)0.0162 (8)0.0025 (7)
C110.0229 (8)0.0135 (7)0.0167 (7)0.0015 (6)0.0085 (6)0.0022 (6)
C120.0297 (8)0.0148 (7)0.0153 (7)0.0006 (6)0.0087 (7)0.0001 (6)
C130.0356 (9)0.0159 (8)0.0193 (8)0.0006 (6)0.0091 (7)0.0009 (6)
C140.0371 (11)0.0313 (10)0.0445 (12)0.0036 (8)0.0007 (10)0.0062 (9)
O4A0.0278 (14)0.0245 (10)0.0164 (12)0.0063 (10)0.0109 (10)0.0028 (9)
O5A0.0325 (15)0.0456 (15)0.0204 (10)0.0042 (14)0.0045 (10)0.0055 (7)
C15A0.0253 (12)0.0130 (9)0.0157 (10)0.0023 (10)0.0080 (10)0.0001 (7)
C16A0.0484 (14)0.0411 (13)0.0268 (11)0.0108 (10)0.0269 (10)0.0040 (9)
C170.0464 (12)0.0363 (11)0.0867 (18)0.0122 (9)0.0496 (13)0.0174 (11)
C180.0222 (9)0.0357 (11)0.0391 (11)0.0067 (7)0.0038 (8)0.0004 (9)
Geometric parameters (Å, º) top
S1—C141.795 (2)C11—C15B1.57 (3)
S1—C131.8019 (17)C12—C131.535 (2)
O1—C11.213 (2)C12—H12A0.9700
O2—C21.218 (2)C12—H12B0.9700
O3—C101.3706 (19)C13—H13A0.9700
O3—C91.4328 (18)C13—H13B0.9700
N1—C11.387 (2)C14—H14A0.9600
N1—C21.391 (2)C14—H14B0.9600
N1—C181.471 (2)C14—H14C0.9600
N2—C101.263 (2)O4A—C15A1.340 (3)
N2—C111.461 (2)O4A—C16A1.431 (4)
C1—C91.520 (2)O5A—C15A1.203 (4)
C2—C31.478 (2)C16A—H16A0.9600
C3—C81.395 (2)C16A—H16B0.9600
C3—C41.401 (2)C16A—H16C0.9600
C4—C51.380 (3)O4B—C15B1.336 (18)
C4—H4A0.9300O4B—C16B1.416 (19)
C5—C61.386 (3)O5B—C15B1.189 (19)
C5—H5A0.9300C16B—H16D0.9600
C6—C71.390 (3)C16B—H16E0.9600
C6—H6A0.9300C16B—H16F0.9600
C7—C81.389 (2)C17—H17A0.9600
C7—H7A0.9300C17—H17B0.9600
C8—C91.507 (2)C17—H17C0.9600
C9—C111.615 (2)C18—H18A0.9600
C10—C171.484 (3)C18—H18B0.9600
C11—C15A1.520 (3)C18—H18C0.9600
C11—C121.542 (2)
C14—S1—C13100.99 (9)C13—C12—H12A109.4
C10—O3—C9107.16 (12)C11—C12—H12A109.4
C1—N1—C2124.12 (13)C13—C12—H12B109.4
C1—N1—C18117.65 (15)C11—C12—H12B109.4
C2—N1—C18118.05 (15)H12A—C12—H12B108.0
C10—N2—C11107.72 (13)C12—C13—S1113.78 (11)
O1—C1—N1121.45 (15)C12—C13—H13A108.8
O1—C1—C9122.08 (15)S1—C13—H13A108.8
N1—C1—C9116.08 (13)C12—C13—H13B108.8
O2—C2—N1120.26 (16)S1—C13—H13B108.8
O2—C2—C3122.63 (16)H13A—C13—H13B107.7
N1—C2—C3116.99 (14)S1—C14—H14A109.5
C8—C3—C4120.20 (15)S1—C14—H14B109.5
C8—C3—C2121.07 (14)H14A—C14—H14B109.5
C4—C3—C2118.72 (14)S1—C14—H14C109.5
C5—C4—C3119.91 (16)H14A—C14—H14C109.5
C5—C4—H4A120.0H14B—C14—H14C109.5
C3—C4—H4A120.0C15A—O4A—C16A115.5 (3)
C4—C5—C6119.80 (16)O5A—C15A—O4A124.6 (3)
C4—C5—H5A120.1O5A—C15A—C11125.5 (2)
C6—C5—H5A120.1O4A—C15A—C11109.9 (2)
C5—C6—C7120.72 (16)O4A—C16A—H16A109.5
C5—C6—H6A119.6O4A—C16A—H16B109.5
C7—C6—H6A119.6H16A—C16A—H16B109.5
C8—C7—C6119.95 (16)O4A—C16A—H16C109.5
C8—C7—H7A120.0H16A—C16A—H16C109.5
C6—C7—H7A120.0H16B—C16A—H16C109.5
C7—C8—C3119.41 (15)C15B—O4B—C16B115 (2)
C7—C8—C9121.87 (14)O5B—C15B—O4B129 (3)
C3—C8—C9118.65 (14)O5B—C15B—C11118 (2)
O3—C9—C8109.92 (12)O4B—C15B—C11112 (2)
O3—C9—C1108.37 (12)O4B—C16B—H16D109.5
C8—C9—C1112.76 (12)O4B—C16B—H16E109.5
O3—C9—C11101.78 (11)H16D—C16B—H16E109.5
C8—C9—C11113.19 (12)O4B—C16B—H16F109.5
C1—C9—C11110.17 (12)H16D—C16B—H16F109.5
N2—C10—O3118.36 (15)H16E—C16B—H16F109.5
N2—C10—C17127.13 (16)C10—C17—H17A109.5
O3—C10—C17114.50 (15)C10—C17—H17B109.5
N2—C11—C15A109.81 (14)H17A—C17—H17B109.5
N2—C11—C12108.00 (13)C10—C17—H17C109.5
C15A—C11—C12110.16 (15)H17A—C17—H17C109.5
N2—C11—C15B122.6 (9)H17B—C17—H17C109.5
C12—C11—C15B102.6 (12)N1—C18—H18A109.5
N2—C11—C9103.00 (12)N1—C18—H18B109.5
C15A—C11—C9111.08 (15)H18A—C18—H18B109.5
C12—C11—C9114.46 (12)N1—C18—H18C109.5
C15B—C11—C9106.7 (15)H18A—C18—H18C109.5
C13—C12—C11111.29 (13)H18B—C18—H18C109.5
C2—N1—C1—O1165.16 (15)C10—N2—C11—C15A129.83 (18)
C18—N1—C1—O19.9 (2)C10—N2—C11—C12110.02 (15)
C2—N1—C1—C921.8 (2)C10—N2—C11—C15B131.3 (18)
C18—N1—C1—C9163.11 (14)C10—N2—C11—C911.44 (17)
C1—N1—C2—O2179.30 (16)O3—C9—C11—N213.71 (14)
C18—N1—C2—O24.2 (2)C8—C9—C11—N2104.20 (14)
C1—N1—C2—C33.2 (2)C1—C9—C11—N2128.52 (13)
C18—N1—C2—C3171.80 (15)O3—C9—C11—C15A131.21 (14)
O2—C2—C3—C8171.88 (16)C8—C9—C11—C15A13.30 (19)
N1—C2—C3—C812.2 (2)C1—C9—C11—C15A113.98 (16)
O2—C2—C3—C49.5 (3)O3—C9—C11—C12103.26 (14)
N1—C2—C3—C4166.48 (14)C8—C9—C11—C12138.83 (14)
C8—C3—C4—C51.1 (2)C1—C9—C11—C1211.55 (17)
C2—C3—C4—C5177.51 (16)O3—C9—C11—C15B144.0 (9)
C3—C4—C5—C60.3 (3)C8—C9—C11—C15B26.1 (9)
C4—C5—C6—C70.8 (3)C1—C9—C11—C15B101.2 (9)
C5—C6—C7—C81.1 (3)N2—C11—C12—C1364.30 (16)
C6—C7—C8—C30.3 (2)C15A—C11—C12—C1355.63 (19)
C6—C7—C8—C9177.18 (15)C15B—C11—C12—C1366.5 (13)
C4—C3—C8—C70.8 (2)C9—C11—C12—C13178.36 (13)
C2—C3—C8—C7177.81 (15)C11—C12—C13—S1145.74 (12)
C4—C3—C8—C9176.15 (14)C14—S1—C13—C1261.63 (15)
C2—C3—C8—C95.2 (2)C16A—O4A—C15A—O5A4.5 (5)
C10—O3—C9—C8108.91 (14)C16A—O4A—C15A—C11175.0 (2)
C10—O3—C9—C1127.45 (13)N2—C11—C15A—O5A8.1 (4)
C10—O3—C9—C1111.32 (15)C12—C11—C15A—O5A126.9 (4)
C7—C8—C9—O333.2 (2)C15B—C11—C15A—O5A178 (7)
C3—C8—C9—O3149.93 (13)C9—C11—C15A—O5A105.2 (4)
C7—C8—C9—C1154.22 (15)N2—C11—C15A—O4A172.3 (2)
C3—C8—C9—C128.89 (19)C12—C11—C15A—O4A53.5 (3)
C7—C8—C9—C1179.87 (18)C15B—C11—C15A—O4A2 (7)
C3—C8—C9—C1197.02 (16)C9—C11—C15A—O4A74.4 (3)
O1—C1—C9—O328.3 (2)C16B—O4B—C15B—O5B7 (7)
N1—C1—C9—O3158.75 (13)C16B—O4B—C15B—C11180 (2)
O1—C1—C9—C8150.20 (15)N2—C11—C15B—O5B163 (3)
N1—C1—C9—C836.83 (18)C15A—C11—C15B—O5B169 (11)
O1—C1—C9—C1182.28 (18)C12—C11—C15B—O5B42 (4)
N1—C1—C9—C1190.69 (15)C9—C11—C15B—O5B79 (4)
C11—N2—C10—O34.9 (2)N2—C11—C15B—O4B11 (4)
C11—N2—C10—C17174.1 (2)C15A—C11—C15B—O4B5 (5)
C9—O3—C10—N25.1 (2)C12—C11—C15B—O4B132 (3)
C9—O3—C10—C17175.80 (17)C9—C11—C15B—O4B107 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···O2i0.962.493.436 (2)167
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H20N2O5S
Mr376.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.0052 (15), 8.4548 (8), 15.4915 (15)
β (°) 114.621 (2)
V3)1786.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.18 × 0.17 × 0.14
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.963, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
14571, 4063, 3343
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.03
No. of reflections4063
No. of parameters251
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···O2i0.96002.49003.436 (2)167.00
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for a Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Program for New Century Excellent Talents in Universities (grant No. NCET-08-0271) of China is acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBadillo, J. J., Arevalo, G. E., Fettinger, J. C. & Franz, A. K. (2011). Org. Lett. 13, 418–421.  Web of Science CrossRef CAS Google Scholar
First citationBadillo, J. J., Hanhan, N. V. & Franz, A. K. (2010). Curr. Opin. Drug Discov. Dev. 13, 758–766.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011a). Acta Cryst. E67, o1271–o1272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011b). Acta Cryst. E67, o1273–o1274.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011c). Acta Cryst. E67, o1311–o1312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011d). Acta Cryst. E67, o1340–o1341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarris, P. A., Cheung, M., Hunter, R. N., Brown, M. L., Veal, J. M., Nolte, R. T., Wang, L., Liu, W., Crosby, R. M., Johnson, J. H., Epperly, A. H., Kumar, R., Luttrell, D. K. & Stafford, J. A. (2005). J. Med. Chem. 48, 1610–1619.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629–3631.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNair, V., Sethumadhavan, D., Nair, S. M., Viji, S. & Rath, P. (2002). Tetrahedron, 58, 3003–3007.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVintonyak, V., Warburg, K., Kruse, H., Grimme, S., Hübel, K., Rauh, D. & Waldmann, H. (2010). Angew. Chem. Int. Ed. 49, 5902–5905.  CAS Google Scholar
First citationWang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757–7768.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2216-o2217
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds