organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2360-o2361

Cyclo­linopeptide K butanol disolvate monohydrate

aCollege of Agriculture & Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8, bSaskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9, and cCanadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0X4
*Correspondence e-mail: gabriele.schatte@usask.ca, r.sammynaiken@usask.ca

(Received 20 July 2011; accepted 9 August 2011; online 17 August 2011)

The title compound, C56H83N9O11S·2C4H10O·H2O, is a butanol–water solvate of the cyclo­linopeptide cyclo(Metsulfone1-Leu2–Ile3–Pro4–Pro5–Phe6–Phe7–Val8–Ile9) (henceforth referred to as CLP-K) which was isolated from flax oil. All the amino acid residues are in an L configuration based on the CORN rule. The cyclic nona­peptide exhibits eight trans peptide bonds and one cis peptide bond observed between the two proline residues. The conformation is stabilized by an α- and a β-turn, each containing an N—H⋯O hydrogen bond between the carbonyl group O atom of the first residue and the amide group H atom of the fourth (α-turn) and the third residue (β-turn), repectively. In the crystal, the components of the structure are linked by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds into a two-dimensional network parallel to (001). The –C(H2)OH group of one of the butanol solvent mol­ecules is disordered over two sets of sites with refined occupancies of 0.863 (4) and 0.137 (4).

Related literature

For isolation of cyclo­linopeptides A to B, B to E, F to I and characterization by multi-dimensional NMR spectroscopy, see: Matsumoto et al. (2002[Matsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K. (2002). Tetrahedron, 58, 5135-5140.]); Morita et al. (1999[Morita, H., Shishido, A., Matsumoto, T., Itokawa, H. & Takeya, K. (1999). Tetrahedron, 55, 967-976.]); Matsumoto et al. (2001[Matsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K. (2001). Phytochemistry, 57, 251-260.]) respectively. For the isolation of the related cyclo­linopeptide A and its structure determination by single crystal X-ray diffraction in the presence of different solvates, see: Di Blasio et al. (1987[Di Blasio, B., Benedetti, E., Pavone, C. & Goodman, M. (1987). Biopolymers, 26, 2099-2102.], 1989[Di Blasio, B., Benedetti, E., Pavone, C. & Temussi, P. A. (1989). J. Am. Chem. Soc. 111, 9089-9092.]); Matsumoto et al. (2002[Matsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K. (2002). Tetrahedron, 58, 5135-5140.]); Quail et al. (2009[Quail, J. W., Shen, J., Reaney, M. J. T. & Sammynaiken, R. (2009). Acta Cryst. E65, o1913-o1914.]). For the synthesis of cyclo­peptides, see: Rovero et al. (1991[Rovero, P., Quartara, L. & Fabbri, G. (1991). Tetrahedron Lett. 32, 2639-2642.]); Ghadiri et al. (1993[Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. (1993). Nature (London), 366, 324-327.]). For immuno-suppressive activity of CLP-A, see: Wieczorek et al. (1991[Wieczorek, Z., Bengsston, B., Trojnar, I. & Siemion, I. Z. (1991). Pept. Res. 4, 275-283.]). For the cytoproctective ability of CLP-A, see: Gaymes et al. (1997[Gaymes, T. J., Cebrat, M., Siemion, I. Z. & Kay, J. E. (1997). FEBS Lett. 418, 224-227.]). For the biomolecular inter­action with human albumin of CLP-A, see: Rempel et al. (2010[Rempel, B., Gui, B., Maley, J., Reaney, M. & Sammynaiken, R. (2010). J. Biomed. Biotechnol. 2010, 1-8.]). For details of the absolute configuration, see: Cahn et al. (1966[Cahn, R. S., Ingold, C. K. & Prelog, V. (1966). Angew. Chem. Int. Ed. 5, 385-415.]); Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]); Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]); PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C56H83N9O11S·2C4H10O·H2O

  • Mr = 1256.63

  • Orthorhombic, P 21 21 21

  • a = 11.402 (9) Å

  • b = 23.521 (9) Å

  • c = 25.440 (7) Å

  • V = 6823 (6) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.68878 Å

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • 300mm 16K Rayonix MX300 HE CCD detector with an ACCEL MD2 microdiffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.989

  • 549120 measured reflections

  • 15641 independent reflections

  • 14786 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 1.07

  • 15641 reflections

  • 888 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 7070 Friedel pairs

  • Flack parameter: 0.13 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O3i 0.85 (3) 2.21 (3) 3.043 (3) 163 (2)
N2—H2D⋯O1i 0.81 (2) 2.29 (2) 2.972 (3) 141 (2)
N3—H3D⋯O11 0.91 (3) 2.16 (3) 3.005 (2) 154 (2)
N7—H7D⋯O5 0.84 (2) 2.14 (2) 2.862 (3) 144 (2)
N8—H8D⋯O60 0.82 (2) 2.07 (2) 2.847 (2) 161 (2)
N9—H9D⋯O60 0.72 (2) 2.49 (2) 3.203 (2) 169 (2)
O60—H60⋯O5 0.86 (3) 1.91 (3) 2.761 (2) 170 (3)
O70A—H70A⋯O6ii 0.84 2.18 2.795 (2) 130
O80—H80A⋯O7iii 0.99 (4) 1.95 (4) 2.906 (2) 159 (3)
O80—H80B⋯O8iv 0.97 (3) 1.95 (3) 2.869 (2) 157 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: MXDC (Canadian Light Source, 2007[Canadian Light Source (2007). MXDC (Macromolecular Crystallography Data Collector). Canadian Light Source, Saskatoon, Saskatchewan, Canada.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CAMERON (Watkin et al., 1993[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Flax seeds (bionamial name: Linum usitatassimum) contain mostly triglyceride oil (omega-3 fatty acids, and alpha-linolenic acid etc.), to lesser amounts lignans and very small amounts of hydrophobic cyclolinopeptides. These cyclo nonapeptides have attracted significant interest because of their various biological activities, most importantly because of their immuno-suppressive activity (Wieczorek et al., 1991), their cytoprotective ability, their inhibitory activity toward calcium-dependent activation of T-lymphocyte cell division (Gaymes et al., 1997), and their biomolecular interaction with human albumin (Rempel et al., 2010). The structures of nine different cyclolinopeptides (CLP-A to CLP-I) have been elucidated by two-dimensional FT-NMR spectroscopy (Matsumoto et al., 2002; Morita et al., 1999; Matsumoto et al., 2001). Only structures of CLP-A with different co-crystallized solvent molecules have been determined by single-crystal X-ray diffraction (Di Blasio et al., 1987, 1989); Matsumoto et al., 2002; Quail et al. 2009). The crystal structure of cyclo(Metsulfone1-Leu2—Ile3—Pro4—Pro5—Phe6—Phe7—Val8—Ile9), CLP-K, was determined as part of our efforts to obtain important information on the biological activity of flax seeds from different locations and strains.

All the amino acid residues in CLP-K are in the L configuration based on the CORN rule. This is also supported by the L configuration of the amino acid residues in the corresponding cyclolinopeptide C, cyclo(Metsulfoxide1-Leu2—Ile3—Pro4—Pro5—Phe6—Phe7—Val8—Ile9), determined using derivative chemistry (Morita et al., 1999). Applying the Cahn-Ingold-Prelog priority rules (Cahn et al., 1966), the configuration at the chiral α-C atom of each amino acid residue is S. The standard uncertainty u = 0.05 at Flack parameter x = 0.13 implies an enantiopure-sufficient inversion-distinguishing power and together with 2u < x < 3u one cannot say that the crystal is truly enantiopure (Flack & Bernardinelli, 2000). However, the results of the absolute structure determination based on Bayesian statistics on Bijvoet differences (Hooft et al., 2008) using PLATON (Spek, 2009) indicate that it is very probable that the absolute configuration has been correctly assigned. The obtained value for the absolute structure parameter y was 0.082 (9).

The cyclolinopeptide exhibits eight trans peptide bonds with values for ω ranging from 166.49 (14) to 179.30 (14)° (see Table 2) and one cis peptide bond observed between the two proline residues (ω = 1.5 (2)°) (see Table 2). The conformation of the cylic peptide is stabilized by an α- and β-turn each containing a hydrogen bond between the carbonyl oxygen of the first residue and the amide hydrogen of the fourth (α-turn) and the third residue (β-turn), repectively. The 51 NH···O=C contact bond (α-turn) involves the amide group of Phe7 and carbonyl group of Ile3 with the two cis bonded proline residues Pro4 and Pro5 being part of this α-turn. The β-turn, a 41 NH···O=C contact bond, is formed between the amide group of Ile3 and carbonyl group of Ile9. The presence of these turns leads to a twisted conformation of CLP-K with an almost V-shaped part at Pro5 as depicted in Fig. 2. The side chains of Metsulfone1, Leu2, Ile3, Phe6, Phe7, Val8, Ile9 all adopt the gauche(+) conformation based on their χ1 torsion angles (see Table 2).

One of the oxygen atoms (labelled as O(1)) of the CLP-K methylsufonyl group is linked to a symmetry-related CLP-K unit via a S=O···(H)N contact bond (see Table 1). In addition, the CLP-K units are connected via the water molecule through hydrogen bonds involving one carbonyl group of each peptide and the hydrogen atoms of the water molecule (see Table 1). These hydrogen bonds together with the S=O···(H)N interconnections are responsible for the formation of a two-dimensional network parallel to (001). The two butanol solvent molecules also form hydrogen bonds with CLP-K (see Table 1). The -C(H2)-OH group of one of the butanol solvent molecules is disordered over two sites with refined occupancies of 0.863 (4) and 0.137 (4). The anisotropic displacement parameters of the atoms O71A and O71B, C70A and C70B were constraint to be identical.

Related literature top

For isolation of cyclolinopeptides A to B, B to E, F to I and characterization by multi-dimensional NMR spectroscopy, see: Matsumoto et al. (2002); Morita et al. (1999); Matsumoto et al. (2001) respectively. For the isolation of the related cyclolinopeptide A and its structure determination by single crystal X-ray diffraction in the presence of different solvates, see: Di Blasio et al. (1987, 1989); Matsumoto et al. (2002); Quail et al. (2009). For the synthesis of cyclopeptides, see: Rovero et al. (1991); Ghadiri et al. (1993). For immuno-suppressive activity of CLP-A, see: Wieczorek et al. (1991). For the cytoproctective ability of CLP-A, see: Gaymes et al. (1997). For the biomolecular interaction with human albumin of CLP-A, see: Rempel et al. (2010). For details of the absolute configuration, see: Cahn et al. (1966); Flack & Bernardinelli (2000); Hooft et al. (2008); PLATON (Spek, 2009).

Experimental top

Crystals of CLP-K were obtained via vapor diffusion, also known as isothermal distillation, at ambient temperature. CLP-K (10 mg) was dissolved in butanol (50 µL) and multiple snowflake-like crystals of CLP-K started to form after fifteen days upon diffusion of n-hexane into the sample solution at ambient temperature. The crystalline material was redissolved by adding n-butanol (100 uL) and single rod-like crystals of CLP-K, suitable for crystallographic studies, were obtained after eight days.

Refinement top

A suitable single-crystal was removed from the solution, quickly coated with oil (Paratone 8277, Exxon), collected inside a mounted CryoLoopTM (diameter of the nylon fiber: 10 microns; loop diameter 0.1–0.2 mm) and then quickly transferred to the cold stream of the Oxford cryo-jet. The mounted CryoLoopTM had been attached prior to a copper wire (thickness, 0.6 mm; length: 18 mm) attached to a magnetic base using epoxy. Intensity data were collected at 100 K using the beamline 08B1–1 (CMCF-BM; Canadian Light Source, CLS) equipped with a ACCEL MD2 microdiffractometer and a 300 mm 16 K Rayonix MX300 HE CCD detector. The wavelength was set to 0.68878 Å and the distance between the detector and the crystal to 150 mm. The initial screening and data collection was performed with the Macromolecular Crystallography Data Collector (MXDC) graphical user interface. A series of data frames at 1° increments of ω were collected. The integrated intensity data were merged and corrected for absorption using SADABS (6, 1 harmonics). The final unit-cell parameters are based upon the refinement of the XYZ weighted centroids of 9248 reflections above 20 σ(I) with 4.67° < 2θ < 54.71°.

The C-bound H atoms, with the exception of the α-C-bound H atoms, were geometrically placed (C–H = 0.98–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The hydrogen atoms of the amine groups, the α-C-bound hydrogen atoms and the hydrogen atoms of one of the water molecules were located in the difference Fourier map and were allowed to refine freely. The hydrogen atom of the hydroxyl group in the disordered butanol solvent molecule was geometrically placed (O–H = 0.84 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The hydrogen atom of the hydroxyl group of the other butanol solvent molecule was located in the difference Fourier map and was allowed to refine freely.

Computing details top

Data collection: MXDC (Canadian Light Source, 2007); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure showing the labelling scheme and the inter- and intra-molecular hydrogen bonding. Hydrogen atoms have been omitted for clarity. The non-hydrogen atoms are represented by displacement ellipsoids at the 20% probability level. Symmetry transformations used to generate equivalent atoms: (i) x - 1/2, -y + 1/2, -z.
[Figure 2] Fig. 2. Secondary structure of CLP-K showing the α- and β- turn. The cartoon representation is traced along the backbone of CLP-K. Hydrogen atoms have been omitted for clarity.
Cyclolinopeptide K butanol disolvate monohydrate top
Crystal data top
C56H83N9O11S·2C4H10O·H2OF(000) = 2720
Mr = 1256.63Dx = 1.223 Mg m3
Orthorhombic, P212121Synchrotron radiation, λ = 0.68878 Å
Hall symbol: P 2ac 2abCell parameters from 9870 reflections
a = 11.402 (9) Åθ = 2.4–26.5°
b = 23.521 (9) ŵ = 0.12 mm1
c = 25.440 (7) ÅT = 100 K
V = 6823 (6) Å3Rod, colourless
Z = 40.15 × 0.12 × 0.10 mm
Data collection top
300mm 16K Rayonix MX300 HE CCD detector with an ACCEL MD2 microdiffractometer15641 independent reflections
Radiation source: Beamline 081B-1 at the CLS14786 reflections with I > 2σ(I)
Double crystal Si(111) monochromatorRint = 0.068
Detector resolution: 13.8 pixels mm-1θmax = 26.6°, θmin = 1.1°
CCD rotation images, ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 3030
Tmin = 0.983, Tmax = 0.989l = 3333
549120 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0428P)2 + 3.32078P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.68 e Å3
15641 reflectionsΔρmin = 0.27 e Å3
888 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0066 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 7070 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.13 (5)
Crystal data top
C56H83N9O11S·2C4H10O·H2OV = 6823 (6) Å3
Mr = 1256.63Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.68878 Å
a = 11.402 (9) ŵ = 0.12 mm1
b = 23.521 (9) ÅT = 100 K
c = 25.440 (7) Å0.15 × 0.12 × 0.10 mm
Data collection top
300mm 16K Rayonix MX300 HE CCD detector with an ACCEL MD2 microdiffractometer15641 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
14786 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.989Rint = 0.068
549120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.68 e Å3
S = 1.07Δρmin = 0.27 e Å3
15641 reflectionsAbsolute structure: Flack (1983), 7070 Friedel pairs
888 parametersAbsolute structure parameter: 0.13 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.06845 (4)0.127042 (18)0.090277 (17)0.02233 (9)
O10.17707 (11)0.11209 (5)0.06398 (5)0.0271 (3)
O20.07595 (14)0.16630 (6)0.13357 (6)0.0354 (3)
O30.08897 (10)0.29370 (5)0.04562 (5)0.0195 (2)
O40.13526 (13)0.43495 (7)0.08748 (6)0.0363 (3)
O50.00833 (10)0.52881 (5)0.04376 (5)0.0217 (2)
O60.23894 (11)0.60979 (5)0.08609 (5)0.0254 (3)
O70.14169 (11)0.73331 (5)0.00361 (5)0.0235 (3)
O80.39874 (10)0.61559 (5)0.04670 (5)0.0236 (3)
O90.46130 (11)0.48642 (5)0.00112 (5)0.0241 (3)
O100.49071 (11)0.35178 (5)0.09127 (5)0.0249 (3)
O110.07474 (10)0.33509 (5)0.06117 (5)0.0205 (2)
N10.17591 (13)0.26283 (6)0.02387 (6)0.0181 (3)
H1D0.236 (2)0.2415 (11)0.0257 (10)0.039 (7)*
N20.08840 (13)0.33307 (6)0.05879 (6)0.0182 (3)
H2D0.159 (2)0.3328 (9)0.0533 (9)0.027 (6)*
N30.04192 (13)0.41929 (6)0.01064 (6)0.0191 (3)
H3D0.013 (2)0.3973 (11)0.0051 (10)0.040 (7)*
N40.17491 (12)0.54896 (6)0.00023 (6)0.0187 (3)
N50.12916 (13)0.68641 (6)0.06591 (6)0.0192 (3)
N60.10867 (13)0.67134 (6)0.07003 (6)0.0198 (3)
H6D0.058 (2)0.6570 (10)0.0901 (10)0.035 (6)*
N70.22187 (13)0.57544 (6)0.03130 (6)0.0187 (3)
H7D0.149 (2)0.5777 (9)0.0358 (8)0.020 (5)*
N80.35439 (13)0.48453 (6)0.07367 (6)0.0194 (3)
H8D0.289 (2)0.4905 (9)0.0850 (9)0.023 (5)*
N90.29706 (13)0.37135 (6)0.09964 (6)0.0184 (3)
H9D0.2520 (19)0.3925 (9)0.1032 (8)0.018 (5)*
C10.07734 (15)0.24387 (7)0.00892 (6)0.0181 (3)
H10.1088 (18)0.2196 (9)0.0359 (8)0.021 (5)*
C20.01456 (15)0.21152 (7)0.02323 (7)0.0193 (3)
H2A0.03830.23500.05370.023*
H2B0.08490.20510.00120.023*
C30.03106 (15)0.15447 (7)0.04287 (7)0.0199 (3)
H3A0.10950.15940.05890.024*
H3B0.03830.12760.01310.024*
C40.00104 (19)0.06480 (8)0.11222 (7)0.0286 (4)
H4A0.08060.07390.12410.034*
H4B0.00500.03730.08340.034*
H4C0.04370.04850.14140.034*
C50.01818 (14)0.29271 (7)0.03886 (6)0.0173 (3)
C60.04216 (15)0.37934 (7)0.09113 (7)0.0202 (3)
H60.1004 (17)0.4084 (8)0.0936 (8)0.016 (5)*
C70.00408 (17)0.35989 (8)0.14566 (7)0.0271 (4)
H7A0.03940.39130.16280.033*
H7B0.05070.32750.14170.033*
C80.10494 (19)0.34175 (8)0.18180 (7)0.0302 (4)
H80.15460.31320.16300.036*
C90.0533 (3)0.31392 (14)0.23131 (10)0.0657 (9)
H9A0.00680.34200.25070.079*
H9B0.00310.28200.22110.079*
H9C0.11720.30010.25370.079*
C100.18107 (19)0.39122 (9)0.19816 (8)0.0329 (4)
H10A0.13280.41970.21610.039*
H10B0.24250.37780.22210.039*
H10C0.21720.40820.16700.039*
C110.05535 (16)0.41260 (7)0.06280 (7)0.0222 (3)
C120.13120 (15)0.44886 (7)0.02026 (7)0.0196 (3)
H120.2079 (16)0.4453 (8)0.0012 (7)0.011 (4)*
C130.14060 (15)0.42277 (7)0.07553 (7)0.0214 (3)
H130.05950.41670.08940.026*
C140.20542 (18)0.46237 (8)0.11314 (8)0.0291 (4)
H14A0.16220.49820.11630.035*
H14B0.21140.44440.14780.035*
H14C0.28430.46990.09950.035*
C150.20159 (16)0.36443 (7)0.07129 (7)0.0241 (4)
H15A0.28560.37050.06310.029*
H15B0.16650.34300.04170.029*
C160.1920 (2)0.32872 (9)0.12116 (8)0.0334 (4)
H16A0.10920.32400.13050.040*
H16B0.22730.29130.11510.040*
H16C0.23330.34790.14990.040*
C170.10061 (14)0.51252 (7)0.02211 (6)0.0185 (3)
C180.28831 (15)0.53559 (7)0.02517 (8)0.0242 (4)
H18A0.33840.51240.00170.029*
H18B0.27630.51490.05860.029*
C190.34284 (15)0.59379 (7)0.03497 (8)0.0255 (4)
H19A0.39250.60550.00490.031*
H19B0.39110.59360.06730.031*
C200.23707 (15)0.63339 (7)0.04102 (7)0.0232 (3)
H20A0.25860.67330.03340.028*
H20B0.20380.63110.07690.028*
C210.15010 (14)0.61022 (7)0.00013 (7)0.0183 (3)
H210.0659 (18)0.6162 (8)0.0107 (8)0.020 (5)*
C220.17600 (14)0.63503 (7)0.05464 (7)0.0191 (3)
C230.16410 (17)0.71832 (8)0.11377 (7)0.0248 (4)
H23A0.14160.69740.14600.030*
H23B0.24970.72520.11430.030*
C240.09648 (17)0.77413 (7)0.10923 (7)0.0261 (4)
H24A0.01940.77140.12690.031*
H24B0.14140.80600.12480.031*
C250.08167 (16)0.78212 (7)0.04989 (7)0.0231 (3)
H25A0.01470.80750.04190.028*
H25B0.15370.79800.03390.028*
C260.05830 (15)0.72114 (7)0.03017 (7)0.0200 (3)
H260.0833 (18)0.7144 (8)0.0064 (8)0.021 (5)*
C270.07336 (15)0.70872 (7)0.03343 (7)0.0195 (3)
C280.23268 (14)0.66436 (7)0.08197 (7)0.0194 (3)
H280.2752 (17)0.6983 (8)0.0714 (7)0.013 (4)*
C290.25020 (17)0.65554 (7)0.14107 (7)0.0241 (4)
H29A0.20970.62020.15200.029*
H29B0.33490.65080.14840.029*
C300.20363 (16)0.70476 (8)0.17311 (7)0.0249 (4)
C310.24759 (19)0.75914 (9)0.16578 (8)0.0320 (4)
H310.30560.76570.13970.038*
C320.2071 (2)0.80423 (9)0.19648 (10)0.0423 (5)
H320.23620.84160.19070.051*
C330.1246 (2)0.79445 (11)0.23530 (9)0.0452 (6)
H330.09820.82490.25670.054*
C340.0809 (2)0.74078 (12)0.24280 (9)0.0473 (6)
H340.02480.73410.26970.057*
C350.11831 (19)0.69604 (9)0.21119 (8)0.0353 (5)
H350.08530.65930.21570.042*
C360.29122 (15)0.61622 (7)0.05117 (7)0.0202 (3)
C370.27005 (15)0.53101 (7)0.00266 (7)0.0196 (3)
H370.2069 (18)0.5028 (8)0.0056 (8)0.016 (5)*
C380.30238 (16)0.55437 (8)0.05705 (7)0.0240 (4)
H38A0.35550.58730.05270.029*
H38B0.34530.52470.07690.029*
C390.19690 (15)0.57258 (7)0.08839 (7)0.0221 (3)
C400.1399 (2)0.53331 (8)0.11996 (8)0.0338 (4)
H400.16770.49530.12120.041*
C410.0432 (2)0.54846 (10)0.14979 (10)0.0432 (5)
H410.00480.52080.17090.052*
C420.00256 (19)0.60398 (9)0.14873 (8)0.0356 (4)
H420.06320.61470.16940.043*
C430.05820 (18)0.64371 (8)0.11743 (8)0.0294 (4)
H430.03090.68190.11660.035*
C440.15384 (16)0.62784 (7)0.08726 (7)0.0244 (3)
H440.19070.65520.06540.029*
C450.37290 (15)0.49933 (7)0.02332 (7)0.0192 (3)
C460.43758 (15)0.44978 (7)0.10252 (6)0.0193 (3)
H460.5132 (19)0.4548 (9)0.0867 (8)0.020 (5)*
C470.44064 (16)0.46801 (8)0.16082 (7)0.0245 (4)
H470.35920.46510.17520.029*
C480.4794 (2)0.53018 (9)0.16478 (9)0.0382 (5)
H48A0.48220.54150.20180.046*
H48B0.42340.55430.14590.046*
H48C0.55740.53450.14910.046*
C490.52034 (17)0.43021 (8)0.19405 (7)0.0276 (4)
H49A0.60170.43470.18240.033*
H49B0.49660.39040.19000.033*
H49C0.51390.44120.23110.033*
C500.41129 (14)0.38636 (7)0.09661 (6)0.0188 (3)
C510.26020 (15)0.31211 (7)0.10027 (6)0.0175 (3)
H510.3301 (17)0.2884 (8)0.0892 (8)0.015 (4)*
C520.21596 (15)0.29313 (7)0.15511 (6)0.0202 (3)
H520.14360.31540.16360.024*
C530.18312 (18)0.23028 (8)0.15318 (7)0.0266 (4)
H53A0.24790.20850.13780.032*
H53B0.11270.22540.13160.032*
H53C0.16760.21660.18890.032*
C540.30799 (17)0.30602 (8)0.19729 (7)0.0265 (4)
H54A0.38150.28600.18810.032*
H54B0.32470.34730.19690.032*
C550.2724 (2)0.28895 (10)0.25270 (8)0.0367 (5)
H55A0.19250.30220.25970.044*
H55B0.32650.30620.27810.044*
H55C0.27540.24750.25600.044*
C560.16265 (14)0.30451 (7)0.05998 (6)0.0168 (3)
O600.12773 (12)0.47775 (6)0.12012 (5)0.0297 (3)
H600.079 (3)0.4921 (13)0.0981 (12)0.057 (8)*
C610.1074 (2)0.49805 (9)0.17215 (8)0.0353 (4)
H61A0.03410.52060.17280.042*
H61B0.17270.52330.18280.042*
C620.09782 (19)0.44943 (9)0.21069 (8)0.0328 (4)
H62A0.16640.42410.20630.039*
H62B0.02650.42710.20260.039*
C630.0921 (2)0.46934 (10)0.26723 (9)0.0410 (5)
H63A0.16350.49170.27510.049*
H63B0.02380.49500.27130.049*
C640.0819 (3)0.42177 (10)0.30675 (9)0.0476 (6)
H64A0.01210.39900.29900.057*
H64B0.07530.43780.34220.057*
H64C0.15180.39760.30480.057*
O70A0.1247 (2)0.09480 (8)0.31769 (7)0.0434 (6)0.863 (4)
H70A0.12760.11540.34460.052*0.863 (4)
C71A0.1982 (3)0.11838 (12)0.27765 (10)0.0463 (8)0.863 (4)
H71A0.27990.12100.29070.056*0.863 (4)
H71B0.17120.15720.26880.056*0.863 (4)
O70B0.2098 (14)0.0817 (5)0.3176 (4)0.0434 (6)0.137 (4)
H70B0.24020.09650.34440.052*0.137 (4)
C71B0.266 (2)0.1064 (8)0.2685 (7)0.0463 (8)0.137 (4)
H71C0.26090.14840.26790.056*0.137 (4)
H71D0.34910.09470.26520.056*0.137 (4)
C720.1942 (2)0.08097 (10)0.22855 (9)0.0414 (5)
H72A0.11150.07740.21710.050*
H72B0.23780.10030.20010.050*
C730.2445 (3)0.02210 (11)0.23559 (10)0.0499 (6)
H73A0.20370.00320.26520.060*
H73B0.32840.02550.24510.060*
C740.2337 (2)0.01505 (10)0.18712 (11)0.0489 (6)
H74A0.15070.01990.17820.059*
H74B0.26880.05230.19420.059*
H74C0.27470.00300.15770.059*
O800.48874 (14)0.21728 (6)0.41673 (6)0.0350 (3)
H80A0.439 (3)0.2245 (14)0.4479 (14)0.075 (10)*
H80B0.506 (3)0.1789 (13)0.4284 (12)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0253 (2)0.01835 (18)0.0233 (2)0.00384 (16)0.00250 (17)0.00053 (16)
O10.0224 (6)0.0243 (6)0.0345 (7)0.0015 (5)0.0004 (5)0.0024 (5)
O20.0452 (8)0.0292 (7)0.0320 (7)0.0096 (7)0.0143 (7)0.0108 (6)
O30.0193 (6)0.0169 (5)0.0223 (6)0.0013 (4)0.0007 (5)0.0008 (4)
O40.0384 (8)0.0424 (8)0.0281 (7)0.0204 (7)0.0000 (6)0.0053 (6)
O50.0183 (6)0.0194 (6)0.0272 (6)0.0022 (5)0.0012 (5)0.0026 (5)
O60.0271 (6)0.0229 (6)0.0261 (6)0.0041 (5)0.0055 (5)0.0012 (5)
O70.0219 (6)0.0206 (6)0.0280 (6)0.0004 (5)0.0029 (5)0.0033 (5)
O80.0185 (6)0.0193 (6)0.0329 (7)0.0018 (5)0.0007 (5)0.0025 (5)
O90.0220 (6)0.0267 (6)0.0236 (6)0.0032 (5)0.0039 (5)0.0030 (5)
O100.0203 (6)0.0220 (6)0.0323 (7)0.0033 (5)0.0014 (5)0.0025 (5)
O110.0199 (6)0.0201 (5)0.0214 (6)0.0037 (5)0.0001 (5)0.0029 (5)
N10.0155 (6)0.0160 (6)0.0230 (7)0.0016 (5)0.0004 (5)0.0011 (5)
N20.0176 (7)0.0168 (6)0.0201 (7)0.0017 (5)0.0009 (5)0.0001 (5)
N30.0204 (7)0.0160 (6)0.0210 (7)0.0010 (5)0.0032 (5)0.0001 (5)
N40.0174 (6)0.0141 (6)0.0246 (7)0.0001 (5)0.0009 (6)0.0032 (5)
N50.0217 (7)0.0156 (6)0.0205 (7)0.0001 (5)0.0005 (6)0.0023 (5)
N60.0171 (7)0.0178 (7)0.0246 (7)0.0007 (5)0.0002 (6)0.0022 (6)
N70.0163 (7)0.0157 (6)0.0241 (7)0.0010 (5)0.0025 (6)0.0003 (5)
N80.0158 (7)0.0194 (7)0.0229 (7)0.0013 (5)0.0019 (6)0.0002 (5)
N90.0170 (7)0.0160 (6)0.0222 (7)0.0025 (6)0.0005 (5)0.0006 (5)
C10.0190 (8)0.0151 (7)0.0202 (8)0.0004 (6)0.0004 (6)0.0024 (6)
C20.0190 (8)0.0155 (7)0.0235 (8)0.0002 (6)0.0003 (6)0.0001 (6)
C30.0218 (8)0.0152 (7)0.0225 (8)0.0011 (6)0.0009 (6)0.0003 (6)
C40.0374 (10)0.0231 (9)0.0253 (9)0.0056 (8)0.0084 (8)0.0053 (7)
C50.0220 (8)0.0154 (7)0.0144 (7)0.0003 (6)0.0015 (6)0.0037 (6)
C60.0230 (8)0.0186 (8)0.0189 (8)0.0007 (6)0.0023 (6)0.0025 (6)
C70.0277 (9)0.0356 (10)0.0180 (8)0.0003 (8)0.0035 (7)0.0001 (7)
C80.0376 (11)0.0292 (9)0.0237 (9)0.0043 (8)0.0095 (8)0.0055 (7)
C90.078 (2)0.080 (2)0.0394 (13)0.0420 (17)0.0269 (13)0.0311 (14)
C100.0383 (11)0.0341 (10)0.0262 (9)0.0027 (9)0.0080 (8)0.0004 (8)
C110.0255 (8)0.0188 (7)0.0225 (8)0.0031 (7)0.0035 (7)0.0033 (6)
C120.0187 (8)0.0157 (7)0.0243 (8)0.0012 (6)0.0036 (6)0.0026 (6)
C130.0221 (8)0.0182 (8)0.0239 (8)0.0013 (6)0.0059 (7)0.0013 (6)
C140.0310 (10)0.0235 (9)0.0328 (10)0.0010 (8)0.0115 (8)0.0046 (7)
C150.0238 (8)0.0194 (8)0.0293 (9)0.0026 (7)0.0050 (7)0.0004 (7)
C160.0393 (11)0.0260 (9)0.0349 (11)0.0017 (8)0.0117 (9)0.0059 (8)
C170.0189 (8)0.0170 (7)0.0198 (8)0.0007 (6)0.0042 (6)0.0004 (6)
C180.0181 (8)0.0196 (8)0.0348 (10)0.0005 (6)0.0065 (7)0.0035 (7)
C190.0193 (8)0.0229 (9)0.0343 (10)0.0039 (7)0.0056 (7)0.0031 (7)
C200.0252 (8)0.0205 (8)0.0238 (8)0.0024 (7)0.0030 (7)0.0006 (7)
C210.0186 (8)0.0135 (7)0.0227 (8)0.0001 (6)0.0004 (6)0.0005 (6)
C220.0174 (7)0.0188 (8)0.0211 (8)0.0013 (6)0.0007 (6)0.0003 (6)
C230.0279 (9)0.0240 (9)0.0226 (8)0.0001 (7)0.0013 (7)0.0070 (7)
C240.0276 (9)0.0196 (8)0.0311 (9)0.0022 (7)0.0022 (7)0.0063 (7)
C250.0240 (8)0.0143 (7)0.0311 (9)0.0039 (6)0.0019 (7)0.0023 (6)
C260.0209 (8)0.0152 (7)0.0239 (8)0.0006 (6)0.0014 (7)0.0000 (6)
C270.0211 (8)0.0134 (7)0.0239 (8)0.0007 (6)0.0012 (7)0.0020 (6)
C280.0180 (8)0.0156 (7)0.0247 (8)0.0012 (6)0.0020 (6)0.0005 (6)
C290.0289 (9)0.0207 (8)0.0228 (8)0.0044 (7)0.0014 (7)0.0020 (7)
C300.0275 (9)0.0269 (9)0.0204 (8)0.0050 (7)0.0033 (7)0.0005 (7)
C310.0357 (10)0.0286 (10)0.0318 (10)0.0020 (8)0.0018 (8)0.0063 (8)
C320.0514 (14)0.0319 (11)0.0437 (12)0.0019 (10)0.0018 (10)0.0141 (9)
C330.0570 (14)0.0497 (14)0.0288 (11)0.0218 (12)0.0016 (10)0.0130 (10)
C340.0513 (14)0.0628 (16)0.0277 (10)0.0218 (13)0.0092 (10)0.0041 (10)
C350.0373 (11)0.0379 (11)0.0308 (10)0.0084 (9)0.0054 (8)0.0092 (9)
C360.0215 (8)0.0169 (8)0.0221 (8)0.0003 (6)0.0004 (6)0.0017 (6)
C370.0210 (8)0.0165 (7)0.0213 (8)0.0006 (6)0.0021 (6)0.0000 (6)
C380.0245 (8)0.0259 (9)0.0216 (8)0.0008 (7)0.0030 (7)0.0021 (7)
C390.0260 (8)0.0217 (8)0.0186 (8)0.0021 (7)0.0020 (7)0.0004 (7)
C400.0477 (12)0.0190 (9)0.0346 (11)0.0013 (8)0.0064 (9)0.0025 (8)
C410.0526 (14)0.0336 (11)0.0433 (12)0.0055 (10)0.0207 (11)0.0062 (9)
C420.0344 (10)0.0382 (11)0.0341 (10)0.0009 (9)0.0120 (9)0.0008 (9)
C430.0324 (10)0.0243 (9)0.0313 (10)0.0013 (8)0.0028 (8)0.0017 (7)
C440.0252 (8)0.0209 (8)0.0272 (9)0.0037 (7)0.0028 (7)0.0023 (7)
C450.0196 (8)0.0156 (7)0.0225 (8)0.0034 (6)0.0007 (6)0.0027 (6)
C460.0175 (8)0.0189 (7)0.0216 (8)0.0007 (6)0.0011 (6)0.0017 (6)
C470.0197 (8)0.0314 (9)0.0224 (8)0.0027 (7)0.0008 (7)0.0066 (7)
C480.0462 (12)0.0271 (10)0.0413 (12)0.0068 (9)0.0163 (10)0.0155 (9)
C490.0267 (9)0.0344 (10)0.0218 (8)0.0036 (8)0.0026 (7)0.0005 (7)
C500.0203 (8)0.0200 (8)0.0162 (7)0.0002 (6)0.0017 (6)0.0018 (6)
C510.0191 (8)0.0154 (7)0.0180 (8)0.0009 (6)0.0005 (6)0.0001 (6)
C520.0223 (8)0.0189 (8)0.0193 (8)0.0001 (7)0.0008 (6)0.0009 (6)
C530.0335 (10)0.0217 (9)0.0246 (9)0.0057 (7)0.0005 (7)0.0024 (7)
C540.0306 (10)0.0259 (9)0.0230 (9)0.0034 (7)0.0047 (7)0.0028 (7)
C550.0521 (13)0.0361 (11)0.0220 (9)0.0121 (10)0.0057 (9)0.0018 (8)
C560.0182 (7)0.0153 (7)0.0169 (7)0.0015 (6)0.0013 (6)0.0021 (6)
O600.0260 (7)0.0390 (8)0.0240 (7)0.0023 (6)0.0003 (5)0.0047 (6)
C610.0364 (11)0.0348 (11)0.0348 (11)0.0001 (9)0.0036 (9)0.0015 (8)
C620.0385 (11)0.0292 (9)0.0307 (10)0.0008 (8)0.0027 (8)0.0001 (8)
C630.0502 (13)0.0375 (11)0.0351 (11)0.0014 (10)0.0015 (10)0.0061 (9)
C640.0701 (17)0.0427 (13)0.0301 (11)0.0020 (12)0.0021 (11)0.0019 (9)
O70A0.0668 (15)0.0371 (10)0.0263 (8)0.0151 (10)0.0020 (9)0.0046 (7)
C71A0.077 (2)0.0348 (14)0.0267 (12)0.0196 (15)0.0023 (14)0.0052 (10)
O70B0.0668 (15)0.0371 (10)0.0263 (8)0.0151 (10)0.0020 (9)0.0046 (7)
C71B0.077 (2)0.0348 (14)0.0267 (12)0.0196 (15)0.0023 (14)0.0052 (10)
C720.0598 (15)0.0380 (11)0.0265 (10)0.0095 (10)0.0087 (10)0.0084 (9)
C730.0518 (15)0.0502 (14)0.0476 (14)0.0056 (12)0.0093 (12)0.0144 (11)
C740.0496 (14)0.0368 (12)0.0602 (15)0.0073 (11)0.0145 (12)0.0087 (11)
O800.0414 (8)0.0280 (7)0.0356 (8)0.0076 (6)0.0023 (7)0.0023 (6)
Geometric parameters (Å, º) top
S1—O21.4398 (14)C25—H25B0.9900
S1—O11.4509 (16)C26—C271.532 (3)
S1—C41.756 (2)C26—H260.99 (2)
S1—C31.7772 (18)C28—C361.530 (2)
O3—C51.234 (2)C28—C291.531 (2)
O4—C111.225 (2)C28—H280.97 (2)
O5—C171.248 (2)C29—C301.512 (3)
O6—C221.228 (2)C29—H29A0.9900
O7—C271.231 (2)C29—H29B0.9900
O8—C361.231 (2)C30—C311.386 (3)
O9—C451.223 (2)C30—C351.388 (3)
O10—C501.225 (2)C31—C321.396 (3)
O11—C561.234 (2)C31—H310.9500
N1—C561.352 (2)C32—C331.384 (4)
N1—C11.469 (2)C32—H320.9500
N1—H1D0.85 (3)C33—C341.370 (4)
N2—C51.341 (2)C33—H330.9500
N2—C61.463 (2)C34—C351.391 (3)
N2—H2D0.81 (2)C34—H340.9500
N3—C111.345 (2)C35—H350.9500
N3—C121.462 (2)C37—C381.534 (2)
N3—H3D0.91 (3)C37—C451.538 (2)
N4—C171.327 (2)C37—H370.98 (2)
N4—C211.468 (2)C38—C391.505 (3)
N4—C181.479 (2)C38—H38A0.9900
N5—C221.352 (2)C38—H38B0.9900
N5—C261.465 (2)C39—C401.386 (3)
N5—C231.485 (2)C39—C441.390 (3)
N6—C271.343 (2)C40—C411.385 (3)
N6—C281.456 (2)C40—H400.9500
N6—H6D0.84 (3)C41—C421.386 (3)
N7—C361.342 (2)C41—H410.9500
N7—C371.463 (2)C42—C431.382 (3)
N7—H7D0.84 (2)C42—H420.9500
N8—C451.344 (2)C43—C441.385 (3)
N8—C461.452 (2)C43—H430.9500
N8—H8D0.82 (2)C44—H440.9500
N9—C501.352 (2)C46—C501.529 (2)
N9—C511.455 (2)C46—C471.544 (2)
N9—H9D0.72 (2)C46—H460.96 (2)
C1—C21.532 (2)C47—C491.527 (3)
C1—C51.535 (2)C47—C481.531 (3)
C1—H10.96 (2)C47—H471.0000
C2—C31.523 (2)C48—H48A0.9800
C2—H2A0.9900C48—H48B0.9800
C2—H2B0.9900C48—H48C0.9800
C3—H3A0.9900C49—H49A0.9800
C3—H3B0.9900C49—H49B0.9800
C4—H4A0.9800C49—H49C0.9800
C4—H4B0.9800C51—C561.523 (2)
C4—H4C0.9800C51—C521.549 (2)
C6—C71.524 (2)C51—H511.01 (2)
C6—C111.539 (2)C52—C531.526 (2)
C6—H60.95 (2)C52—C541.531 (3)
C7—C81.533 (3)C52—H521.0000
C7—H7A0.9900C53—H53A0.9800
C7—H7B0.9900C53—H53B0.9800
C8—C101.510 (3)C53—H53C0.9800
C8—C91.537 (3)C54—C551.521 (3)
C8—H81.0000C54—H54A0.9900
C9—H9A0.9800C54—H54B0.9900
C9—H9B0.9800C55—H55A0.9800
C9—H9C0.9800C55—H55B0.9800
C10—H10A0.9800C55—H55C0.9800
C10—H10B0.9800O60—C611.426 (3)
C10—H10C0.9800O60—H600.86 (3)
C12—C131.538 (2)C61—C621.510 (3)
C12—C171.538 (2)C61—H61A0.9900
C12—H121.003 (19)C61—H61B0.9900
C13—C141.526 (2)C62—C631.514 (3)
C13—C151.542 (2)C62—H62A0.9900
C13—H131.0000C62—H62B0.9900
C14—H14A0.9800C63—C641.509 (3)
C14—H14B0.9800C63—H63A0.9900
C14—H14C0.9800C63—H63B0.9900
C15—C161.525 (3)C64—H64A0.9800
C15—H15A0.9900C64—H64B0.9800
C15—H15B0.9900C64—H64C0.9800
C16—H16A0.9800O70A—C71A1.431 (3)
C16—H16B0.9800O70A—H70A0.8400
C16—H16C0.9800C71A—C721.529 (4)
C18—C191.524 (2)C71A—H71A0.9900
C18—H18A0.9900C71A—H71B0.9900
C18—H18B0.9900O70B—C71B1.52 (2)
C19—C201.532 (3)O70B—H70B0.8400
C19—H19A0.9900C71B—C721.436 (19)
C19—H19B0.9900C71B—H71C0.9900
C20—C211.542 (2)C71B—H71D0.9900
C20—H20A0.9900C72—C731.509 (3)
C20—H20B0.9900C72—H72A0.9900
C21—C221.533 (2)C72—H72B0.9900
C21—H211.01 (2)C73—C741.516 (4)
C23—C241.527 (3)C73—H73A0.9900
C23—H23A0.9900C73—H73B0.9900
C23—H23B0.9900C74—H74A0.9800
C24—C251.531 (3)C74—H74B0.9800
C24—H24A0.9900C74—H74C0.9800
C24—H24B0.9900O80—H80A0.99 (4)
C25—C261.543 (2)O80—H80B0.97 (3)
C25—H25A0.9900
O2—S1—O1117.22 (9)C36—C28—H28104.4 (11)
O2—S1—C4108.57 (10)C29—C28—H28108.5 (11)
O1—S1—C4109.25 (9)C30—C29—C28112.32 (14)
O2—S1—C3108.92 (8)C30—C29—H29A109.1
O1—S1—C3108.67 (9)C28—C29—H29A109.1
C4—S1—C3103.32 (10)C30—C29—H29B109.1
C56—N1—C1121.36 (14)C28—C29—H29B109.1
C56—N1—H1D118.7 (17)H29A—C29—H29B107.9
C1—N1—H1D118.0 (17)C31—C30—C35118.92 (18)
C5—N2—C6121.61 (15)C31—C30—C29120.46 (17)
C5—N2—H2D121.1 (16)C35—C30—C29120.60 (18)
C6—N2—H2D117.3 (16)C30—C31—C32120.4 (2)
C11—N3—C12120.45 (15)C30—C31—H31119.8
C11—N3—H3D116.6 (16)C32—C31—H31119.8
C12—N3—H3D121.1 (16)C33—C32—C31119.9 (2)
C17—N4—C21120.75 (14)C33—C32—H32120.1
C17—N4—C18127.14 (14)C31—C32—H32120.1
C21—N4—C18112.10 (13)C34—C33—C32120.0 (2)
C22—N5—C26125.77 (14)C34—C33—H33120.0
C22—N5—C23121.32 (15)C32—C33—H33120.0
C26—N5—C23112.02 (13)C33—C34—C35120.3 (2)
C27—N6—C28120.66 (15)C33—C34—H34119.8
C27—N6—H6D118.5 (17)C35—C34—H34119.8
C28—N6—H6D119.7 (17)C30—C35—C34120.4 (2)
C36—N7—C37120.78 (15)C30—C35—H35119.8
C36—N7—H7D119.1 (14)C34—C35—H35119.8
C37—N7—H7D119.8 (14)O8—C36—N7122.91 (16)
C45—N8—C46121.69 (15)O8—C36—C28119.37 (15)
C45—N8—H8D115.9 (16)N7—C36—C28117.70 (15)
C46—N8—H8D121.2 (16)N7—C37—C38111.54 (14)
C50—N9—C51121.94 (15)N7—C37—C45112.25 (14)
C50—N9—H9D120.9 (17)C38—C37—C45112.20 (14)
C51—N9—H9D117.0 (17)N7—C37—H37104.6 (11)
N1—C1—C2111.78 (14)C38—C37—H37110.5 (11)
N1—C1—C5113.02 (13)C45—C37—H37105.3 (11)
C2—C1—C5109.65 (14)C39—C38—C37112.82 (15)
N1—C1—H1107.4 (12)C39—C38—H38A109.0
C2—C1—H1110.0 (12)C37—C38—H38A109.0
C5—C1—H1104.7 (12)C39—C38—H38B109.0
C3—C2—C1112.28 (14)C37—C38—H38B109.0
C3—C2—H2A109.1H38A—C38—H38B107.8
C1—C2—H2A109.1C40—C39—C44118.00 (17)
C3—C2—H2B109.1C40—C39—C38119.48 (17)
C1—C2—H2B109.1C44—C39—C38122.51 (16)
H2A—C2—H2B107.9C41—C40—C39121.30 (19)
C2—C3—S1108.93 (12)C41—C40—H40119.3
C2—C3—H3A109.9C39—C40—H40119.3
S1—C3—H3A109.9C40—C41—C42119.86 (19)
C2—C3—H3B109.9C40—C41—H41120.1
S1—C3—H3B109.9C42—C41—H41120.1
H3A—C3—H3B108.3C43—C42—C41119.66 (19)
S1—C4—H4A109.5C43—C42—H42120.2
S1—C4—H4B109.5C41—C42—H42120.2
H4A—C4—H4B109.5C42—C43—C44119.90 (18)
S1—C4—H4C109.5C42—C43—H43120.1
H4A—C4—H4C109.5C44—C43—H43120.1
H4B—C4—H4C109.5C43—C44—C39121.27 (17)
O3—C5—N2121.66 (16)C43—C44—H44119.4
O3—C5—C1121.24 (15)C39—C44—H44119.4
N2—C5—C1117.06 (15)O9—C45—N8123.35 (16)
N2—C6—C7113.03 (14)O9—C45—C37122.02 (16)
N2—C6—C11112.05 (14)N8—C45—C37114.53 (15)
C7—C6—C11111.91 (15)N8—C46—C50111.81 (14)
N2—C6—H6108.6 (12)N8—C46—C47110.13 (14)
C7—C6—H6110.6 (12)C50—C46—C47111.71 (14)
C11—C6—H699.8 (12)N8—C46—H46107.8 (12)
C6—C7—C8114.57 (16)C50—C46—H46104.8 (12)
C6—C7—H7A108.6C47—C46—H46110.4 (13)
C8—C7—H7A108.6C49—C47—C48110.37 (16)
C6—C7—H7B108.6C49—C47—C46112.55 (15)
C8—C7—H7B108.6C48—C47—C46109.58 (16)
H7A—C7—H7B107.6C49—C47—H47108.1
C10—C8—C7112.46 (17)C48—C47—H47108.1
C10—C8—C9108.81 (18)C46—C47—H47108.1
C7—C8—C9108.83 (19)C47—C48—H48A109.5
C10—C8—H8108.9C47—C48—H48B109.5
C7—C8—H8108.9H48A—C48—H48B109.5
C9—C8—H8108.9C47—C48—H48C109.5
C8—C9—H9A109.5H48A—C48—H48C109.5
C8—C9—H9B109.5H48B—C48—H48C109.5
H9A—C9—H9B109.5C47—C49—H49A109.5
C8—C9—H9C109.5C47—C49—H49B109.5
H9A—C9—H9C109.5H49A—C49—H49B109.5
H9B—C9—H9C109.5C47—C49—H49C109.5
C8—C10—H10A109.5H49A—C49—H49C109.5
C8—C10—H10B109.5H49B—C49—H49C109.5
H10A—C10—H10B109.5O10—C50—N9123.05 (16)
C8—C10—H10C109.5O10—C50—C46120.92 (15)
H10A—C10—H10C109.5N9—C50—C46115.99 (15)
H10B—C10—H10C109.5N9—C51—C56108.42 (13)
O4—C11—N3122.69 (17)N9—C51—C52112.31 (13)
O4—C11—C6121.04 (16)C56—C51—C52109.55 (14)
N3—C11—C6116.06 (15)N9—C51—H51107.2 (11)
N3—C12—C13110.50 (14)C56—C51—H51108.9 (11)
N3—C12—C17108.76 (13)C52—C51—H51110.4 (11)
C13—C12—C17112.12 (14)C53—C52—C54112.50 (15)
N3—C12—H12107.9 (11)C53—C52—C51109.27 (14)
C13—C12—H12110.3 (11)C54—C52—C51110.55 (14)
C17—C12—H12107.1 (10)C53—C52—H52108.1
C14—C13—C12111.31 (15)C54—C52—H52108.1
C14—C13—C15111.63 (15)C51—C52—H52108.1
C12—C13—C15108.82 (14)C52—C53—H53A109.5
C14—C13—H13108.3C52—C53—H53B109.5
C12—C13—H13108.3H53A—C53—H53B109.5
C15—C13—H13108.3C52—C53—H53C109.5
C13—C14—H14A109.5H53A—C53—H53C109.5
C13—C14—H14B109.5H53B—C53—H53C109.5
H14A—C14—H14B109.5C55—C54—C52114.49 (16)
C13—C14—H14C109.5C55—C54—H54A108.6
H14A—C14—H14C109.5C52—C54—H54A108.6
H14B—C14—H14C109.5C55—C54—H54B108.6
C16—C15—C13113.53 (16)C52—C54—H54B108.6
C16—C15—H15A108.9H54A—C54—H54B107.6
C13—C15—H15A108.9C54—C55—H55A109.5
C16—C15—H15B108.9C54—C55—H55B109.5
C13—C15—H15B108.9H55A—C55—H55B109.5
H15A—C15—H15B107.7C54—C55—H55C109.5
C15—C16—H16A109.5H55A—C55—H55C109.5
C15—C16—H16B109.5H55B—C55—H55C109.5
H16A—C16—H16B109.5O11—C56—N1122.02 (15)
C15—C16—H16C109.5O11—C56—C51120.54 (15)
H16A—C16—H16C109.5N1—C56—C51117.44 (14)
H16B—C16—H16C109.5C61—O60—H60111 (2)
O5—C17—N4121.67 (15)O60—C61—C62111.15 (17)
O5—C17—C12120.22 (15)O60—C61—H61A109.4
N4—C17—C12118.10 (15)C62—C61—H61A109.4
N4—C18—C19103.72 (14)O60—C61—H61B109.4
N4—C18—H18A111.0C62—C61—H61B109.4
C19—C18—H18A111.0H61A—C61—H61B108.0
N4—C18—H18B111.0C61—C62—C63112.68 (18)
C19—C18—H18B111.0C61—C62—H62A109.1
H18A—C18—H18B109.0C63—C62—H62A109.1
C18—C19—C20103.97 (14)C61—C62—H62B109.1
C18—C19—H19A111.0C63—C62—H62B109.1
C20—C19—H19A111.0H62A—C62—H62B107.8
C18—C19—H19B111.0C64—C63—C62114.02 (19)
C20—C19—H19B111.0C64—C63—H63A108.7
H19A—C19—H19B109.0C62—C63—H63A108.7
C19—C20—C21102.90 (14)C64—C63—H63B108.7
C19—C20—H20A111.2C62—C63—H63B108.7
C21—C20—H20A111.2H63A—C63—H63B107.6
C19—C20—H20B111.2C63—C64—H64A109.5
C21—C20—H20B111.2C63—C64—H64B109.5
H20A—C20—H20B109.1H64A—C64—H64B109.5
N4—C21—C22109.56 (13)C63—C64—H64C109.5
N4—C21—C20102.95 (13)H64A—C64—H64C109.5
C22—C21—C20110.84 (13)H64B—C64—H64C109.5
N4—C21—H21108.6 (11)C71A—O70A—H70A109.5
C22—C21—H21112.2 (11)O70A—C71A—C72109.9 (2)
C20—C21—H21112.2 (11)O70A—C71A—H71A109.7
O6—C22—N5121.66 (16)C72—C71A—H71A109.7
O6—C22—C21121.19 (15)O70A—C71A—H71B109.7
N5—C22—C21117.13 (14)C72—C71A—H71B109.7
N5—C23—C24103.72 (14)H71A—C71A—H71B108.2
N5—C23—H23A111.0C71B—O70B—H70B109.5
C24—C23—H23A111.0C72—C71B—O70B100.5 (13)
N5—C23—H23B111.0C72—C71B—H71C111.7
C24—C23—H23B111.0O70B—C71B—H71C111.7
H23A—C23—H23B109.0C72—C71B—H71D111.7
C23—C24—C25103.64 (14)O70B—C71B—H71D111.7
C23—C24—H24A111.0H71C—C71B—H71D109.4
C25—C24—H24A111.0C71B—C72—C7394.6 (10)
C23—C24—H24B111.0C73—C72—C71A114.8 (2)
C25—C24—H24B111.0C71B—C72—H72A141.9
H24A—C24—H24B109.0C73—C72—H72A108.6
C24—C25—C26103.04 (14)C71A—C72—H72A108.6
C24—C25—H25A111.2C71B—C72—H72B92.3
C26—C25—H25A111.2C73—C72—H72B108.6
C24—C25—H25B111.2C71A—C72—H72B108.6
C26—C25—H25B111.2H72A—C72—H72B107.5
H25A—C25—H25B109.1C72—C73—C74113.7 (2)
N5—C26—C27113.61 (14)C72—C73—H73A108.8
N5—C26—C25102.78 (14)C74—C73—H73A108.8
C27—C26—C25109.21 (14)C72—C73—H73B108.8
N5—C26—H26109.7 (12)C74—C73—H73B108.8
C27—C26—H26107.6 (12)H73A—C73—H73B107.7
C25—C26—H26114.0 (12)C73—C74—H74A109.5
O7—C27—N6123.03 (16)C73—C74—H74B109.5
O7—C27—C26119.81 (15)H74A—C74—H74B109.5
N6—C27—C26117.15 (15)C73—C74—H74C109.5
N6—C28—C36113.61 (14)H74A—C74—H74C109.5
N6—C28—C29110.30 (14)H74B—C74—H74C109.5
C36—C28—C29110.23 (14)H80A—O80—H80B92 (2)
N6—C28—H28109.5 (11)
C56—N1—C1—C269.93 (18)C25—C26—C27—N6109.82 (17)
C56—N1—C1—C554.3 (2)C27—N6—C28—C3694.07 (18)
N1—C1—C2—C368.07 (17)C27—N6—C28—C29141.59 (16)
C5—C1—C2—C3165.78 (13)N6—C28—C29—C3059.00 (19)
C1—C2—C3—S1168.11 (11)C36—C28—C29—C30174.75 (15)
O2—S1—C3—C260.58 (14)C28—C29—C30—C3159.7 (2)
O1—S1—C3—C268.19 (13)C28—C29—C30—C35121.90 (19)
C4—S1—C3—C2175.86 (12)C35—C30—C31—C320.4 (3)
C6—N2—C5—O32.1 (2)C29—C30—C31—C32178.02 (19)
C6—N2—C5—C1175.65 (14)C30—C31—C32—C331.5 (3)
N1—C1—C5—O3142.96 (15)C31—C32—C33—C341.4 (4)
C2—C1—C5—O317.5 (2)C32—C33—C34—C350.6 (4)
N1—C1—C5—N239.23 (19)C31—C30—C35—C342.4 (3)
C2—C1—C5—N2164.67 (14)C29—C30—C35—C34176.02 (19)
C5—N2—C6—C771.9 (2)C33—C34—C35—C302.6 (4)
C5—N2—C6—C1155.7 (2)C37—N7—C36—O87.5 (3)
N2—C6—C7—C868.8 (2)C37—N7—C36—C28174.28 (14)
C11—C6—C7—C8163.58 (15)N6—C28—C36—O8160.55 (16)
C6—C7—C8—C1068.9 (2)C29—C28—C36—O875.1 (2)
C6—C7—C8—C9170.50 (19)N6—C28—C36—N721.2 (2)
C12—N3—C11—O47.0 (3)C29—C28—C36—N7103.17 (18)
C12—N3—C11—C6178.29 (14)C36—N7—C37—C3872.1 (2)
N2—C6—C11—O4149.19 (17)C36—N7—C37—C4554.8 (2)
C7—C6—C11—O421.0 (2)N7—C37—C38—C3967.15 (19)
N2—C6—C11—N336.0 (2)C45—C37—C38—C39165.93 (14)
C7—C6—C11—N3164.14 (15)C37—C38—C39—C4088.6 (2)
C11—N3—C12—C13146.05 (15)C37—C38—C39—C4491.7 (2)
C11—N3—C12—C1790.48 (18)C44—C39—C40—C410.3 (3)
N3—C12—C13—C14163.62 (14)C38—C39—C40—C41179.4 (2)
C17—C12—C13—C1442.1 (2)C39—C40—C41—C420.6 (4)
N3—C12—C13—C1572.95 (18)C40—C41—C42—C430.7 (4)
C17—C12—C13—C15165.55 (14)C41—C42—C43—C440.2 (3)
C14—C13—C15—C1669.6 (2)C42—C43—C44—C391.1 (3)
C12—C13—C15—C16167.21 (15)C40—C39—C44—C431.2 (3)
C21—N4—C17—O50.8 (2)C38—C39—C44—C43178.52 (17)
C18—N4—C17—O5178.07 (16)C46—N8—C45—O92.3 (2)
C21—N4—C17—C12179.28 (14)C46—N8—C45—C37174.08 (14)
C18—N4—C17—C121.8 (3)N7—C37—C45—O9138.38 (16)
N3—C12—C17—O563.5 (2)C38—C37—C45—O911.8 (2)
C13—C12—C17—O559.0 (2)N7—C37—C45—N845.15 (19)
N3—C12—C17—N4116.64 (17)C38—C37—C45—N8171.69 (14)
C13—C12—C17—N4120.86 (17)C45—N8—C46—C5089.61 (19)
C17—N4—C18—C19171.41 (16)C45—N8—C46—C47145.58 (15)
C21—N4—C18—C197.56 (19)N8—C46—C47—C49175.97 (15)
N4—C18—C19—C2028.20 (18)C50—C46—C47—C4951.1 (2)
C18—C19—C20—C2138.05 (18)N8—C46—C47—C4860.82 (19)
C17—N4—C21—C2277.03 (19)C50—C46—C47—C48174.31 (15)
C18—N4—C21—C22102.01 (16)C51—N9—C50—O104.2 (3)
C17—N4—C21—C20164.98 (15)C51—N9—C50—C46173.40 (14)
C18—N4—C21—C2015.97 (18)N8—C46—C50—O10140.00 (16)
C19—C20—C21—N432.78 (16)C47—C46—C50—O1096.07 (19)
C19—C20—C21—C2284.29 (16)N8—C46—C50—N942.4 (2)
C26—N5—C22—O6176.63 (16)C47—C46—C50—N981.56 (18)
C23—N5—C22—O68.3 (2)C50—N9—C51—C56131.06 (16)
C26—N5—C22—C211.7 (2)C50—N9—C51—C52107.76 (17)
C23—N5—C22—C21170.00 (15)N9—C51—C52—C53178.01 (14)
N4—C21—C22—O619.1 (2)C56—C51—C52—C5361.46 (18)
C20—C21—C22—O693.81 (19)N9—C51—C52—C5453.68 (19)
N4—C21—C22—N5162.59 (14)C56—C51—C52—C54174.22 (14)
C20—C21—C22—N584.48 (18)C53—C52—C54—C5557.6 (2)
C22—N5—C23—C24176.92 (15)C51—C52—C54—C55179.91 (16)
C26—N5—C23—C247.11 (19)C1—N1—C56—O1112.7 (2)
N5—C23—C24—C2528.18 (18)C1—N1—C56—C51166.44 (14)
C23—C24—C25—C2638.51 (18)N9—C51—C56—O1153.7 (2)
C22—N5—C26—C2789.54 (19)C52—C51—C56—O1169.17 (19)
C23—N5—C26—C27101.19 (17)N9—C51—C56—N1127.18 (15)
C22—N5—C26—C25152.60 (16)C52—C51—C56—N1109.94 (16)
C23—N5—C26—C2516.67 (18)O60—C61—C62—C63172.53 (18)
C24—C25—C26—N533.60 (17)C61—C62—C63—C64179.8 (2)
C24—C25—C26—C2787.33 (17)O70B—C71B—C72—C7372.0 (13)
C28—N6—C27—O79.6 (2)O70B—C71B—C72—C71A58.0 (13)
C28—N6—C27—C26169.37 (14)O70A—C71A—C72—C71B122.2 (14)
N5—C26—C27—O7176.69 (14)O70A—C71A—C72—C7365.0 (4)
C25—C26—C27—O769.2 (2)C71B—C72—C73—C74155.3 (9)
N5—C26—C27—N64.3 (2)C71A—C72—C73—C74177.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O3i0.85 (3)2.21 (3)3.043 (3)163 (2)
N2—H2D···O1i0.81 (2)2.29 (2)2.972 (3)141 (2)
N3—H3D···O110.91 (3)2.16 (3)3.005 (2)154 (2)
N7—H7D···O50.84 (2)2.14 (2)2.862 (3)144 (2)
N8—H8D···O600.82 (2)2.07 (2)2.847 (2)161 (2)
N9—H9D···O600.72 (2)2.49 (2)3.203 (2)169 (2)
O60—H60···O50.86 (3)1.91 (3)2.761 (2)170 (3)
O70A—H70A···O6ii0.842.182.795 (2)130
O80—H80A···O7iii0.99 (4)1.95 (4)2.906 (2)159 (3)
O80—H80B···O8iv0.97 (3)1.95 (3)2.869 (2)157 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y1/2, z+1/2; (iii) x+1/2, y+1, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC56H83N9O11S·2C4H10O·H2O
Mr1256.63
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)11.402 (9), 23.521 (9), 25.440 (7)
V3)6823 (6)
Z4
Radiation typeSynchrotron, λ = 0.68878 Å
µ (mm1)0.12
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
Diffractometer300mm 16K Rayonix MX300 HE CCD detector with an ACCEL MD2 microdiffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.983, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
549120, 15641, 14786
Rint0.068
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.07
No. of reflections15641
No. of parameters888
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.27
Absolute structureFlack (1983), 7070 Friedel pairs
Absolute structure parameter0.13 (5)

Computer programs: MXDC (Canadian Light Source, 2007), SAINT (Bruker, 2008), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1993) and SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O3i0.85 (3)2.21 (3)3.043 (3)163 (2)
N2—H2D···O1i0.81 (2)2.29 (2)2.972 (3)141 (2)
N3—H3D···O110.91 (3)2.16 (3)3.005 (2)154 (2)
N7—H7D···O50.84 (2)2.14 (2)2.862 (3)144 (2)
N8—H8D···O600.82 (2)2.07 (2)2.847 (2)161 (2)
N9—H9D···O600.72 (2)2.49 (2)3.203 (2)169 (2)
O60—H60···O50.86 (3)1.91 (3)2.761 (2)170 (3)
O70A—H70A···O6ii0.842.182.795 (2)130
O80—H80A···O7iii0.99 (4)1.95 (4)2.906 (2)159 (3)
O80—H80B···O8iv0.97 (3)1.95 (3)2.869 (2)157 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y1/2, z+1/2; (iii) x+1/2, y+1, z+1/2; (iv) x+1, y1/2, z+1/2.
Backbone torsion angles ϕ, ψ, ω and side chain torsion angle χ1 (°) in CLP-K top
Met sulfone1Leu2Ile3Pro4Pro5Phe6Phe7Val8Ile9
ϕ54.3 (2)55.7 (2)-90.48 (18)-77.03 (19)-89.54 (19)-94.07 (18)54.8 (2)-89.61 (18)-131.06 (16)
ψ39.23 (19)36.0 (2)116.64 (17)162.59 (14)-4.3 (2)-21.2 (2)45.15 (19)-42.4 (2)127.18 (15)
ω166.44 (14)175.65 (14)-178.29 (14)-179.28 (14)1.6 (2)-169.37 (14)174.28 (14)174.08 (14)-173.40 (14)
χ1-68.07 (17)-68.8 (2)-72.95 (18)32.78 (16)33.60 (17)-59.00 (19)-67.15 (19)-60.82 (19)-53.68 (19)
 

Acknowledgements

Funding for this research was contributed by The Agriculture Development Fund (ADF), administered by Saskatchewan Ministry of Agriculture (SMA), the Total Utililization Flax Genomics and National Sciences and Engineering Research Council (NSERC). The data collection was performed at the Canadian Light Source (CLS), which is supported by the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. We acknowledge Mr B. Bonnet (CLS) for assembling the mounting pins for the crystals. We thank Dr M. Benning and his team at Bruker AXS (Wisconson, USA) for providing a script enabling us to process the synchrotron data using the program SAINT (Bruker, 2008[Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]).

References

First citationBruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCahn, R. S., Ingold, C. K. & Prelog, V. (1966). Angew. Chem. Int. Ed. 5, 385–415.  CrossRef CAS Google Scholar
First citationCanadian Light Source (2007). MXDC (Macromolecular Crystallography Data Collector). Canadian Light Source, Saskatoon, Saskatchewan, Canada.  Google Scholar
First citationDi Blasio, B., Benedetti, E., Pavone, C. & Goodman, M. (1987). Biopolymers, 26, 2099–2102.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationDi Blasio, B., Benedetti, E., Pavone, C. & Temussi, P. A. (1989). J. Am. Chem. Soc. 111, 9089–9092.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaymes, T. J., Cebrat, M., Siemion, I. Z. & Kay, J. E. (1997). FEBS Lett. 418, 224–227.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGhadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. (1993). Nature (London), 366, 324–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K. (2001). Phytochemistry, 57, 251–260.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K. (2002). Tetrahedron, 58, 5135–5140.  Web of Science CrossRef CAS Google Scholar
First citationMorita, H., Shishido, A., Matsumoto, T., Itokawa, H. & Takeya, K. (1999). Tetrahedron, 55, 967–976.  Web of Science CrossRef CAS Google Scholar
First citationQuail, J. W., Shen, J., Reaney, M. J. T. & Sammynaiken, R. (2009). Acta Cryst. E65, o1913–o1914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRempel, B., Gui, B., Maley, J., Reaney, M. & Sammynaiken, R. (2010). J. Biomed. Biotechnol. 2010, 1–8.  Web of Science CrossRef Google Scholar
First citationRovero, P., Quartara, L. & Fabbri, G. (1991). Tetrahedron Lett. 32, 2639–2642.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWieczorek, Z., Bengsston, B., Trojnar, I. & Siemion, I. Z. (1991). Pept. Res. 4, 275–283.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2360-o2361
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds