organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis[3,5-bis­­(2,6-diiso­propyl­phen­yl)phen­yl]butane-2,3-di­imine

aDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: parvez@ucalgary.ca

(Received 26 July 2011; accepted 2 August 2011; online 11 August 2011)

The title mol­ecule, C64H80N2, lies on an inversion center wherein the central butane­diimine fragment [N=C(Me)—C(Me)=N] is essentially planar [maximum deviation = 0.002 (2) Å] and its mean plane forms a dihedral of 70.88 (10)° with the attached benzene ring. In the symmetry-unique part of the mol­ecule, the dihedral angles between the benzene ring bonded to the N atom and the other two benzene rings are 89.61 (6) and 82.77 (6)°.

Related literature

For background to water splitting, see: Yang & Hall (2010[Yang, X. & Hall, M. B. (2010). J. Am. Chem. Soc. 132, 120-130.]); Kee et al. (2011[Kee, J. W., Tan, Y. Y., Swennenhuis, B. H. G., Bengali, A. A. & Fan, W. Y. (2011). Organometallics, 30, 2154-2159.]); Blakemore et al. (2010[Blakemore, J. D., Schley, N. D., Balcells, D., Hull, J. F., Olack, G. W., Incarvito, C. D., Einstein, O., Brudwig, G. W. & Crabtree, R. H. (2010). J. Am. Chem. Soc. 132, 16017-16029.]). For related structures, see: Ionkin & Marshall (2004[Ionkin, A. S. & Marshall, W. J. (2004). J. Organomet. Chem. 689, 1057-1063.]); Zou et al. (2008[Zou, H., Hou, Y., Yong, X., Cen, Y. & Bao, F. (2008). Acta Cryst. E64, o567.]); Lohr et al. (2011[Lohr, T. L., Piers, W. E. & Parvez, M. (2011). Acta Cryst. E67, o2280.]).

[Scheme 1]

Experimental

Crystal data
  • C64H80N2

  • Mr = 877.30

  • Triclinic, [P \overline 1]

  • a = 8.512 (3) Å

  • b = 11.513 (3) Å

  • c = 16.501 (6) Å

  • α = 101.456 (18)°

  • β = 97.471 (13)°

  • γ = 99.505 (17)°

  • V = 1540.8 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.05 mm−1

  • T = 173 K

  • 0.16 × 0.14 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer with Bruker APEXII CCD detector

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.992, Tmax = 0.997

  • 10648 measured reflections

  • 5610 independent reflections

  • 4274 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.197

  • S = 1.06

  • 5610 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

To meet the ever-growing demand for green and carbon neutral energy, water splitting for the generation of hydrogen fuel represents an appealing strategy. To do their part, chemists have been looking at the steps towards organometallic mono-nuclear water splitting. (Yang & Hall, 2010; Kee et al., 2011; Blakemore et al., 2010). Our group is currently exploring the usage of platinum to mediate this reaction in an effort to understand the fundamental steps of O—H and O—O bond activation. This research is directed at synthesizing and studying plausible intermediates (Pt—OH and Pt—H species) in order to determine what role they play in the water activation process. The title compound was synthesized as a ligand to stabilize and isolate these highly reactive monomeric species for further mechanistic study.

In the title compound (Fig. 1), the central butanediimine fragment (N C(Me)–C(Me)N) is essentially planar (maximum deviation of C1 being 0.002 (2) Å). The benzene ring (C3–C8) lies at 70.88 (10)° with respect to the mean-plane of the butanediimine fragment. The dihedral angles between the benzene ring bonded to N1 and benzene rings C9–C14 and C21–C26 are 89.61 (6) and 82.77 (6)°, respectively. The molecular dimesions in the title compound agree very well with the corresponding molecular dimensions reported in a few closely related compounds (Ionkin & Marshall, 2004; Zou et al., 2008; Lohr et al., 2011).

Related literature top

For background to water splitting, see: Yang & Hall (2010); Kee et al. (2011); Blakemore et al. (2010). For related structures, see: Ionkin & Marshall (2004); Zou et al. (2008); Lohr et al. (2011).

Experimental top

Synthesis of (ArN=C(Me)—C(Me)=NAr) (Ar = 3,5-bis(2,6-diisopropylphenyl)benzene): In air, 3,5-bis(2,6-diisopropylphenyl)aniline (0.190 g, 0.471 mmol) and 2,3-butadione (0.021 ml, 0.236 mmol) were dissolved in MeOH (35 ml). To this yellow solution were added 3 drops of formic acid and the mixture was stirred at room temperature and a bright yellow precipitate formed overnight. The mixture was stirred for 14 h, cooled, filtered, washed with cold MeOH (3 x 5 ml), and dried over an aspirator for 3 h. The title compound was isolated as a light yellow solid (0.183 g, 45%). X-ray quality crystals were obtained through slow cooling to 243 K in concentrated ethyl acetate.

Refinement top

Though the H-atoms were visible in the difference electron density maps they were included at geometrically idealized positions with C—H = 0.95, 0.98 and 1.00 Å for aryl, methine and methyl type H-atoms, respectively. The H-atoms were assigned Uiso = 1.2 times Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids plotted at 30% probability level (Farrugia, 1997). Primed atoms are related by the symmetry code (-x, -y+1, -z).
N,N'-Bis[3,5-bis(2,6-diisopropylphenyl)phenyl]butane-2,3-diimine top
Crystal data top
C64H80N2Z = 1
Mr = 877.30F(000) = 478
Triclinic, P1Dx = 0.945 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.512 (3) ÅCell parameters from 6423 reflections
b = 11.513 (3) Åθ = 1.0–25.4°
c = 16.501 (6) ŵ = 0.05 mm1
α = 101.456 (18)°T = 173 K
β = 97.471 (13)°Prism, pale yellow
γ = 99.505 (17)°0.16 × 0.14 × 0.06 mm
V = 1540.8 (9) Å3
Data collection top
Nonius KappaCCD
diffractometer with Bruker APEXII CCD detector
5610 independent reflections
Radiation source: fine-focus sealed tube4274 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 25.4°, θmin = 1.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1010
Tmin = 0.992, Tmax = 0.997k = 1213
10648 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0937P)2 + 0.8313P]
where P = (Fo2 + 2Fc2)/3
5610 reflections(Δ/σ)max = 0.003
307 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C64H80N2γ = 99.505 (17)°
Mr = 877.30V = 1540.8 (9) Å3
Triclinic, P1Z = 1
a = 8.512 (3) ÅMo Kα radiation
b = 11.513 (3) ŵ = 0.05 mm1
c = 16.501 (6) ÅT = 173 K
α = 101.456 (18)°0.16 × 0.14 × 0.06 mm
β = 97.471 (13)°
Data collection top
Nonius KappaCCD
diffractometer with Bruker APEXII CCD detector
5610 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4274 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 0.997Rint = 0.028
10648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
5610 reflectionsΔρmin = 0.26 e Å3
307 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3): δ = 1.08 (d, 24H, CH(CH3)2), 1.15 (d, 24H, CH(CH3)2), 2.23 (s, 6H, NC–CH3), 2.84 (m, 8H, CH(CH3)2), 6.62 (d, 4H, Ar–H), 6.79 (t, 2H, Ar–H), 7.21 (d, 8H, Ar-H), 7.34 (t, 4H, Ar–H). 13C NMR (100 MHz, CDCl3): δ = 15.64 (NC–CH3), 24.31 (CH(CH3)2), 24.44 (CH(CH3)2), 30.65 (CH(CH3)2), 118.09 (Ar–CH), 122.71 (Ar–CH), 126.91 (Ar–CH), 128.09 (Ar–CH), 139.08 (Ar–C), 141.66 (Ar–C), 146.84 (Ar–C), 150.89 (Ar–C), 169.06 (NC–CH3).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0422 (2)0.46436 (15)0.09717 (11)0.0335 (4)
C10.0718 (2)0.49926 (18)0.03123 (12)0.0303 (5)
C20.2367 (3)0.5377 (3)0.01107 (16)0.0541 (7)
H2A0.23530.50910.04910.065*
H2B0.31520.50320.04290.065*
H2C0.26740.62610.02620.065*
C30.1702 (2)0.46292 (18)0.16106 (12)0.0295 (4)
C40.2616 (2)0.56921 (18)0.21263 (13)0.0307 (5)
H40.24070.64490.20420.037*
C50.3836 (2)0.56590 (17)0.27654 (12)0.0286 (4)
C60.4108 (2)0.45436 (17)0.28880 (12)0.0278 (4)
H60.49410.45150.33230.033*
C70.3184 (2)0.34646 (17)0.23857 (12)0.0272 (4)
C80.1969 (2)0.35137 (18)0.17475 (12)0.0291 (4)
H80.13220.27870.14050.035*
C90.4870 (2)0.68017 (17)0.33082 (13)0.0317 (5)
C100.6300 (3)0.73029 (18)0.30592 (14)0.0374 (5)
C110.7271 (3)0.8346 (2)0.35794 (17)0.0466 (6)
H110.82510.86890.34250.056*
C120.6828 (3)0.8886 (2)0.43142 (17)0.0519 (7)
H120.75000.96020.46580.062*
C130.5419 (3)0.8399 (2)0.45557 (15)0.0468 (6)
H130.51250.87870.50620.056*
C140.4423 (3)0.73418 (19)0.40628 (13)0.0370 (5)
C150.6785 (3)0.6753 (2)0.22388 (16)0.0466 (6)
H150.60630.59430.20100.056*
C160.6502 (5)0.7543 (3)0.1599 (2)0.0793 (10)
H16A0.67410.71530.10580.095*
H16B0.72140.83390.18020.095*
H16C0.53730.76390.15320.095*
C170.8506 (4)0.6567 (4)0.2347 (3)0.0946 (12)
H17A0.87530.61980.18020.114*
H17B0.86420.60330.27340.114*
H17C0.92400.73480.25740.114*
C180.2893 (3)0.6814 (2)0.43511 (14)0.0420 (5)
H180.23900.60380.39390.050*
C190.3249 (4)0.6521 (3)0.52078 (18)0.0652 (8)
H19A0.22460.61250.53520.078*
H19B0.37050.72690.56310.078*
H19C0.40250.59790.51930.078*
C200.1674 (4)0.7648 (3)0.4347 (2)0.0641 (8)
H20A0.06570.72460.44740.077*
H20B0.14800.78350.37930.077*
H20C0.21030.83980.47730.077*
C210.3505 (2)0.22790 (17)0.25381 (13)0.0299 (5)
C220.2565 (3)0.16664 (18)0.30220 (14)0.0350 (5)
C230.2938 (3)0.0592 (2)0.31816 (15)0.0437 (6)
H230.23190.01700.35110.052*
C240.4189 (3)0.0126 (2)0.28706 (16)0.0487 (6)
H240.44310.06040.29910.058*
C250.5085 (3)0.0721 (2)0.23850 (16)0.0458 (6)
H250.59360.03890.21680.055*
C260.4766 (3)0.18020 (18)0.22058 (14)0.0361 (5)
C270.1190 (3)0.2182 (2)0.33720 (16)0.0427 (6)
H270.07280.26160.29580.051*
C280.1793 (3)0.3116 (2)0.42019 (17)0.0512 (6)
H28A0.09040.34980.43710.061*
H28B0.26730.37340.41300.061*
H28C0.21890.27140.46360.061*
C290.0188 (3)0.1216 (3)0.3474 (2)0.0591 (7)
H29A0.11140.15850.35950.071*
H29B0.01730.08550.39380.071*
H29C0.05070.05870.29540.071*
C300.5731 (3)0.2413 (2)0.16369 (16)0.0451 (6)
H300.53830.32000.16320.054*
C310.7519 (4)0.2698 (4)0.1956 (3)0.1020 (15)
H31A0.80790.31240.15850.122*
H31B0.79080.19450.19680.122*
H31C0.77380.32110.25240.122*
C320.5319 (6)0.1666 (4)0.0742 (2)0.1061 (15)
H32A0.59250.20830.03820.127*
H32B0.41580.15600.05410.127*
H32C0.56080.08730.07250.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0301 (9)0.0400 (10)0.0312 (10)0.0074 (7)0.0019 (7)0.0138 (8)
C10.0313 (11)0.0313 (10)0.0286 (11)0.0088 (8)0.0014 (9)0.0074 (8)
C20.0316 (12)0.093 (2)0.0397 (14)0.0075 (12)0.0007 (10)0.0285 (14)
C30.0246 (10)0.0375 (11)0.0286 (11)0.0064 (8)0.0043 (8)0.0128 (9)
C40.0326 (11)0.0319 (10)0.0302 (11)0.0097 (8)0.0035 (8)0.0117 (8)
C50.0314 (10)0.0290 (10)0.0267 (10)0.0076 (8)0.0049 (8)0.0078 (8)
C60.0261 (10)0.0321 (10)0.0251 (10)0.0058 (8)0.0006 (8)0.0092 (8)
C70.0254 (10)0.0307 (10)0.0265 (10)0.0045 (8)0.0035 (8)0.0098 (8)
C80.0271 (10)0.0296 (10)0.0294 (11)0.0023 (8)0.0023 (8)0.0077 (8)
C90.0364 (11)0.0275 (10)0.0310 (11)0.0097 (8)0.0019 (9)0.0083 (8)
C100.0391 (12)0.0291 (10)0.0425 (13)0.0062 (9)0.0003 (10)0.0094 (9)
C110.0443 (13)0.0325 (11)0.0568 (16)0.0004 (10)0.0009 (11)0.0073 (11)
C120.0585 (16)0.0284 (11)0.0561 (16)0.0006 (11)0.0109 (13)0.0008 (11)
C130.0632 (16)0.0343 (12)0.0376 (13)0.0111 (11)0.0010 (11)0.0009 (10)
C140.0451 (13)0.0336 (11)0.0321 (12)0.0119 (9)0.0011 (9)0.0079 (9)
C150.0421 (13)0.0396 (12)0.0538 (15)0.0015 (10)0.0132 (11)0.0024 (11)
C160.107 (3)0.072 (2)0.064 (2)0.0133 (19)0.0287 (19)0.0196 (16)
C170.063 (2)0.120 (3)0.092 (3)0.037 (2)0.0111 (19)0.012 (2)
C180.0510 (14)0.0400 (12)0.0347 (12)0.0113 (10)0.0077 (10)0.0051 (10)
C190.0736 (19)0.079 (2)0.0486 (17)0.0145 (16)0.0124 (14)0.0271 (15)
C200.0597 (17)0.0632 (17)0.076 (2)0.0236 (14)0.0172 (15)0.0188 (15)
C210.0306 (10)0.0269 (10)0.0302 (11)0.0051 (8)0.0021 (8)0.0070 (8)
C220.0348 (11)0.0327 (11)0.0368 (12)0.0023 (9)0.0004 (9)0.0133 (9)
C230.0505 (14)0.0346 (11)0.0473 (14)0.0039 (10)0.0033 (11)0.0188 (10)
C240.0617 (16)0.0318 (12)0.0558 (15)0.0148 (11)0.0010 (12)0.0181 (11)
C250.0482 (14)0.0384 (12)0.0532 (15)0.0188 (10)0.0048 (11)0.0097 (11)
C260.0360 (12)0.0315 (11)0.0393 (12)0.0073 (9)0.0006 (9)0.0073 (9)
C270.0364 (12)0.0452 (13)0.0540 (15)0.0071 (10)0.0116 (10)0.0267 (11)
C280.0538 (15)0.0447 (13)0.0623 (17)0.0130 (11)0.0265 (13)0.0154 (12)
C290.0464 (15)0.0633 (17)0.0720 (19)0.0000 (13)0.0172 (13)0.0301 (15)
C300.0430 (13)0.0446 (13)0.0543 (15)0.0151 (10)0.0167 (11)0.0153 (11)
C310.0421 (17)0.141 (4)0.144 (4)0.0071 (19)0.017 (2)0.090 (3)
C320.157 (4)0.088 (3)0.063 (2)0.014 (3)0.046 (2)0.0058 (19)
Geometric parameters (Å, º) top
N1—C11.273 (3)C18—C191.522 (3)
N1—C31.419 (2)C18—C201.525 (4)
C1—C1i1.498 (4)C18—H181.0000
C1—C21.500 (3)C19—H19A0.9800
C2—H2A0.9800C19—H19B0.9800
C2—H2B0.9800C19—H19C0.9800
C2—H2C0.9800C20—H20A0.9800
C3—C41.388 (3)C20—H20B0.9800
C3—C81.397 (3)C20—H20C0.9800
C4—C51.391 (3)C21—C221.407 (3)
C4—H40.9500C21—C261.408 (3)
C5—C61.390 (3)C22—C231.392 (3)
C5—C91.501 (3)C22—C271.525 (3)
C6—C71.396 (3)C23—C241.380 (4)
C6—H60.9500C23—H230.9500
C7—C81.393 (3)C24—C251.378 (4)
C7—C211.498 (3)C24—H240.9500
C8—H80.9500C25—C261.395 (3)
C9—C141.406 (3)C25—H250.9500
C9—C101.405 (3)C26—C301.524 (3)
C10—C111.393 (3)C27—C291.529 (3)
C10—C151.515 (3)C27—C281.531 (4)
C11—C121.377 (4)C27—H271.0000
C11—H110.9500C28—H28A0.9800
C12—C131.379 (4)C28—H28B0.9800
C12—H120.9500C28—H28C0.9800
C13—C141.396 (3)C29—H29A0.9800
C13—H130.9500C29—H29B0.9800
C14—C181.518 (3)C29—H29C0.9800
C15—C171.508 (4)C30—C311.504 (4)
C15—C161.545 (4)C30—C321.518 (4)
C15—H151.0000C30—H301.0000
C16—H16A0.9800C31—H31A0.9800
C16—H16B0.9800C31—H31B0.9800
C16—H16C0.9800C31—H31C0.9800
C17—H17A0.9800C32—H32A0.9800
C17—H17B0.9800C32—H32B0.9800
C17—H17C0.9800C32—H32C0.9800
C1—N1—C3120.55 (18)C19—C18—H18107.5
N1—C1—C1i116.3 (2)C20—C18—H18107.5
N1—C1—C2125.69 (18)C18—C19—H19A109.5
C1i—C1—C2118.0 (2)C18—C19—H19B109.5
C1—C2—H2A109.5H19A—C19—H19B109.5
C1—C2—H2B109.5C18—C19—H19C109.5
H2A—C2—H2B109.5H19A—C19—H19C109.5
C1—C2—H2C109.5H19B—C19—H19C109.5
H2A—C2—H2C109.5C18—C20—H20A109.5
H2B—C2—H2C109.5C18—C20—H20B109.5
C4—C3—C8120.00 (17)H20A—C20—H20B109.5
C4—C3—N1121.39 (17)C18—C20—H20C109.5
C8—C3—N1118.50 (18)H20A—C20—H20C109.5
C3—C4—C5120.56 (18)H20B—C20—H20C109.5
C3—C4—H4119.7C22—C21—C26120.83 (18)
C5—C4—H4119.7C22—C21—C7119.77 (18)
C6—C5—C4118.94 (18)C26—C21—C7119.39 (17)
C6—C5—C9119.98 (17)C23—C22—C21118.4 (2)
C4—C5—C9121.07 (17)C23—C22—C27121.13 (19)
C5—C6—C7121.37 (17)C21—C22—C27120.51 (18)
C5—C6—H6119.3C24—C23—C22121.3 (2)
C7—C6—H6119.3C24—C23—H23119.4
C8—C7—C6118.96 (17)C22—C23—H23119.4
C8—C7—C21121.08 (17)C25—C24—C23120.0 (2)
C6—C7—C21119.95 (16)C25—C24—H24120.0
C7—C8—C3120.13 (18)C23—C24—H24120.0
C7—C8—H8119.9C24—C25—C26121.2 (2)
C3—C8—H8119.9C24—C25—H25119.4
C14—C9—C10120.88 (19)C26—C25—H25119.4
C14—C9—C5120.06 (19)C25—C26—C21118.4 (2)
C10—C9—C5119.04 (19)C25—C26—C30120.0 (2)
C11—C10—C9118.5 (2)C21—C26—C30121.58 (18)
C11—C10—C15119.7 (2)C22—C27—C29113.5 (2)
C9—C10—C15121.77 (19)C22—C27—C28111.90 (19)
C12—C11—C10120.8 (2)C29—C27—C28110.0 (2)
C12—C11—H11119.6C22—C27—H27107.0
C10—C11—H11119.6C29—C27—H27107.0
C11—C12—C13120.7 (2)C28—C27—H27107.0
C11—C12—H12119.7C27—C28—H28A109.5
C13—C12—H12119.7C27—C28—H28B109.5
C12—C13—C14120.6 (2)H28A—C28—H28B109.5
C12—C13—H13119.7C27—C28—H28C109.5
C14—C13—H13119.7H28A—C28—H28C109.5
C13—C14—C9118.5 (2)H28B—C28—H28C109.5
C13—C14—C18119.5 (2)C27—C29—H29A109.5
C9—C14—C18122.01 (19)C27—C29—H29B109.5
C17—C15—C10112.7 (2)H29A—C29—H29B109.5
C17—C15—C16111.0 (3)C27—C29—H29C109.5
C10—C15—C16109.8 (2)H29A—C29—H29C109.5
C17—C15—H15107.7H29B—C29—H29C109.5
C10—C15—H15107.7C31—C30—C32112.0 (3)
C16—C15—H15107.7C31—C30—C26112.7 (2)
C15—C16—H16A109.5C32—C30—C26110.6 (2)
C15—C16—H16B109.5C31—C30—H30107.1
H16A—C16—H16B109.5C32—C30—H30107.1
C15—C16—H16C109.5C26—C30—H30107.1
H16A—C16—H16C109.5C30—C31—H31A109.5
H16B—C16—H16C109.5C30—C31—H31B109.5
C15—C17—H17A109.5H31A—C31—H31B109.5
C15—C17—H17B109.5C30—C31—H31C109.5
H17A—C17—H17B109.5H31A—C31—H31C109.5
C15—C17—H17C109.5H31B—C31—H31C109.5
H17A—C17—H17C109.5C30—C32—H32A109.5
H17B—C17—H17C109.5C30—C32—H32B109.5
C14—C18—C19112.0 (2)H32A—C32—H32B109.5
C14—C18—C20111.2 (2)C30—C32—H32C109.5
C19—C18—C20111.0 (2)H32A—C32—H32C109.5
C14—C18—H18107.5H32B—C32—H32C109.5
C3—N1—C1—C1i178.3 (2)C11—C10—C15—C1751.1 (3)
C3—N1—C1—C22.1 (3)C9—C10—C15—C17130.1 (3)
C1—N1—C3—C471.8 (3)C11—C10—C15—C1673.1 (3)
C1—N1—C3—C8112.1 (2)C9—C10—C15—C16105.6 (3)
C8—C3—C4—C52.0 (3)C13—C14—C18—C1958.5 (3)
N1—C3—C4—C5178.11 (18)C9—C14—C18—C19121.9 (2)
C3—C4—C5—C61.0 (3)C13—C14—C18—C2066.3 (3)
C3—C4—C5—C9177.89 (19)C9—C14—C18—C20113.3 (2)
C4—C5—C6—C70.1 (3)C8—C7—C21—C2283.0 (3)
C9—C5—C6—C7179.03 (18)C6—C7—C21—C2296.9 (2)
C5—C6—C7—C80.2 (3)C8—C7—C21—C2698.1 (2)
C5—C6—C7—C21179.70 (18)C6—C7—C21—C2682.0 (2)
C6—C7—C8—C30.8 (3)C26—C21—C22—C231.5 (3)
C21—C7—C8—C3179.31 (18)C7—C21—C22—C23177.34 (19)
C4—C3—C8—C71.9 (3)C26—C21—C22—C27179.36 (19)
N1—C3—C8—C7178.08 (18)C7—C21—C22—C271.8 (3)
C6—C5—C9—C1489.4 (2)C21—C22—C23—C240.5 (3)
C4—C5—C9—C1491.7 (2)C27—C22—C23—C24179.6 (2)
C6—C5—C9—C1089.2 (2)C22—C23—C24—C250.7 (4)
C4—C5—C9—C1089.7 (2)C23—C24—C25—C260.7 (4)
C14—C9—C10—C110.3 (3)C24—C25—C26—C210.4 (3)
C5—C9—C10—C11178.33 (18)C24—C25—C26—C30177.4 (2)
C14—C9—C10—C15178.52 (19)C22—C21—C26—C251.5 (3)
C5—C9—C10—C152.9 (3)C7—C21—C26—C25177.40 (19)
C9—C10—C11—C121.1 (3)C22—C21—C26—C30176.3 (2)
C15—C10—C11—C12177.8 (2)C7—C21—C26—C304.8 (3)
C10—C11—C12—C130.6 (4)C23—C22—C27—C2930.5 (3)
C11—C12—C13—C140.6 (4)C21—C22—C27—C29150.4 (2)
C12—C13—C14—C91.3 (3)C23—C22—C27—C2894.8 (2)
C12—C13—C14—C18179.0 (2)C21—C22—C27—C2884.3 (2)
C10—C9—C14—C130.9 (3)C25—C26—C30—C3157.7 (4)
C5—C9—C14—C13179.50 (18)C21—C26—C30—C31124.6 (3)
C10—C9—C14—C18179.45 (18)C25—C26—C30—C3268.6 (3)
C5—C9—C14—C180.8 (3)C21—C26—C30—C32109.2 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC64H80N2
Mr877.30
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.512 (3), 11.513 (3), 16.501 (6)
α, β, γ (°)101.456 (18), 97.471 (13), 99.505 (17)
V3)1540.8 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.05
Crystal size (mm)0.16 × 0.14 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer with Bruker APEXII CCD detector
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.992, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
10648, 5610, 4274
Rint0.028
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.197, 1.06
No. of reflections5610
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.26

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

Funding was provided by the NSERC of Canada in the form of a Doctoral Scholarship for TLL, and by an Alberta Innovates Studentship to TLL.

References

First citationBlakemore, J. D., Schley, N. D., Balcells, D., Hull, J. F., Olack, G. W., Incarvito, C. D., Einstein, O., Brudwig, G. W. & Crabtree, R. H. (2010). J. Am. Chem. Soc. 132, 16017–16029.  CrossRef CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationIonkin, A. S. & Marshall, W. J. (2004). J. Organomet. Chem. 689, 1057–1063.  CrossRef CAS Google Scholar
First citationKee, J. W., Tan, Y. Y., Swennenhuis, B. H. G., Bengali, A. A. & Fan, W. Y. (2011). Organometallics, 30, 2154–2159.  CrossRef CAS Google Scholar
First citationLohr, T. L., Piers, W. E. & Parvez, M. (2011). Acta Cryst. E67, o2280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X. & Hall, M. B. (2010). J. Am. Chem. Soc. 132, 120–130.  CrossRef CAS Google Scholar
First citationZou, H., Hou, Y., Yong, X., Cen, Y. & Bao, F. (2008). Acta Cryst. E64, o567.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds