organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-(Naphthalen-1-yl)quinoline

aDepartment of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Box 951569, Los Angeles, CA 90095, USA, bDepartment of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102-1811, USA, and cDepartment of Chemistry, Kean University, Union, NJ 07083, USA
*Correspondence e-mail: dvitale@kean.edu

(Received 28 July 2011; accepted 19 August 2011; online 31 August 2011)

In the title mol­ecule, C19H13N, the angle between the mean planes of the naphthalene and quinoline ring systems is 68.59 (2)°. The compound is of inter­est with respect to its potential for spontaneous resolution. In the crystal structure, the R and S isomers are arranged in alternating homochiral layers. The mol­ecules of a given layer are oriented with their major axes (i.e. the axis perpendicular to the interannular bond) in the same direction and their naphthalene and quinoline ring systems are arranged parallel. Like the configurations, this orientation alternates in adjacent layers.

Related literature

For spontanteous-resolution experiments, see: Asakura & Plasson (2006[Asakura, K. & Plasson, R. (2006). Chaos, 16, 1-7.]); Kondipudi et al. (1999[Kondipudi, D. K., Laudadio, J. & Asakura, K. (1999). J. Am. Chem. Soc. 121, 1448-1451.]); Kranz et al. (1993[Kranz, M., Clark, T. & von Rague Schleyer, P. J. (1993). J. Org. Chem. 58, 3317-3325.]); Sainz-Diaz et al. (2005[Sainz-Diaz, C. II, Martin-Islan, A. P. & Cartwright, J. H. E. (2005). J. Phys. Chem. 109, 18758-18764.]); Wilson & Pincock (1974[Wilson, K. R. & Pincock, R. E. (1974). J. Am. Chem. Soc. 97, 1474-1478.]). For related structures, see: Kerr & Robertson (1969[Kerr, K. A. & Robertson, J. M. (1969). J. Chem. Soc. B, pp. 1146-1149.]); Kuroda & Manson (1981[Kuroda, R. & Manson, S. F. (1981). J. Chem. Soc. Perkin Trans. 2, pp. 167-170.]). For details of the synthesis, see: Huff et al. (1998[Huff, B. E., Koenig, T. M., Mitchell, D. & Staszak, M. A. (1998). Org. Synth. 75, 53-56.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13N

  • Mr = 255.30

  • Triclinic, [P \overline 1]

  • a = 6.1778 (1) Å

  • b = 10.0392 (2) Å

  • c = 10.8828 (2) Å

  • α = 104.537 (1)°

  • β = 106.435 (1)°

  • γ = 90.002 (1)°

  • V = 624.80 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 100 K

  • 0.37 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD APEXII diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.806, Tmax = 0.942

  • 5783 measured reflections

  • 2058 independent reflections

  • 1678 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.131

  • S = 1.06

  • 2058 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX 2 Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). SAINT Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structural similarities between the title compound (81QNNP) and 1,1'-binaphthalenyl (11BNP) suggest that, like the hydrocarbon, 81QNNP might exhibit spontaneous resolution. The characteristics that afford spontaneous resolution of the racemic compound of 11BNP are its dimorphism and moderate barrier to rotation about the C1—C1' interannular bond (Kranz et al., 1993). The barrier is large enough to prevent racemization of resolved forms below about 351 K, but small enough to afford rapid interconversion of the enantiomers in the melt. The dimorphs consist of an optically inactive racemic compound (Kerr & Robertson, 1969) that is the more stable form at temperatures below 351 K and a conglomerate of single crystals of the R and S isomers (Kuroda & Manson, 1981) that is the more stable above this temperature. Accordingly, heating of the racemic compound above the melting point of the conglomerate (431 K) followed by supercooling to 423 K can produce an optically active solid (Kondipudi et al., 1999).

The molecular structure of the title compound is shown in Fig. 1. The title compound closely resembles 1,1-binaphthalenyl in molecular structure, crystal structure, and thermal behavior (Wilson & Pincock, 1974). On the molecular level, the two compounds differ only in the substitution of a nitrogen in 81QNNP for the C8 carbon in 11BNP. Likewise, the room temperature solid of 81QNNP is an optically inactive racemic compound with the components of an enantiotopic pair of molecules in the unit cell. Moreover, while spontaneous development of optical activity has not been demonstrated in the title compound, preliminary DSC results suggest that it is polymorphic. This means that, in addition to the racemic compound described herein, 81QNNP may also exist as a conglomerate. If so, it has the potential for spontaneous resolution via a mechanism similar to that of 11BNP (Asakura & Plasson, 2006; Sainz-Diaz et al., 2005). In the crystal, the R and S isomers are arranged in alternating homochiral layers. The molecules of a given layer are oriented with their major axes in the same direction and their naphthalene and quinoline ring systems are arranged parallel. Like the configurations this orientation alternates in adjacent layers (Fig. 2).

Related literature top

For spontanteous-resolution experiments, see: Asakura & Plasson (2006); Kondipudi et al. (1999); Kranz et al. (1993); Sainz-Diaz et al. (2005); Wilson & Pincock (1974). For related structures, see: Kerr & Robertson (1969); Kuroda & Manson (1981). For details of the synthesis, see: Huff et al. (1998).

Experimental top

The synthesis was carried out according to a literature procedure (Huff et al., 1998). 8-(Naphthalen-1-yl)quinoline was synthesized in 58% yield from 8-bromoquinoline (Frontier Chemical) and 1-naphthalenylboronic acid (Sigma–Aldrich) using a modification of the Suzuki coupling reaction (Huff et al., 1998) and crystallized from 1-propanol; m.p. 436.0–437.5 K, 13C NMR (CDCl3): DEPT-CH δ 121.3, 125.6, 125.9, 126.0, 126.4, 127.0, 128.1, 128.2, 128.3, 128.6, 131.9, 136.4, 150.9 p.p.m. IR (KBr ν cm-1): 3041 (CHar) 1592 and 1491 (CC and CN), 1379, 1310, 1204, 1064, 1015, 944, 828, 797, 782, 772, 677, 617, 517.

Refinement top

All H atoms for were found in electron density difference maps. These were placed in geometrically idealized positions and constrained to ride on their parent C atoms with C—H distances of 0.95 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the S enantiomer of (I) with atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. Alternating layers of R and S isomers viewed along c axis; R, S, R, S from top of figure.
8-(Naphthalen-1-yl)quinoline top
Crystal data top
C19H13NZ = 2
Mr = 255.30F(000) = 268
Triclinic, P1Dx = 1.357 Mg m3
Hall symbol: -P 1Melting point = 436.0–437.5 K
a = 6.1778 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.0392 (2) ÅCell parameters from 3661 reflections
c = 10.8828 (2) Åθ = 4.4–66.7°
α = 104.537 (1)°µ = 0.61 mm1
β = 106.435 (1)°T = 100 K
γ = 90.002 (1)°Plate, colourless
V = 624.80 (2) Å30.37 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD APEXII
diffractometer
2058 independent reflections
Radiation source: fine-focus sealed tube1678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 67.5°, θmin = 4.4°
Absorption correction: numerical
(SADABS; Sheldrick, 2008)
h = 77
Tmin = 0.806, Tmax = 0.942k = 1111
5783 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.348P]
where P = (Fo2 + 2Fc2)/3
2058 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C19H13Nγ = 90.002 (1)°
Mr = 255.30V = 624.80 (2) Å3
Triclinic, P1Z = 2
a = 6.1778 (1) ÅCu Kα radiation
b = 10.0392 (2) ŵ = 0.61 mm1
c = 10.8828 (2) ÅT = 100 K
α = 104.537 (1)°0.37 × 0.20 × 0.10 mm
β = 106.435 (1)°
Data collection top
Bruker SMART CCD APEXII
diffractometer
2058 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008)
1678 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.942Rint = 0.011
5783 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
2058 reflectionsΔρmin = 0.34 e Å3
181 parameters
Special details top

Experimental. crystal mounted on a Cryoloop using Paratone-N

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9761 (3)0.89896 (16)1.10848 (15)0.0304 (4)
C21.1692 (3)0.96964 (18)1.19213 (17)0.0269 (4)
H21.26101.01761.15790.032*
C31.2400 (3)0.97528 (18)1.32817 (17)0.0268 (4)
H31.37851.02491.38390.032*
C41.1084 (3)0.90897 (17)1.37947 (16)0.0233 (4)
H41.15490.91261.47130.028*
C4A0.9019 (3)0.83446 (16)1.29589 (15)0.0207 (4)
C50.7566 (3)0.76657 (17)1.34510 (16)0.0230 (4)
H50.79680.77021.43690.028*
C60.5598 (3)0.69612 (17)1.26156 (16)0.0243 (4)
H60.46360.65101.29540.029*
C70.4982 (3)0.68992 (17)1.12520 (16)0.0236 (4)
H70.36020.64061.06840.028*
C80.6333 (3)0.75369 (17)1.07236 (16)0.0211 (4)
C8A0.8399 (3)0.82928 (16)1.15855 (15)0.0197 (4)
C1'0.5605 (3)0.74639 (17)0.92755 (16)0.0210 (4)
C2'0.3732 (3)0.81036 (17)0.87514 (16)0.0234 (4)
H2'0.29240.86010.93210.028*
C3'0.2981 (3)0.80380 (17)0.73857 (16)0.0244 (4)
H3'0.16770.84870.70480.029*
C4'0.4114 (3)0.73338 (17)0.65465 (16)0.0229 (4)
H4'0.35980.72970.56280.027*
C4A'0.6059 (3)0.66569 (16)0.70394 (15)0.0207 (4)
C5'0.7289 (3)0.59114 (17)0.62054 (16)0.0234 (4)
H5'0.68370.58770.52870.028*
C6'0.9118 (3)0.52436 (18)0.67111 (17)0.0263 (4)
H6'0.99370.47430.61500.032*
C7'0.9774 (3)0.53047 (18)0.80697 (17)0.0274 (4)
H7'1.10390.48300.84130.033*
C8'0.8677 (2)0.60111 (16)0.89035 (15)0.0173 (4)
H8'0.91660.60330.98190.021*
C8A'0.6816 (3)0.67103 (16)0.84112 (15)0.0204 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0366 (9)0.0240 (8)0.0316 (8)0.0013 (6)0.0141 (7)0.0046 (6)
C20.0307 (9)0.0211 (9)0.0313 (9)0.0011 (7)0.0153 (8)0.0041 (7)
C30.0238 (9)0.0213 (9)0.0309 (10)0.0001 (7)0.0059 (7)0.0016 (7)
C40.0276 (9)0.0201 (9)0.0197 (8)0.0061 (7)0.0044 (7)0.0039 (7)
C4A0.0249 (8)0.0154 (9)0.0210 (8)0.0051 (6)0.0070 (7)0.0034 (6)
C50.0314 (9)0.0201 (9)0.0191 (8)0.0057 (7)0.0093 (7)0.0058 (6)
C60.0285 (9)0.0217 (9)0.0261 (9)0.0020 (7)0.0128 (7)0.0071 (7)
C70.0226 (8)0.0221 (9)0.0250 (9)0.0006 (6)0.0064 (7)0.0049 (7)
C80.0240 (8)0.0173 (9)0.0220 (9)0.0042 (6)0.0074 (7)0.0043 (6)
C8A0.0227 (8)0.0163 (9)0.0211 (8)0.0039 (6)0.0085 (7)0.0043 (6)
C1'0.0215 (8)0.0195 (9)0.0214 (8)0.0026 (6)0.0061 (7)0.0046 (6)
C2'0.0236 (8)0.0229 (9)0.0235 (9)0.0015 (7)0.0082 (7)0.0043 (7)
C3'0.0224 (8)0.0230 (10)0.0258 (9)0.0017 (7)0.0024 (7)0.0081 (7)
C4'0.0272 (9)0.0209 (9)0.0189 (8)0.0029 (7)0.0035 (7)0.0060 (6)
C4A'0.0237 (8)0.0162 (9)0.0211 (8)0.0036 (6)0.0046 (7)0.0052 (6)
C5'0.0295 (9)0.0213 (9)0.0197 (8)0.0041 (7)0.0079 (7)0.0051 (7)
C6'0.0274 (9)0.0225 (10)0.0288 (9)0.0004 (7)0.0116 (7)0.0028 (7)
C7'0.0247 (9)0.0210 (10)0.0323 (10)0.0024 (7)0.0025 (7)0.0061 (7)
C8'0.0193 (8)0.0148 (8)0.0147 (7)0.0006 (6)0.0011 (6)0.0026 (6)
C8A'0.0222 (8)0.0159 (9)0.0217 (8)0.0033 (6)0.0048 (7)0.0044 (6)
Geometric parameters (Å, º) top
N1—C21.348 (2)C1'—C2'1.374 (2)
N1—C8A1.395 (2)C1'—C8A'1.434 (2)
C2—C31.406 (2)C2'—C3'1.410 (2)
C2—H20.9500C2'—H2'0.9500
C3—C41.364 (2)C3'—C4'1.364 (2)
C3—H30.9500C3'—H3'0.9500
C4—C4A1.420 (2)C4'—C4A'1.418 (2)
C4—H40.9500C4'—H4'0.9500
C4A—C51.418 (2)C4A'—C5'1.418 (2)
C4A—C8A1.421 (2)C4A'—C8A'1.419 (2)
C5—C61.363 (2)C5'—C6'1.364 (2)
C5—H50.9500C5'—H5'0.9500
C6—C71.409 (2)C6'—C7'1.403 (2)
C6—H60.9500C6'—H6'0.9500
C7—C81.376 (2)C7'—C8'1.346 (2)
C7—H70.9500C7'—H7'0.9500
C8—C8A1.432 (2)C8'—C8A'1.393 (2)
C8—C1'1.494 (2)C8'—H8'0.9500
C2—N1—C8A118.89 (15)C2'—C1'—C8120.02 (15)
N1—C2—C3122.60 (15)C8A'—C1'—C8120.85 (14)
N1—C2—H2118.7C1'—C2'—C3'121.44 (15)
C3—C2—H2118.7C1'—C2'—H2'119.3
C4—C3—C2119.48 (15)C3'—C2'—H2'119.3
C4—C3—H3120.3C4'—C3'—C2'120.43 (15)
C2—C3—H3120.3C4'—C3'—H3'119.8
C3—C4—C4A120.15 (15)C2'—C3'—H3'119.8
C3—C4—H4119.9C3'—C4'—C4A'120.27 (15)
C4A—C4—H4119.9C3'—C4'—H4'119.9
C5—C4A—C4122.25 (15)C4A'—C4'—H4'119.9
C5—C4A—C8A119.47 (15)C5'—C4A'—C4'122.28 (15)
C4—C4A—C8A118.27 (15)C5'—C4A'—C8A'118.09 (15)
C6—C5—C4A120.44 (15)C4'—C4A'—C8A'119.63 (15)
C6—C5—H5119.8C6'—C5'—C4A'120.54 (15)
C4A—C5—H5119.8C6'—C5'—H5'119.7
C5—C6—C7120.34 (15)C4A'—C5'—H5'119.7
C5—C6—H6119.8C5'—C6'—C7'119.23 (15)
C7—C6—H6119.8C5'—C6'—H6'120.4
C8—C7—C6121.54 (15)C7'—C6'—H6'120.4
C8—C7—H7119.2C8'—C7'—C6'122.44 (15)
C6—C7—H7119.2C8'—C7'—H7'118.8
C7—C8—C8A119.05 (15)C6'—C7'—H7'118.8
C7—C8—C1'119.94 (15)C7'—C8'—C8A'119.33 (15)
C8A—C8—C1'120.99 (14)C7'—C8'—H8'120.3
N1—C8A—C4A120.58 (15)C8A'—C8'—H8'120.3
N1—C8A—C8120.26 (14)C8'—C8A'—C4A'120.35 (15)
C4A—C8A—C8119.15 (15)C8'—C8A'—C1'120.53 (14)
C2'—C1'—C8A'119.12 (15)C4A'—C8A'—C1'119.10 (15)
C8A—N1—C2—C30.4 (3)C7—C8—C1'—C8A'112.47 (18)
N1—C2—C3—C41.1 (3)C8A—C8—C1'—C8A'69.1 (2)
C2—C3—C4—C4A0.2 (2)C8A'—C1'—C2'—C3'0.2 (2)
C3—C4—C4A—C5178.48 (15)C8—C1'—C2'—C3'179.08 (15)
C3—C4—C4A—C8A1.1 (2)C1'—C2'—C3'—C4'0.2 (2)
C4—C4A—C5—C6179.99 (15)C2'—C3'—C4'—C4A'0.1 (2)
C8A—C4A—C5—C60.4 (2)C3'—C4'—C4A'—C5'179.92 (15)
C4A—C5—C6—C70.0 (2)C3'—C4'—C4A'—C8A'0.3 (2)
C5—C6—C7—C80.2 (3)C4'—C4A'—C5'—C6'178.28 (15)
C6—C7—C8—C8A0.7 (2)C8A'—C4A'—C5'—C6'1.4 (2)
C6—C7—C8—C1'179.14 (15)C4A'—C5'—C6'—C7'0.1 (2)
C2—N1—C8A—C4A1.0 (2)C5'—C6'—C7'—C8'0.6 (3)
C2—N1—C8A—C8179.75 (15)C6'—C7'—C8'—C8A'0.1 (2)
C5—C4A—C8A—N1177.87 (14)C7'—C8'—C8A'—C4A'1.2 (2)
C4—C4A—C8A—N11.7 (2)C7'—C8'—C8A'—C1'179.58 (14)
C5—C4A—C8A—C80.9 (2)C5'—C4A'—C8A'—C8'1.9 (2)
C4—C4A—C8A—C8179.47 (14)C4'—C4A'—C8A'—C8'177.77 (14)
C7—C8—C8A—N1177.73 (14)C5'—C4A'—C8A'—C1'179.69 (13)
C1'—C8—C8A—N10.7 (2)C4'—C4A'—C8A'—C1'0.7 (2)
C7—C8—C8A—C4A1.1 (2)C2'—C1'—C8A'—C8'177.81 (14)
C1'—C8—C8A—C4A179.50 (14)C8—C1'—C8A'—C8'1.1 (2)
C7—C8—C1'—C2'66.4 (2)C2'—C1'—C8A'—C4A'0.6 (2)
C8A—C8—C1'—C2'112.04 (18)C8—C1'—C8A'—C4A'179.48 (14)

Experimental details

Crystal data
Chemical formulaC19H13N
Mr255.30
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.1778 (1), 10.0392 (2), 10.8828 (2)
α, β, γ (°)104.537 (1), 106.435 (1), 90.002 (1)
V3)624.80 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.61
Crystal size (mm)0.37 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD APEXII
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.806, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
5783, 2058, 1678
Rint0.011
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.131, 1.06
No. of reflections2058
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008).

 

Acknowledgements

This work was partly supported by the SpF program of Kean University. The authors acknowledge support by NSF-CRIF Grant No. 0443538 for the X-ray diffractometer.

References

First citationAsakura, K. & Plasson, R. (2006). Chaos, 16, 1–7.  Google Scholar
First citationBruker (2005). SAINT Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX 2 Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuff, B. E., Koenig, T. M., Mitchell, D. & Staszak, M. A. (1998). Org. Synth. 75, 53–56.  Google Scholar
First citationKerr, K. A. & Robertson, J. M. (1969). J. Chem. Soc. B, pp. 1146–1149.  Google Scholar
First citationKondipudi, D. K., Laudadio, J. & Asakura, K. (1999). J. Am. Chem. Soc. 121, 1448–1451.  Google Scholar
First citationKranz, M., Clark, T. & von Rague Schleyer, P. J. (1993). J. Org. Chem. 58, 3317–3325.  Google Scholar
First citationKuroda, R. & Manson, S. F. (1981). J. Chem. Soc. Perkin Trans. 2, pp. 167–170.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSainz-Diaz, C. II, Martin-Islan, A. P. & Cartwright, J. H. E. (2005). J. Phys. Chem. 109, 18758–18764.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, K. R. & Pincock, R. E. (1974). J. Am. Chem. Soc. 97, 1474–1478.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds