organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-6-Amino-1,3-di­methyl-5-[(pyridin-2-yl­methyl­­idene)amino]­pyrimidine-2,4(1H,3H)-dione

aUniversity of Kwazulu-Natal, School of Chemistry, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 28 July 2011; accepted 4 August 2011; online 11 August 2011)

In the title compound, C12H13N5O2, a Schiff-base-derived chelate ligand, the non-aromatic heterocycle and its substituents essentially occupy one common plane (r.m.s. of fitted non-H atoms = 0.0503 Å). The N=C bond is E-configured. Intra­cyclic angles in the pyridine moiety cover the range 117.6 (2)–124.1 (2)°. Intra- and inter­molecular N—H⋯N and N—H⋯O hydrogen bonds are observed in the crystal structure, as are intra- and inter­molecular C—H⋯O contacts which, in total, connect the mol­ecules into a three-dimensional network. The shortest ring-centroid-to-ring-centroid distance of 3.5831 (14) Å is between the two different types of six-membered rings.

Related literature

For the crystal structures of two polymorphs of 6-amino-1,3-dimethyl-5-[(E-2-(methyl­sulfan­yl)benzyl­idene­amino]­pyrim­idine-2,4(1H,3H)-dione, see: Booysen et al. (2011a[Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011a). Acta Cryst. E67, o1592.],b[Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011b). Acta Cryst. E67, o2025-o2026.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For general information about the chelate effect in coordination chemistry, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N5O2

  • Mr = 259.27

  • Orthorhombic, F d d 2

  • a = 26.5036 (8) Å

  • b = 28.9987 (14) Å

  • c = 6.2193 (1) Å

  • V = 4780.0 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.27 × 0.14 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 11316 measured reflections

  • 1620 independent reflections

  • 1171 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.079

  • S = 0.94

  • 1620 reflections

  • 182 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H71⋯N5i 0.93 (3) 2.08 (3) 2.928 (3) 151 (3)
N4—H72⋯N3 0.84 (2) 2.25 (2) 2.661 (3) 110.2 (18)
N4—H72⋯O2ii 0.84 (2) 2.54 (2) 3.108 (3) 125.8 (19)
C7—H7⋯O2 0.95 2.17 2.847 (3) 127
C11—H11⋯O1iii 0.95 2.54 3.313 (3) 138
Symmetry codes: (i) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{3\over 4}}]; (ii) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}]; (iii) [-x+{\script{1\over 4}}, y+{\script{1\over 4}}, z-{\script{7\over 4}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade 1998). Combining different sets of donor atoms in one chelate ligand molecule, a probe for testing and accomodating metal centers of different Lewis acidities is at hand. To enable comparative studies with envisioned coordination compounds, we determined the crystal structure of the title compound. Two crystal structures of 6-amino-1,3-dimethyl-5-[(E-2- (methylsulfanyl)benzylideneamino]pyrimidine-2,4(1H,3H)-dione are apparent in the literature (Booysen et al., 2011a; Booysen et al., 2011b).

The molecule is a Schiff-base composed of a pyridyl moiety and a 6-amino-1,3- dimethylpyrimidine-2,4(1H,3H)-dione moiety. The C=N double-bond is (E)-configured. A conformation analysis of the non-aromatic six-membered ring (Cremer & Pople, 1975) fails due to the low puckering amplitude (τ = 2.9 °; r.m.s. of fitted non-hydrogen atoms – including the exocyclic substituents – = 0.0503 Å). Intracyclic angles in the pyridyl moiety cover a range from 117.6 (2)–124.1 (2) ° with the smallest angle found on the nitrogen atom and the largest angle found on the unsubstituted carbon atom in ortho position to the nitrogen atom. The least-squares planes defined by the respective atoms of the six-membered heterocycles intersect at an angle of 8.11 (12) °. The amino group is almost planar. The plane defined by its atoms and the least-squares plane defined by the atoms of its six-membered carrier ring enclose an angle of 9.56(2.54) ° (Fig. 1).

In the crystal structure, hydrogen bonds of N–H···N type as well as N–H···O type are observed. These are intra- as well as intermolecular and, in the case of N–H···N hydrogen bonds, involve only the nitrogen atom of the aromatic system and the Schiff base's double bonded nitrogen atom as acceptor. The intramolecular hydrogen bond shows bifurcation involving an oxygen atom. Apart from these classical hydrogen bonds, intra- as well as intermolecular C–H···O contacts can be observed whose range falls by more than 0.5 Å (in the former case) and by almost 0.2 Å (in the latter case) below the sum of van-der-Waals radii of the atoms participating. While the intramolecular C–H···O contact is apparent between the vinylic hydrogen atom and the neighbouring oxygen atom, the intermolecular C–H···O contacts are supported by the C–H group in para position to the Schiff-base substituent on the aromatic system and the keto group's oxygen atom that is not involved in the intramolecular C–H···O contacts. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is S(5)C11(6)C11(8) on the unitary level while a description of the C–H···O contacts necessitates a S(6)C11(12) descriptor on the same level. In total, the molecules are connected to a three-dimensional network. The shortest intercentroid distance between two centers of gravity was measured at 3.5831 (14) Å while the shortest intercentroid distance between two aromatic systems was found at 5.2956 (14) Å. (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

Related literature top

For the crystal structures of two polymorphs of 6-amino-1,3-dimethyl-5-[(E-2- (methylsulfanyl)benzylideneamino]pyrimidine-2,4(1H,3H)-dione, see: Booysen et al. (2011a,b). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975). For general information about the chelate effect in coordination chemistry, see: Gade (1998).

Experimental top

Equimolar amounts of picolinaldehyde (1.00 g, 9.36 mmol) and 5,6-diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (1.59 g) in anhydrous methanol (50 cm3) were refluxed for 3 h. The reaction mixture was allowed to cool to room temperature. An orange precipitate was isolated, which was recrystallized from anhydrous acetonitrile to give orange crystals. The crystals were filtered and dried under vacuum.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). Both nitrogen-bound H atoms were located in a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 - 1 0]. Blue dashed lines indicate clasical intermolecular hydrogen bonds, red dashed lines indicate classical intramolecular hydrogen bonds, green dashed lines intermolecular C–H···O contacts and yellow dashed lines intramolecular C–H···O contacts. Symmetry operators: i -x + 1/4, y - 1/4, z + 7/4; ii x - 1/4, -y + 1/4, z + 3/4; iii x - 1/4, -y + 1/4, z - 1/4; iv x + 1/4, -y + 1/4, z - 3/4; v -x + 1/4, y + 1/4, z - 7/4.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 0 - 1] (anisotropic displacement ellipsoids drawn at 50% probability level).
(E)-6-Amino-1,3-dimethyl-5-[(pyridin-2-ylmethylidene)amino]pyrimidine- 2,4(1H,3H)-dione top
Crystal data top
C12H13N5O2F(000) = 2176
Mr = 259.27Dx = 1.441 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2610 reflections
a = 26.5036 (8) Åθ = 2.8–25.2°
b = 28.9987 (14) ŵ = 0.10 mm1
c = 6.2193 (1) ÅT = 200 K
V = 4780.0 (3) Å3Platelet, red
Z = 160.27 × 0.14 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1171 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 28.3°, θmin = 2.1°
ϕ and ω scansh = 3532
11316 measured reflectionsk = 3838
1620 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0422P)2]
where P = (Fo2 + 2Fc2)/3
1620 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C12H13N5O2V = 4780.0 (3) Å3
Mr = 259.27Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 26.5036 (8) ŵ = 0.10 mm1
b = 28.9987 (14) ÅT = 200 K
c = 6.2193 (1) Å0.27 × 0.14 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1171 reflections with I > 2σ(I)
11316 measured reflectionsRint = 0.049
1620 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.17 e Å3
1620 reflectionsΔρmin = 0.19 e Å3
182 parameters
Special details top

Refinement. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (1312 pairs) have been merged and the item was removed from the CIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15951 (6)0.02666 (6)0.6362 (3)0.0368 (5)
O20.24640 (6)0.08960 (6)0.0779 (2)0.0332 (4)
N10.11534 (7)0.06900 (7)0.3925 (3)0.0284 (5)
N20.20212 (7)0.05684 (7)0.3521 (3)0.0267 (5)
N30.15107 (7)0.12779 (6)0.0955 (3)0.0246 (4)
N40.06933 (8)0.10885 (8)0.1366 (4)0.0347 (5)
H710.0405 (11)0.0991 (9)0.207 (5)0.056 (9)*
H720.0709 (8)0.1246 (8)0.023 (4)0.021 (7)*
N50.21612 (7)0.17411 (7)0.5455 (3)0.0290 (5)
C10.15777 (9)0.10106 (8)0.0864 (4)0.0247 (5)
C20.11379 (9)0.09303 (8)0.2032 (4)0.0250 (5)
C30.15934 (9)0.04947 (8)0.4708 (4)0.0269 (6)
C40.20500 (8)0.08359 (8)0.1627 (4)0.0245 (5)
C50.07022 (10)0.06475 (12)0.5270 (5)0.0497 (8)
H5A0.05230.09430.53010.075*
H5B0.08010.05620.67350.075*
H5C0.04800.04090.46750.075*
C60.24849 (9)0.03686 (9)0.4392 (4)0.0360 (6)
H6A0.25720.05240.57410.054*
H6B0.27600.04090.33540.054*
H6C0.24330.00390.46650.054*
C70.18654 (9)0.13865 (8)0.2257 (4)0.0274 (6)
H70.21970.12720.20210.033*
C80.17658 (9)0.16845 (8)0.4101 (3)0.0242 (5)
C90.13029 (9)0.18992 (9)0.4462 (4)0.0321 (6)
H90.10320.18610.34790.039*
C100.12463 (10)0.21673 (8)0.6268 (4)0.0366 (6)
H100.09350.23190.65360.044*
C110.16425 (10)0.22156 (9)0.7690 (4)0.0393 (7)
H110.16070.23920.89680.047*
C120.20894 (10)0.20008 (9)0.7199 (4)0.0362 (7)
H120.23650.20390.81610.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0386 (10)0.0401 (10)0.0316 (10)0.0016 (8)0.0004 (8)0.0116 (10)
O20.0224 (9)0.0446 (11)0.0328 (9)0.0016 (8)0.0037 (7)0.0052 (9)
N10.0219 (11)0.0349 (12)0.0284 (10)0.0010 (8)0.0044 (9)0.0071 (10)
N20.0239 (10)0.0303 (11)0.0261 (10)0.0031 (8)0.0012 (8)0.0042 (9)
N30.0214 (10)0.0288 (11)0.0237 (10)0.0008 (8)0.0020 (9)0.0003 (10)
N40.0223 (12)0.0480 (14)0.0340 (12)0.0001 (10)0.0035 (10)0.0164 (12)
N50.0261 (11)0.0345 (12)0.0263 (10)0.0002 (9)0.0031 (8)0.0030 (10)
C10.0237 (12)0.0276 (13)0.0229 (11)0.0003 (9)0.0002 (10)0.0009 (11)
C20.0239 (13)0.0261 (12)0.0251 (12)0.0020 (9)0.0016 (10)0.0002 (11)
C30.0253 (14)0.0273 (13)0.0281 (13)0.0017 (10)0.0004 (10)0.0013 (12)
C40.0239 (13)0.0249 (12)0.0248 (12)0.0003 (9)0.0003 (10)0.0029 (11)
C50.0290 (15)0.078 (2)0.0423 (16)0.0069 (15)0.0112 (13)0.0267 (16)
C60.0270 (13)0.0416 (15)0.0393 (15)0.0055 (11)0.0034 (11)0.0085 (13)
C70.0237 (13)0.0321 (14)0.0264 (12)0.0014 (10)0.0002 (11)0.0000 (11)
C80.0224 (11)0.0272 (13)0.0230 (11)0.0021 (10)0.0004 (10)0.0026 (10)
C90.0264 (14)0.0350 (14)0.0349 (14)0.0036 (11)0.0006 (11)0.0011 (12)
C100.0311 (14)0.0306 (14)0.0480 (17)0.0049 (11)0.0141 (13)0.0018 (14)
C110.0456 (18)0.0349 (14)0.0373 (15)0.0021 (12)0.0090 (13)0.0100 (13)
C120.0395 (16)0.0392 (16)0.0298 (14)0.0032 (13)0.0050 (12)0.0073 (12)
Geometric parameters (Å, º) top
O1—C31.223 (3)C5—H5A0.9800
O2—C41.230 (3)C5—H5B0.9800
N1—C21.368 (3)C5—H5C0.9800
N1—C31.385 (3)C6—H6A0.9800
N1—C51.465 (3)C6—H6B0.9800
N2—C31.370 (3)C6—H6C0.9800
N2—C41.413 (3)C7—C81.460 (3)
N2—C61.463 (3)C7—H70.9500
N3—C71.280 (3)C8—C91.394 (3)
N3—C11.383 (3)C9—C101.374 (4)
N4—C21.330 (3)C9—H90.9500
N4—H710.93 (3)C10—C111.380 (4)
N4—H720.84 (2)C10—H100.9500
N5—C121.334 (3)C11—C121.373 (4)
N5—C81.354 (3)C11—H110.9500
C1—C21.393 (3)C12—H120.9500
C1—C41.431 (3)
C2—N1—C3122.4 (2)H5A—C5—H5C109.5
C2—N1—C5120.6 (2)H5B—C5—H5C109.5
C3—N1—C5116.9 (2)N2—C6—H6A109.5
C3—N2—C4125.46 (19)N2—C6—H6B109.5
C3—N2—C6115.73 (19)H6A—C6—H6B109.5
C4—N2—C6118.74 (19)N2—C6—H6C109.5
C7—N3—C1124.1 (2)H6A—C6—H6C109.5
C2—N4—H71118.6 (18)H6B—C6—H6C109.5
C2—N4—H72113.8 (16)N3—C7—C8120.6 (2)
H71—N4—H72127 (2)N3—C7—H7119.7
C12—N5—C8117.6 (2)C8—C7—H7119.7
N3—C1—C2114.4 (2)N5—C8—C9121.8 (2)
N3—C1—C4125.6 (2)N5—C8—C7114.8 (2)
C2—C1—C4120.0 (2)C9—C8—C7123.4 (2)
N4—C2—N1118.0 (2)C10—C9—C8118.7 (2)
N4—C2—C1121.4 (2)C10—C9—H9120.6
N1—C2—C1120.6 (2)C8—C9—H9120.6
O1—C3—N2122.3 (2)C9—C10—C11119.9 (2)
O1—C3—N1121.4 (2)C9—C10—H10120.1
N2—C3—N1116.3 (2)C11—C10—H10120.1
O2—C4—N2118.9 (2)C12—C11—C10117.9 (3)
O2—C4—C1126.0 (2)C12—C11—H11121.0
N2—C4—C1115.1 (2)C10—C11—H11121.0
N1—C5—H5A109.5N5—C12—C11124.1 (2)
N1—C5—H5B109.5N5—C12—H12118.0
H5A—C5—H5B109.5C11—C12—H12118.0
N1—C5—H5C109.5
C7—N3—C1—C2179.2 (2)C6—N2—C4—O20.6 (3)
C7—N3—C1—C43.4 (4)C3—N2—C4—C14.6 (3)
C3—N1—C2—N4177.2 (2)C6—N2—C4—C1178.8 (2)
C5—N1—C2—N45.7 (3)N3—C1—C4—O20.3 (4)
C3—N1—C2—C13.6 (3)C2—C1—C4—O2177.6 (2)
C5—N1—C2—C1173.4 (2)N3—C1—C4—N2179.7 (2)
N3—C1—C2—N42.3 (3)C2—C1—C4—N23.0 (3)
C4—C1—C2—N4179.9 (2)C1—N3—C7—C8177.8 (2)
N3—C1—C2—N1176.8 (2)C12—N5—C8—C92.0 (3)
C4—C1—C2—N10.8 (3)C12—N5—C8—C7178.4 (2)
C4—N2—C3—O1178.5 (2)N3—C7—C8—N5174.6 (2)
C6—N2—C3—O11.8 (3)N3—C7—C8—C95.8 (3)
C4—N2—C3—N12.1 (3)N5—C8—C9—C101.4 (4)
C6—N2—C3—N1178.7 (2)C7—C8—C9—C10179.0 (2)
C2—N1—C3—O1177.2 (2)C8—C9—C10—C110.6 (4)
C5—N1—C3—O15.6 (4)C9—C10—C11—C121.9 (4)
C2—N1—C3—N22.2 (3)C8—N5—C12—C110.6 (4)
C5—N1—C3—N2174.9 (2)C10—C11—C12—N51.4 (4)
C3—N2—C4—O2176.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H71···N5i0.93 (3)2.08 (3)2.928 (3)151 (3)
N4—H72···N30.84 (2)2.25 (2)2.661 (3)110.2 (18)
N4—H72···O2ii0.84 (2)2.54 (2)3.108 (3)125.8 (19)
C7—H7···O20.952.172.847 (3)127
C11—H11···O1iii0.952.543.313 (3)138
Symmetry codes: (i) x1/4, y+1/4, z+3/4; (ii) x1/4, y+1/4, z1/4; (iii) x+1/4, y+1/4, z7/4.

Experimental details

Crystal data
Chemical formulaC12H13N5O2
Mr259.27
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)200
a, b, c (Å)26.5036 (8), 28.9987 (14), 6.2193 (1)
V3)4780.0 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.27 × 0.14 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11316, 1620, 1171
Rint0.049
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.079, 0.94
No. of reflections1620
No. of parameters182
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H71···N5i0.93 (3)2.08 (3)2.928 (3)151 (3)
N4—H72···N30.84 (2)2.25 (2)2.661 (3)110.2 (18)
N4—H72···O2ii0.84 (2)2.54 (2)3.108 (3)125.8 (19)
C7—H7···O20.952.172.847 (3)126.9
C11—H11···O1iii0.952.543.313 (3)138.3
Symmetry codes: (i) x1/4, y+1/4, z+3/4; (ii) x1/4, y+1/4, z1/4; (iii) x+1/4, y+1/4, z7/4.
 

Acknowledgements

The authors thank Mr David Neale-Shutte for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBooysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011a). Acta Cryst. E67, o1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBooysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011b). Acta Cryst. E67, o2025–o2026.  CrossRef IUCr Journals Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley–VCH.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds