organic compounds
(E)-2-(4-Bromobenzylidene)indan-1-one
aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C16H11BrO, the dihydroindene ring system is approximately planar, with a maximum deviation of 0.008 (2) Å. The mean plane of this ring system forms a dihedral angle of 3.73 (11)°, with the bromo-substituted benzene ring. In the crystal, weak intermolecular C—H⋯O hydrogen bonds link the molecules into sheets parallel to the ab plane and further stabilization is provided by weak C—H⋯π interactions involving the bromo-substituted benzene rings.
Related literature
For background information on indanones, see: Schumann et al. (2001); Herzog et al. (2002); Sato (1999); Leoni et al. (2000); Sugimoto (1999); Beukes et al. (1998). For closely related structures, see: Ali et al. (2010, 2011).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811031746/lh5300sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811031746/lh5300Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811031746/lh5300Isup3.cml
A mixture of 2,3-dihydro-1H-indene-1-one (0.001 mmol) and 4-bromobenzaldehyde (0.001 mmol) was dissolved in methanol (10 mL) and to this mixture was added 30% sodium hydroxide solution (5ml). The mixture was stirred for 5 h. After completion of the reaction, as evident from TLC, the mixture was poured into crushed ice, then neutralized with concentrated HCl. The precipitated solid was filtered, washed with water and recrystallised from ethanol to yield the title compound as light yellow crystals.
All H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.93–0.97 Å]. The crystal is a twin with
-1 0 0, 0 1 0, 0 0 -1 and BASF = 0.558 (7).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C16H11BrO | F(000) = 300 |
Mr = 299.16 | Dx = 1.567 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yc | Cell parameters from 2130 reflections |
a = 6.1933 (7) Å | θ = 3.3–24.6° |
b = 4.7441 (5) Å | µ = 3.23 mm−1 |
c = 21.8572 (19) Å | T = 297 K |
β = 99.108 (3)° | Plate, colourless |
V = 634.10 (11) Å3 | 0.35 × 0.16 × 0.06 mm |
Z = 2 |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 2884 independent reflections |
Radiation source: fine-focus sealed tube | 2314 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 29.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→8 |
Tmin = 0.398, Tmax = 0.820 | k = −6→6 |
6671 measured reflections | l = −29→29 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.057 | w = 1/[σ2(Fo2) + (0.0281P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2884 reflections | Δρmax = 0.25 e Å−3 |
164 parameters | Δρmin = −0.15 e Å−3 |
2 restraints | Absolute structure: Flack (1983) 1189 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (6) |
C16H11BrO | V = 634.10 (11) Å3 |
Mr = 299.16 | Z = 2 |
Monoclinic, Pc | Mo Kα radiation |
a = 6.1933 (7) Å | µ = 3.23 mm−1 |
b = 4.7441 (5) Å | T = 297 K |
c = 21.8572 (19) Å | 0.35 × 0.16 × 0.06 mm |
β = 99.108 (3)° |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 2884 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2314 reflections with I > 2σ(I) |
Tmin = 0.398, Tmax = 0.820 | Rint = 0.023 |
6671 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.057 | Δρmax = 0.25 e Å−3 |
S = 1.00 | Δρmin = −0.15 e Å−3 |
2884 reflections | Absolute structure: Flack (1983) 1189 Friedel pairs |
164 parameters | Absolute structure parameter: 0.00 (6) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 1.082380 (15) | 1.59421 (5) | 0.528270 (11) | 0.06352 (10) | |
O1 | 0.1862 (3) | 0.3615 (4) | 0.29957 (9) | 0.0621 (5) | |
C1 | 0.5691 (4) | 1.0857 (5) | 0.45115 (11) | 0.0475 (6) | |
H1A | 0.4363 | 1.0274 | 0.4617 | 0.057* | |
C2 | 0.6967 (4) | 1.2730 (6) | 0.48919 (11) | 0.0508 (6) | |
H2A | 0.6505 | 1.3426 | 0.5247 | 0.061* | |
C3 | 0.8943 (4) | 1.3551 (5) | 0.47354 (11) | 0.0469 (5) | |
C4 | 0.9614 (4) | 1.2637 (6) | 0.41993 (11) | 0.0478 (6) | |
H4A | 1.0926 | 1.3275 | 0.4093 | 0.057* | |
C5 | 0.8327 (4) | 1.0764 (6) | 0.38194 (11) | 0.0466 (6) | |
H5A | 0.8784 | 1.0126 | 0.3458 | 0.056* | |
C6 | 0.6340 (4) | 0.9814 (6) | 0.39723 (11) | 0.0409 (5) | |
C7 | 0.4929 (3) | 0.7746 (6) | 0.36006 (10) | 0.0438 (5) | |
H7A | 0.3638 | 0.7333 | 0.3749 | 0.053* | |
C8 | 0.5191 (4) | 0.6371 (5) | 0.30879 (11) | 0.0399 (5) | |
C9 | 0.7021 (4) | 0.6449 (5) | 0.26989 (10) | 0.0414 (6) | |
H9A | 0.7175 | 0.8319 | 0.2532 | 0.050* | |
H9B | 0.8403 | 0.5885 | 0.2941 | 0.050* | |
C10 | 0.6285 (4) | 0.4365 (5) | 0.21908 (12) | 0.0415 (6) | |
C11 | 0.7351 (5) | 0.3606 (6) | 0.17000 (12) | 0.0541 (6) | |
H11A | 0.8682 | 0.4418 | 0.1654 | 0.065* | |
C12 | 0.6374 (5) | 0.1604 (6) | 0.12821 (13) | 0.0635 (7) | |
H12A | 0.7059 | 0.1078 | 0.0951 | 0.076* | |
C13 | 0.4405 (6) | 0.0381 (7) | 0.13496 (14) | 0.0609 (7) | |
H13A | 0.3791 | −0.0966 | 0.1065 | 0.073* | |
C14 | 0.3334 (4) | 0.1125 (6) | 0.18326 (12) | 0.0529 (6) | |
H14A | 0.2006 | 0.0305 | 0.1879 | 0.063* | |
C15 | 0.4308 (4) | 0.3145 (5) | 0.22484 (10) | 0.0445 (5) | |
C16 | 0.3531 (4) | 0.4282 (5) | 0.28031 (12) | 0.0450 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.06614 (16) | 0.06279 (16) | 0.06060 (15) | −0.0043 (2) | 0.00682 (10) | −0.00762 (18) |
O1 | 0.0404 (9) | 0.0778 (14) | 0.0716 (12) | −0.0037 (9) | 0.0194 (8) | −0.0069 (10) |
C1 | 0.0478 (12) | 0.0513 (15) | 0.0479 (12) | 0.0046 (13) | 0.0210 (10) | 0.0048 (12) |
C2 | 0.0597 (15) | 0.0527 (16) | 0.0439 (12) | 0.0045 (13) | 0.0204 (11) | 0.0013 (11) |
C3 | 0.0507 (12) | 0.0432 (14) | 0.0467 (12) | 0.0087 (11) | 0.0078 (10) | 0.0069 (10) |
C4 | 0.0453 (12) | 0.0522 (16) | 0.0481 (12) | −0.0004 (12) | 0.0138 (9) | 0.0055 (12) |
C5 | 0.0465 (12) | 0.0543 (17) | 0.0421 (12) | 0.0031 (13) | 0.0171 (9) | 0.0028 (11) |
C6 | 0.0414 (11) | 0.0427 (12) | 0.0402 (12) | 0.0073 (11) | 0.0116 (10) | 0.0060 (11) |
C7 | 0.0361 (10) | 0.0533 (15) | 0.0451 (12) | 0.0051 (11) | 0.0157 (9) | 0.0090 (11) |
C8 | 0.0346 (10) | 0.0449 (14) | 0.0417 (12) | 0.0098 (10) | 0.0109 (10) | 0.0070 (10) |
C9 | 0.0388 (12) | 0.0442 (15) | 0.0438 (12) | 0.0063 (11) | 0.0143 (10) | 0.0058 (10) |
C10 | 0.0450 (12) | 0.0384 (14) | 0.0425 (13) | 0.0117 (11) | 0.0111 (10) | 0.0062 (10) |
C11 | 0.0613 (14) | 0.0538 (16) | 0.0519 (13) | 0.0039 (13) | 0.0232 (12) | −0.0010 (12) |
C12 | 0.083 (2) | 0.0614 (18) | 0.0494 (14) | 0.0138 (16) | 0.0208 (13) | −0.0018 (13) |
C13 | 0.073 (2) | 0.0552 (17) | 0.0513 (16) | 0.0106 (17) | −0.0003 (13) | −0.0036 (13) |
C14 | 0.0481 (13) | 0.0514 (16) | 0.0558 (14) | 0.0044 (13) | −0.0026 (11) | 0.0017 (12) |
C15 | 0.0435 (11) | 0.0442 (13) | 0.0455 (12) | 0.0102 (11) | 0.0065 (9) | 0.0051 (10) |
C16 | 0.0360 (12) | 0.0512 (16) | 0.0480 (13) | 0.0111 (11) | 0.0073 (10) | 0.0076 (11) |
Br1—C3 | 1.906 (3) | C8—C9 | 1.521 (3) |
O1—C16 | 1.219 (3) | C9—C10 | 1.503 (4) |
C1—C2 | 1.378 (4) | C9—H9A | 0.9700 |
C1—C6 | 1.395 (3) | C9—H9B | 0.9700 |
C1—H1A | 0.9300 | C10—C15 | 1.377 (4) |
C2—C3 | 1.378 (4) | C10—C11 | 1.393 (4) |
C2—H2A | 0.9300 | C11—C12 | 1.388 (4) |
C3—C4 | 1.374 (3) | C11—H11A | 0.9300 |
C4—C5 | 1.380 (4) | C12—C13 | 1.379 (5) |
C4—H4A | 0.9300 | C12—H12A | 0.9300 |
C5—C6 | 1.400 (3) | C13—C14 | 1.378 (4) |
C5—H5A | 0.9300 | C13—H13A | 0.9300 |
C6—C7 | 1.470 (4) | C14—C15 | 1.391 (4) |
C7—C8 | 1.329 (3) | C14—H14A | 0.9300 |
C7—H7A | 0.9300 | C15—C16 | 1.476 (3) |
C8—C16 | 1.491 (4) | ||
C2—C1—C6 | 121.6 (2) | C8—C9—H9A | 111.1 |
C2—C1—H1A | 119.2 | C10—C9—H9B | 111.1 |
C6—C1—H1A | 119.2 | C8—C9—H9B | 111.1 |
C1—C2—C3 | 118.7 (2) | H9A—C9—H9B | 109.1 |
C1—C2—H2A | 120.7 | C15—C10—C11 | 119.9 (2) |
C3—C2—H2A | 120.7 | C15—C10—C9 | 112.3 (2) |
C4—C3—C2 | 121.5 (2) | C11—C10—C9 | 127.9 (2) |
C4—C3—Br1 | 119.07 (19) | C12—C11—C10 | 118.2 (3) |
C2—C3—Br1 | 119.40 (19) | C12—C11—H11A | 120.9 |
C3—C4—C5 | 119.5 (2) | C10—C11—H11A | 120.9 |
C3—C4—H4A | 120.3 | C13—C12—C11 | 121.2 (3) |
C5—C4—H4A | 120.3 | C13—C12—H12A | 119.4 |
C4—C5—C6 | 120.6 (2) | C11—C12—H12A | 119.4 |
C4—C5—H5A | 119.7 | C14—C13—C12 | 121.0 (3) |
C6—C5—H5A | 119.7 | C14—C13—H13A | 119.5 |
C1—C6—C5 | 118.0 (2) | C12—C13—H13A | 119.5 |
C1—C6—C7 | 118.6 (2) | C13—C14—C15 | 117.7 (3) |
C5—C6—C7 | 123.4 (2) | C13—C14—H14A | 121.1 |
C8—C7—C6 | 130.7 (2) | C15—C14—H14A | 121.1 |
C8—C7—H7A | 114.6 | C10—C15—C14 | 122.0 (2) |
C6—C7—H7A | 114.6 | C10—C15—C16 | 109.4 (2) |
C7—C8—C16 | 120.7 (2) | C14—C15—C16 | 128.7 (2) |
C7—C8—C9 | 131.4 (2) | O1—C16—C15 | 126.4 (2) |
C16—C8—C9 | 108.0 (2) | O1—C16—C8 | 126.5 (2) |
C10—C9—C8 | 103.4 (2) | C15—C16—C8 | 107.0 (2) |
C10—C9—H9A | 111.1 | ||
C6—C1—C2—C3 | −0.8 (4) | C9—C10—C11—C12 | 179.6 (3) |
C1—C2—C3—C4 | 2.7 (4) | C10—C11—C12—C13 | −0.3 (4) |
C1—C2—C3—Br1 | −175.86 (18) | C11—C12—C13—C14 | 0.5 (5) |
C2—C3—C4—C5 | −2.6 (4) | C12—C13—C14—C15 | −0.1 (4) |
Br1—C3—C4—C5 | 175.93 (18) | C11—C10—C15—C14 | 0.8 (4) |
C3—C4—C5—C6 | 0.7 (4) | C9—C10—C15—C14 | −179.1 (2) |
C2—C1—C6—C5 | −1.1 (4) | C11—C10—C15—C16 | 179.7 (2) |
C2—C1—C6—C7 | 177.9 (2) | C9—C10—C15—C16 | −0.3 (3) |
C4—C5—C6—C1 | 1.2 (4) | C13—C14—C15—C10 | −0.6 (4) |
C4—C5—C6—C7 | −177.8 (2) | C13—C14—C15—C16 | −179.2 (3) |
C1—C6—C7—C8 | −177.5 (3) | C10—C15—C16—O1 | −178.5 (3) |
C5—C6—C7—C8 | 1.5 (4) | C14—C15—C16—O1 | 0.3 (4) |
C6—C7—C8—C16 | 178.2 (2) | C10—C15—C16—C8 | 0.7 (3) |
C6—C7—C8—C9 | −0.6 (5) | C14—C15—C16—C8 | 179.5 (2) |
C7—C8—C9—C10 | 179.5 (3) | C7—C8—C16—O1 | −0.7 (4) |
C16—C8—C9—C10 | 0.7 (2) | C9—C8—C16—O1 | 178.3 (3) |
C8—C9—C10—C15 | −0.2 (3) | C7—C8—C16—C15 | −179.8 (2) |
C8—C9—C10—C11 | 179.8 (3) | C9—C8—C16—C15 | −0.9 (2) |
C15—C10—C11—C12 | −0.4 (4) |
Cg1 is the centroid of the C10–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O1i | 0.93 | 2.56 | 3.199 (3) | 126 |
C9—H9B···O1ii | 0.97 | 2.38 | 3.256 (3) | 149 |
C9—H9A···Cg1iii | 0.97 | 2.68 | 3.528 (3) | 147 |
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C16H11BrO |
Mr | 299.16 |
Crystal system, space group | Monoclinic, Pc |
Temperature (K) | 297 |
a, b, c (Å) | 6.1933 (7), 4.7441 (5), 21.8572 (19) |
β (°) | 99.108 (3) |
V (Å3) | 634.10 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.23 |
Crystal size (mm) | 0.35 × 0.16 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.398, 0.820 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6671, 2884, 2314 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.682 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.057, 1.00 |
No. of reflections | 2884 |
No. of parameters | 164 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.15 |
Absolute structure | Flack (1983) 1189 Friedel pairs |
Absolute structure parameter | 0.00 (6) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 is the centroid of the C10–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O1i | 0.93 | 2.56 | 3.199 (3) | 126 |
C9—H9B···O1ii | 0.97 | 2.38 | 3.256 (3) | 149 |
C9—H9A···Cg1iii | 0.9700 | 2.68 | 3.528 (3) | 147 |
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z. |
Acknowledgements
The authors wish to express their thanks to Universiti Sains Malaysia (USM), Penang, Malaysia, for providing research facilities. HKF and WSL thank USM for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.
References
Ali, M. A., Ismail, R., Choon, T. S., Loh, W.-S. & Fun, H.-K. (2011). Acta Cryst. E67, o1983–o1984. CrossRef IUCr Journals Google Scholar
Ali, M. A., Ismail, R., Choon, T. S., Rosli, M. M. & Fun, H.-K. (2010). Acta Cryst. E66, o2878. Web of Science CSD CrossRef IUCr Journals Google Scholar
Beukes, D. R., Davies-Coleman, M. T., Kelly-Borges, M., Harper, M. K. & Faulkner, D. J. (1998). J. Nat. Prod. 61, 699–701. CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Herzog, M. N., Chien, J. C. W. & Rausch, M. D. J. (2002). Organomet. Chem. 654, 29–35. CAS Google Scholar
Leoni, L. M., Hamel, E., Genini, D., Shih, H., Carrera, C. J., Cottam, H. B. & Carson, D. A. (2000). J. Natl. Cancer Inst. 92, 217–224. CrossRef CAS Google Scholar
Sato, Y. (1999). Chem. Abstr. 130, 13852. Google Scholar
Schumann, H., Stenzel, O. & Girgsdies, F. (2001). Organometallics, 20, 1743–1751. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sugimoto, H. (1999). Pure Appl. Chem. 71, 2031–37. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indanones and related compounds are important bioactive molecules. These compounds have been studied for various biological activities including cancer and alzheimer's type of diseases. Indanones are also used as drug intermediates, ligands of olefinic polymerisation catalysts and discotic liquid crystals (Schumann et al., 2001; Herzog et al., 2002; Sato, 1999). Another indanone analogue donepezil hydrochloride has been approved by US-FDA for the treatment of mild to moderate alzheimer's disease. This drug acts as an AChE (Acetylcholinesterase) inhibitor and some other indanones have been isolated from natural products. Being such a useful moiety, several synthetic strategies have also been developed for their synthesis (Leoni et al., 2000; Sugimoto, 1999; Beukes et al., 1998). They are very useful intermediates for the synthesis of five and six membered heterocyclic compounds. Dihydroindene derivatives exhibit diverse pharmacological activities. Chemistry of dihydroindene has been recognized as a significant field of study.
In the title compound (Fig. 1), the dihydroindene ring system (C8–C16) is approximately planar, with a maximum deviation of 0.008 (2) Å for atom C15. This ring system is almost coplanar with the benzene ring (C1–C6), with a dihedral angle of 3.73 (11)°. Bond lengths and angles are within the normal ranges and are comparable to those in the related crystal structures (Ali et al., 2010, 2011).
In the crystal (Fig. 2), intermolecular C4—H4A···O1i and C9—H9B···O1ii hydrogen bonds (Table 1) link the molecules into sheets parallel to the ab plane (Fig. 2) and further stabilization is provided by C—H···πiii interactions, involving the centroids of benzene rings (C10–C15; Cg1).