organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­propyl-N-[2-(2,4-di­fluoro­phen­yl)-2-hy­dr­oxy-1-(1H-1,2,4-triazol-1-yl)prop­yl]-2-(5-methyl-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-1-yl)acetamide di­chloro­methane 0.62-solvate

aSchool of Pharmacy, Yantai University, Yantai 264005, People's Republic of China, bMicroscale Science Institute, Weifang University, Weifang 261041, People's Republic of China, and cSchool of Pharmacy, Binzhou Medical College, Yantai 264003, People's Republic of China
*Correspondence e-mail: mqg@ytu.edu.cn

(Received 30 July 2011; accepted 21 August 2011; online 27 August 2011)

In the title compound, C21H22F2N6O4·0.62CH2Cl2, the difluoro-substituted benzene ring forms dihedral angles of 54.6 (3)° with the mean plane of the thymine ring and 50.9 (2)° with the triazole ring. The dihedral angle between the thymine and triazole rings is 7.4 (3)°. In the crystal, inter­molecular N—H⋯N and O—H⋯O hydrogen bonds link the main mol­ecules into chains along [10[\overline{1}]]. The CH2Cl2 solvent mol­ecule was refined as partial occupancy over two sets of sites with refined occupancies of 0.308 (9) and 0.310 (8).

Related literature

For the applications of azole and triazole compounds as anti­fungal agents, see: Singh (2001[Singh, N. (2001). Clin. Infect. Dis. 33, 1692-1696.]); Richardson (2005[Richardson, M. D. (2005). J. Antimicrob. Chemother. 56, i5-i11.]); Hobson (2003[Hobson, R. P. (2003). J. Hosp. Infect. 55, 159-168.]); Slavin et al. (2002[Slavin, M. A. et al. (2002). J. Antimicrob. Chemother. 49, 3-6.]); Wingard & Leather (2004[Wingard, J. R. & Leather, H. (2004). Biol. Blood Marrow Transplant. 10, 73-90.]); Fridkin & Jarvis (1996[Fridkin, S. K. & Jarvis, W. R. (1996). Clin. Microbiol. Rev. 9, 499-511.]); Gallis et al. (1990[Gallis, H. A., Drew, R. H. & Pickard, W. W. (1990). Rev. Infect. Dis. 12, 308-329.]); Sheehan et al. (1999[Sheehan, D. J., Hitchcock, C. A. & Sibley, C. M. (1999). Clin. Microbiol. Rev. 12, 40-79.]); Denning (2002[Denning, D. W. (2002). J. Antimicrob. Chemother. 49, 889-891.]); Aoyama et al. (1984[Aoyama, Y., Yoshida, Y. & Sato, R. (1984). J. Biol. Chem. 259, 1661-1666.]); Lamb et al. (1999[Lamb, D. C., Kelly, D. E., Venkateswarlu, K., Manning, N. J., Bligh, H. F., Schunck, W. H. & Kelly, S. L. (1999). Biochemistry. 38, 8733-8738.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22F2N6O4·0.62CH2Cl2

  • Mr = 512.93

  • Triclinic, [P \overline 1]

  • a = 8.474 (2) Å

  • b = 12.464 (3) Å

  • c = 13.410 (4) Å

  • α = 62.942 (4)°

  • β = 73.187 (4)°

  • γ = 83.746 (4)°

  • V = 1207.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.30 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 6058 measured reflections

  • 4162 independent reflections

  • 3053 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.092

  • wR(F2) = 0.209

  • S = 1.16

  • 4162 reflections

  • 356 parameters

  • 42 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯N2i 0.80 2.11 2.893 (5) 167
O1—H1A⋯O2ii 0.82 2.13 2.903 (4) 158
Symmetry codes: (i) x+1, y, z-1; (ii) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, fungal infections are prevalent diseases from which a large proportion of the human population suffers (Singh, 2001; Richardson, 2005; Hobson, 2003; Slavin et al., 2002). The increased emergence of both superficial and systemic fungal infections has led to the massive increase in the rate of mortality, especially in immunocompromised individuals i.e. those suffering from tuberculosis, cancer or AIDS (Wingard & Leather, 2004; Fridkin & Jarvis, 1996). There are very few antifungal agents that can be used for life-threatening fungal infections. Several clinical drugs, such as amphotericin B,5-fluorocytosine, azoles (such as fluconazole and itraconazole) and echinocandins (such as caspofungin and micafungin) have been developed to reduce the impact of fungal diseases (Gallis et al., 1990; Sheehan et al., 1999; Denning, 2002). Among those, azoles, especially triazole antifungal agents, are used widely and efficiently. For over a decade, azoles have been a mainstay of the antifungal armamentarium. They act by competitive inhibition of the lanosterol 1410 which is the key enzyme in sterol biosynthesis of fungi (Aoyama et al., 1984). Selective inhibition of CYP51 would cause depletion of ergosterol and accumulation of lanosterol and other 14-methyl sterols resulting in the growth inhibition of fungal cells (Lamb et al., 1999). We have attempted to prepare some potential antifungal agents with improved activity and broader spectrum, by sythesizing a series of 1-(1H-1,2,4-triazole-1-yl)-(2,4-difluorophenyl)-3-[N-n-alkyl-N-(1-thyminyl)acetyl]-2-propanol compounds. Herein, we report the crystal structure of the title compound (I).

The molecular structure of the title compound is shown in Fig. 1. The difluoro-substituted benzene ring forms dihedral angles of 54.6 (3)° with the mean plane of the thymine ring and 50.9 (2)° with the triazole ring. The dihedral angle between the thymine and triazole rings is 7.4 (3)°. In the crystal, intermolecular N—H···N and O—H···O hydrogen bonds link the main molecules into one-dimensional chains (Fig. 2) along [101].

Related literature top

For the applications of azole and triazole compounds as antifungal agents, see: Singh (2001); Richardson (2005); Hobson (2003); Slavin et al. (2002); Wingard & Leather (2004); Fridkin & Jarvis (1996); Gallis et al. (1990); Sheehan et al. (1999); Denning (2002); Aoyama et al. (1984); Lamb et al. (1999).

Experimental top

The synthesis of thymin-1-yl acetic acid: To a solution of thymine (30.00 g, 237.89 mmol) in water (150 ml) was added potassium hydroxide (51.25 g, 903.79 mmol). The solution was heated to 313 K, and then bromoacetic acid (49.58 g, 356.83 mmol) was added dropwise. The resulting solution was allowed to stir for 2 h at the same temperature. The solution was then brought to pH 5 with 36% HCl at 273 K. The white precipitate was filtered off and discarded. Then the filtrate was brought to pH 1 with 36% HCl. Solid was filtered off and dried and obtained in 83.5% yield, m.p 528–530 K.

The synthesis of the title compound: To a solution of 1-(1H-1,2,4-triazole)-2,2-[oxiranyl-(2,4-difluorophenyl)]ethane mesylate (16.75 g, 50 mmol) in ethanol (240 ml) was added triethylamine (16 ml, 110 mmol) and cyclopropylamine (6.93 ml, 100 mmol). The resulting solution was raised to 318 K and stirred for 10 h at the same temperature. Once concentrated to light yellow oil under vacuum, the residue was taken off with ethyl acetate and was treated with 1 M HCl. The aqueous phase was then brought to pH 8 with sodium carbonate and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. A light yellow oil was obtained in 67.6% yield. A solution of the title compound (9.2 mg,0.02 mmol) in dichloromethane and methanol (4 ml, 1:1, v/v) was kept at room temperature. Upon slow evaporation of the solvent over about 10 d, colourless block-shaped crystals suitable for X-ray measurements were obtained.

Refinement top

All H atoms were placed in idealized positions and treated as riding,with C—H = 0.97 (CH2), 0.96 (CH3), 0.93 Å (CHaromatic), 0.98 Å (CHtertiary alkyl), N—H = 0.80 Å, O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(N, CH and CH2), Uiso(H) = 1.5Ueq(OH and CH3). The CH2Cl2 solvent molecule was refined as partial occupancy over two sets of sites with refined occupancies of 0.308 (9) and 0.310 (8). The precision of this structure is lower than normal and this may be the result of the presence of the disordered solvent in the lattice.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids with 30% probability. The solvent molecule is not shown.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Dashed lines indicate hydrogen bonds. Only H atoms involved in hydrogen bonds are shown. The solvent molecules are not shown.
N-Cyclopropyl-N-[2-(2,4-difluorophenyl)-2-hydroxy- 3-(1H-1,2,4-triazol-1-yl)propyl]-2-(5-methyl-2,4-dioxo- 1,2,3,4-tetrahydropyrimidin-1-yl)acetamide dichloromethane 0.62-solvate top
Crystal data top
C21H22F2N6O4·0.62CH2Cl2Z = 2
Mr = 512.93F(000) = 532.2
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.474 (2) ÅCell parameters from 1529 reflections
b = 12.464 (3) Åθ = 2.5–24.6°
c = 13.410 (4) ŵ = 0.24 mm1
α = 62.942 (4)°T = 298 K
β = 73.187 (4)°Block, colourless
γ = 83.746 (4)°0.30 × 0.16 × 0.14 mm
V = 1207.1 (6) Å3
Data collection top
Bruker SMART APEX
diffractometer
3053 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
ϕ and ω scansh = 108
6058 measured reflectionsk = 1411
4162 independent reflectionsl = 1510
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.092Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0687P)2 + 1.6778P]
where P = (Fo2 + 2Fc2)/3
4162 reflections(Δ/σ)max < 0.001
356 parametersΔρmax = 0.50 e Å3
42 restraintsΔρmin = 0.34 e Å3
Crystal data top
C21H22F2N6O4·0.62CH2Cl2γ = 83.746 (4)°
Mr = 512.93V = 1207.1 (6) Å3
Triclinic, P1Z = 2
a = 8.474 (2) ÅMo Kα radiation
b = 12.464 (3) ŵ = 0.24 mm1
c = 13.410 (4) ÅT = 298 K
α = 62.942 (4)°0.30 × 0.16 × 0.14 mm
β = 73.187 (4)°
Data collection top
Bruker SMART APEX
diffractometer
3053 reflections with I > 2σ(I)
6058 measured reflectionsRint = 0.022
4162 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.09242 restraints
wR(F2) = 0.209H-atom parameters constrained
S = 1.16Δρmax = 0.50 e Å3
4162 reflectionsΔρmin = 0.34 e Å3
356 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4568 (7)0.7140 (5)1.3061 (5)0.0602 (15)
H10.37780.75221.34250.072*
C20.5856 (6)0.5787 (4)1.2724 (4)0.0416 (11)
H20.62130.50441.27520.050*
C30.7947 (5)0.7116 (4)1.0885 (3)0.0320 (10)
H3A0.88870.66491.11060.038*
H3B0.82560.79631.05320.038*
C40.7508 (5)0.6834 (4)0.9990 (4)0.0296 (9)
C50.5887 (5)0.7388 (4)0.9760 (3)0.0291 (9)
C60.5620 (5)0.8613 (4)0.9364 (4)0.0331 (10)
C70.4170 (6)0.9142 (4)0.9172 (4)0.0481 (12)
H70.40400.99680.89140.058*
C80.2910 (6)0.8396 (5)0.9378 (5)0.0537 (14)
C90.3077 (6)0.7182 (4)0.9764 (4)0.0476 (12)
H90.22100.66950.98940.057*
C100.4563 (5)0.6694 (4)0.9955 (4)0.0349 (10)
H100.46800.58661.02270.042*
C110.8951 (5)0.7280 (4)0.8885 (4)0.0333 (10)
H11A0.91350.81360.86030.040*
H11B0.99400.68730.90790.040*
C120.7806 (6)0.7963 (4)0.7168 (4)0.0421 (11)
H120.66190.78060.73710.051*
C130.8329 (10)0.9254 (5)0.6618 (5)0.078 (2)
H13A0.74760.98500.65140.094*
H13B0.92640.94500.67910.094*
C140.8650 (8)0.8592 (5)0.5897 (4)0.0644 (16)
H14A0.97790.83850.56330.077*
H14B0.79910.87850.53570.077*
C150.9161 (5)0.6029 (4)0.7912 (4)0.0315 (10)
C160.8534 (5)0.5732 (4)0.7112 (4)0.0375 (11)
H16A0.74350.53700.75130.045*
H16B0.84590.64710.64320.045*
C170.9241 (6)0.3704 (4)0.7248 (4)0.0440 (12)
H170.82920.34070.78610.053*
C181.0177 (6)0.2925 (4)0.6907 (4)0.0468 (12)
C190.9756 (9)0.1617 (5)0.7452 (6)0.086 (2)
H19A0.88140.14250.81140.129*
H19B1.06750.11580.76970.129*
H19C0.95080.14220.68980.129*
C201.1630 (6)0.3403 (4)0.5940 (4)0.0430 (11)
C211.1004 (5)0.5404 (4)0.5851 (4)0.0376 (10)
F10.6869 (3)0.9347 (2)0.9153 (3)0.0508 (7)
F20.1460 (4)0.8888 (3)0.9206 (4)0.0897 (12)
N10.5731 (5)0.7741 (4)1.2121 (4)0.0512 (11)
N20.4584 (5)0.5937 (4)1.3470 (3)0.0525 (11)
N30.6572 (4)0.6839 (3)1.1920 (3)0.0322 (8)
N40.8680 (4)0.7077 (3)0.7957 (3)0.0298 (8)
N50.9609 (4)0.4908 (3)0.6742 (3)0.0351 (9)
N61.1926 (4)0.4609 (3)0.5494 (3)0.0411 (9)
H61.27540.49350.50050.049*
O10.7269 (3)0.5572 (2)1.0449 (3)0.0351 (7)
H1A0.81010.52291.06220.053*
O20.9993 (4)0.5299 (3)0.8517 (3)0.0455 (8)
O31.1376 (4)0.6464 (3)0.5414 (3)0.0573 (10)
O41.2549 (5)0.2801 (3)0.5518 (3)0.0655 (11)
C1A0.332 (3)0.799 (2)0.626 (4)0.104 (10)0.308 (9)
H1AA0.23070.75860.68010.125*0.308 (9)
H1AB0.32050.82520.54920.125*0.308 (9)
Cl10.4739 (16)0.7045 (11)0.6375 (13)0.193 (7)0.308 (9)
Cl20.350 (3)0.920 (2)0.633 (2)0.371 (15)0.308 (9)
C1B0.401 (4)0.803 (2)0.5671 (15)0.103 (9)0.310 (8)
H1BA0.30070.79410.55210.123*0.310 (8)
H1BB0.47280.74480.54970.123*0.310 (8)
Cl1'0.3513 (16)0.7336 (13)0.7053 (12)0.177 (6)0.310 (8)
Cl2'0.477 (3)0.9237 (19)0.453 (2)0.340 (13)0.310 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (3)0.067 (4)0.056 (4)0.010 (3)0.005 (3)0.036 (3)
C20.045 (3)0.046 (3)0.030 (2)0.003 (2)0.003 (2)0.017 (2)
C30.028 (2)0.041 (2)0.032 (2)0.0028 (18)0.0105 (18)0.019 (2)
C40.027 (2)0.030 (2)0.032 (2)0.0003 (17)0.0059 (18)0.0146 (18)
C50.027 (2)0.036 (2)0.024 (2)0.0010 (18)0.0036 (17)0.0159 (18)
C60.027 (2)0.034 (2)0.043 (3)0.0028 (18)0.0070 (19)0.021 (2)
C70.047 (3)0.038 (3)0.059 (3)0.010 (2)0.016 (2)0.022 (2)
C80.035 (3)0.054 (3)0.074 (4)0.009 (2)0.022 (3)0.027 (3)
C90.033 (3)0.050 (3)0.062 (3)0.006 (2)0.015 (2)0.024 (3)
C100.033 (2)0.037 (2)0.034 (2)0.0029 (19)0.0070 (19)0.016 (2)
C110.025 (2)0.044 (3)0.038 (3)0.0033 (18)0.0082 (19)0.026 (2)
C120.048 (3)0.040 (3)0.036 (3)0.008 (2)0.012 (2)0.016 (2)
C130.137 (6)0.041 (3)0.054 (4)0.002 (3)0.031 (4)0.015 (3)
C140.093 (4)0.051 (3)0.037 (3)0.001 (3)0.014 (3)0.011 (3)
C150.020 (2)0.042 (2)0.029 (2)0.0004 (18)0.0021 (18)0.016 (2)
C160.035 (2)0.050 (3)0.035 (2)0.005 (2)0.009 (2)0.026 (2)
C170.048 (3)0.052 (3)0.031 (2)0.013 (2)0.005 (2)0.017 (2)
C180.058 (3)0.043 (3)0.044 (3)0.001 (2)0.012 (2)0.025 (2)
C190.107 (5)0.048 (3)0.094 (5)0.012 (3)0.007 (4)0.034 (4)
C200.050 (3)0.051 (3)0.046 (3)0.012 (2)0.023 (2)0.032 (2)
C210.042 (3)0.040 (3)0.033 (2)0.001 (2)0.011 (2)0.017 (2)
F10.0455 (16)0.0343 (14)0.075 (2)0.0060 (12)0.0167 (14)0.0245 (14)
F20.0437 (18)0.082 (2)0.143 (4)0.0242 (17)0.048 (2)0.041 (2)
N10.057 (3)0.048 (2)0.049 (3)0.008 (2)0.002 (2)0.030 (2)
N20.050 (3)0.060 (3)0.036 (2)0.005 (2)0.003 (2)0.019 (2)
N30.0328 (19)0.043 (2)0.0258 (19)0.0026 (16)0.0049 (15)0.0214 (17)
N40.0309 (19)0.036 (2)0.0232 (18)0.0019 (15)0.0046 (15)0.0153 (15)
N50.036 (2)0.043 (2)0.030 (2)0.0042 (16)0.0038 (16)0.0212 (17)
N60.039 (2)0.050 (2)0.033 (2)0.0022 (18)0.0007 (17)0.0214 (18)
O10.0352 (17)0.0327 (16)0.0405 (18)0.0086 (13)0.0139 (14)0.0183 (14)
O20.0464 (19)0.057 (2)0.047 (2)0.0239 (16)0.0270 (16)0.0315 (17)
O30.060 (2)0.045 (2)0.054 (2)0.0065 (17)0.0030 (18)0.0210 (18)
O40.071 (3)0.071 (2)0.074 (3)0.018 (2)0.018 (2)0.052 (2)
C1A0.102 (13)0.108 (13)0.095 (12)0.001 (9)0.034 (9)0.034 (9)
Cl10.178 (9)0.167 (9)0.210 (10)0.003 (6)0.005 (7)0.096 (7)
Cl20.363 (17)0.382 (18)0.371 (18)0.015 (10)0.130 (10)0.153 (11)
C1B0.073 (11)0.102 (12)0.104 (13)0.007 (8)0.023 (9)0.022 (9)
Cl1'0.162 (9)0.207 (9)0.181 (9)0.023 (6)0.020 (6)0.112 (7)
Cl2'0.310 (15)0.319 (15)0.367 (16)0.024 (9)0.121 (10)0.119 (10)
Geometric parameters (Å, º) top
C1—N11.306 (6)C15—O21.226 (5)
C1—N21.342 (6)C15—N41.348 (5)
C1—H10.9300C15—C161.519 (6)
C2—N21.304 (6)C16—N51.460 (5)
C2—N31.326 (5)C16—H16A0.9700
C2—H20.9300C16—H16B0.9700
C3—N31.455 (5)C17—C181.345 (6)
C3—C41.541 (6)C17—N51.364 (6)
C3—H3A0.9700C17—H170.9300
C3—H3B0.9700C18—C201.444 (7)
C4—O11.418 (5)C18—C191.487 (7)
C4—C51.517 (6)C19—H19A0.9600
C4—C111.533 (6)C19—H19B0.9600
C5—C101.383 (6)C19—H19C0.9600
C5—C61.386 (6)C20—O41.222 (5)
C6—F11.356 (4)C20—N61.362 (6)
C6—C71.364 (6)C21—O31.211 (5)
C7—C81.376 (7)C21—N61.366 (6)
C7—H70.9300C21—N51.370 (5)
C8—F21.346 (5)N1—N31.355 (5)
C8—C91.364 (7)N6—H60.8013
C9—C101.378 (6)O1—H1A0.8200
C9—H90.9300C1A—Cl11.580 (12)
C10—H100.9300C1A—Cl21.581 (12)
C11—N41.460 (5)C1A—H1AA0.9600
C11—H11A0.9700C1A—H1AB0.9601
C11—H11B0.9700C1A—H1BA1.1262
C12—N41.448 (5)Cl1—H1BB1.0513
C12—C131.489 (7)C1B—Cl1'1.590 (12)
C12—C141.495 (7)C1B—Cl2'1.599 (12)
C12—H120.9800C1B—H1AB0.7735
C13—C141.488 (8)C1B—H1BA0.9600
C13—H13A0.9700C1B—H1BB0.9601
C13—H13B0.9700Cl1'—H1AA1.1355
C14—H14A0.9700Cl2'—H1AB1.6877
C14—H14B0.9700
N1—C1—N2115.8 (4)N5—C16—C15112.0 (3)
N1—C1—H1122.1N5—C16—H16A109.2
N2—C1—H1122.1C15—C16—H16A109.2
N2—C2—N3110.8 (4)N5—C16—H16B109.2
N2—C2—H2124.6C15—C16—H16B109.2
N3—C2—H2124.6H16A—C16—H16B107.9
N3—C3—C4111.7 (3)C18—C17—N5123.5 (4)
N3—C3—H3A109.3C18—C17—H17118.3
C4—C3—H3A109.3N5—C17—H17118.3
N3—C3—H3B109.3C17—C18—C20117.6 (4)
C4—C3—H3B109.3C17—C18—C19123.2 (5)
H3A—C3—H3B107.9C20—C18—C19119.2 (5)
O1—C4—C5106.0 (3)C18—C19—H19A109.5
O1—C4—C11109.8 (3)C18—C19—H19B109.5
C5—C4—C11112.6 (3)H19A—C19—H19B109.5
O1—C4—C3109.4 (3)C18—C19—H19C109.5
C5—C4—C3111.1 (3)H19A—C19—H19C109.5
C11—C4—C3107.9 (3)H19B—C19—H19C109.5
C10—C5—C6115.5 (4)O4—C20—N6120.5 (5)
C10—C5—C4121.8 (4)O4—C20—C18124.1 (5)
C6—C5—C4122.7 (4)N6—C20—C18115.3 (4)
F1—C6—C7117.1 (4)O3—C21—N6123.1 (4)
F1—C6—C5118.6 (4)O3—C21—N5122.3 (4)
C7—C6—C5124.4 (4)N6—C21—N5114.5 (4)
C6—C7—C8116.9 (4)C1—N1—N3101.6 (4)
C6—C7—H7121.6C2—N2—C1102.3 (4)
C8—C7—H7121.6C2—N3—N1109.6 (3)
F2—C8—C9119.3 (4)C2—N3—C3130.1 (4)
F2—C8—C7118.3 (4)N1—N3—C3120.2 (3)
C9—C8—C7122.3 (4)C15—N4—C12122.2 (3)
C8—C9—C10118.4 (4)C15—N4—C11118.4 (3)
C8—C9—H9120.8C12—N4—C11119.2 (3)
C10—C9—H9120.8C17—N5—C21121.4 (4)
C9—C10—C5122.6 (4)C17—N5—C16121.9 (4)
C9—C10—H10118.7C21—N5—C16116.7 (4)
C5—C10—H10118.7C20—N6—C21127.5 (4)
N4—C11—C4113.4 (3)C20—N6—H6121.9
N4—C11—H11A108.9C21—N6—H6110.3
C4—C11—H11A108.9C4—O1—H1A109.5
N4—C11—H11B108.9Cl1—C1A—Cl2122 (2)
C4—C11—H11B108.9Cl1—C1A—H1AA108.7
H11A—C11—H11B107.7Cl2—C1A—H1AA108.8
N4—C12—C13118.6 (4)Cl1—C1A—H1AB104.8
N4—C12—C14119.8 (4)Cl2—C1A—H1AB104.5
C13—C12—C1459.8 (3)H1AA—C1A—H1AB107.3
N4—C12—H12115.7Cl1—C1A—H1BA96.4
C13—C12—H12115.7Cl2—C1A—H1BA124.6
C14—C12—H12115.7H1AA—C1A—H1BA92.2
C14—C13—C1260.3 (3)H1AB—C1A—H1BA21.3
C14—C13—H13A117.7C1A—Cl1—H1BB73.9
C12—C13—H13A117.7Cl1'—C1B—Cl2'147 (2)
C14—C13—H13B117.7Cl1'—C1B—H1AB106.6
C12—C13—H13B117.7Cl2'—C1B—H1AB82.9
H13A—C13—H13B114.9Cl1'—C1B—H1BA100.4
C13—C14—C1259.9 (3)Cl2'—C1B—H1BA100.3
C13—C14—H14A117.8H1AB—C1B—H1BA25.2
C12—C14—H14A117.8Cl1'—C1B—H1BB99.5
C13—C14—H14B117.8Cl2'—C1B—H1BB100.0
C12—C14—H14B117.8H1AB—C1B—H1BB125.7
H14A—C14—H14B114.9H1BA—C1B—H1BB104.4
O2—C15—N4123.6 (4)C1B—Cl1'—H1AA74.3
O2—C15—C16119.6 (4)C1B—Cl2'—H1AB27.0
N4—C15—C16116.7 (4)
N3—C3—C4—O166.7 (4)C17—C18—C20—N62.0 (7)
N3—C3—C4—C550.0 (4)C19—C18—C20—N6179.9 (5)
N3—C3—C4—C11173.9 (3)N2—C1—N1—N30.6 (6)
O1—C4—C5—C102.4 (5)N3—C2—N2—C10.6 (6)
C11—C4—C5—C10117.7 (4)N1—C1—N2—C20.1 (7)
C3—C4—C5—C10121.1 (4)N2—C2—N3—N11.0 (5)
O1—C4—C5—C6176.4 (4)N2—C2—N3—C3175.6 (4)
C11—C4—C5—C663.5 (5)C1—N1—N3—C21.0 (5)
C3—C4—C5—C657.7 (5)C1—N1—N3—C3176.2 (4)
C10—C5—C6—F1179.9 (4)C4—C3—N3—C265.9 (6)
C4—C5—C6—F11.3 (6)C4—C3—N3—N1108.2 (4)
C10—C5—C6—C70.3 (6)O2—C15—N4—C12175.1 (4)
C4—C5—C6—C7178.5 (4)C16—C15—N4—C128.5 (5)
F1—C6—C7—C8179.4 (4)O2—C15—N4—C119.3 (6)
C5—C6—C7—C80.8 (7)C16—C15—N4—C11167.1 (3)
C6—C7—C8—F2179.5 (5)C13—C12—N4—C15135.1 (5)
C6—C7—C8—C90.5 (8)C14—C12—N4—C1565.5 (6)
F2—C8—C9—C10178.8 (5)C13—C12—N4—C1149.3 (6)
C7—C8—C9—C100.2 (8)C14—C12—N4—C11118.9 (5)
C8—C9—C10—C50.7 (7)C4—C11—N4—C1589.6 (4)
C6—C5—C10—C90.4 (6)C4—C11—N4—C1286.1 (5)
C4—C5—C10—C9179.3 (4)C18—C17—N5—C211.3 (7)
O1—C4—C11—N461.5 (4)C18—C17—N5—C16178.0 (4)
C5—C4—C11—N456.3 (5)O3—C21—N5—C17177.8 (4)
C3—C4—C11—N4179.4 (3)N6—C21—N5—C172.6 (6)
N4—C12—C13—C14109.7 (5)O3—C21—N5—C162.8 (6)
N4—C12—C14—C13107.7 (5)N6—C21—N5—C16176.7 (4)
O2—C15—C16—N527.8 (6)C15—C16—N5—C17100.4 (5)
N4—C15—C16—N5155.7 (3)C15—C16—N5—C2180.3 (5)
N5—C17—C18—C201.1 (7)O4—C20—N6—C21178.6 (4)
N5—C17—C18—C19179.2 (5)C18—C20—N6—C210.6 (7)
C17—C18—C20—O4177.2 (5)O3—C21—N6—C20178.8 (5)
C19—C18—C20—O40.9 (8)N5—C21—N6—C201.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···N2i0.802.112.893 (5)167
O1—H1A···O2ii0.822.132.903 (4)158
Symmetry codes: (i) x+1, y, z1; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC21H22F2N6O4·0.62CH2Cl2
Mr512.93
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.474 (2), 12.464 (3), 13.410 (4)
α, β, γ (°)62.942 (4), 73.187 (4), 83.746 (4)
V3)1207.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6058, 4162, 3053
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.209, 1.16
No. of reflections4162
No. of parameters356
No. of restraints42
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···N2i0.802.112.893 (5)167.2
O1—H1A···O2ii0.822.132.903 (4)157.5
Symmetry codes: (i) x+1, y, z1; (ii) x+2, y+1, z+2.
 

Acknowledgements

The authors thank Mr Lian-dong Liu (College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China) for his invaluable support in the X-ray data collection. The authors also thank the National Natural Science Foundation of China for a research grant (No. 81072534).

References

First citationAoyama, Y., Yoshida, Y. & Sato, R. (1984). J. Biol. Chem. 259, 1661–1666.  CAS PubMed Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenning, D. W. (2002). J. Antimicrob. Chemother. 49, 889–891.  CrossRef CAS Google Scholar
First citationFridkin, S. K. & Jarvis, W. R. (1996). Clin. Microbiol. Rev. 9, 499-511.  CAS Google Scholar
First citationGallis, H. A., Drew, R. H. & Pickard, W. W. (1990). Rev. Infect. Dis. 12, 308–329.  CrossRef CAS Google Scholar
First citationHobson, R. P. (2003). J. Hosp. Infect. 55, 159–168.  CrossRef CAS Google Scholar
First citationLamb, D. C., Kelly, D. E., Venkateswarlu, K., Manning, N. J., Bligh, H. F., Schunck, W. H. & Kelly, S. L. (1999). Biochemistry. 38, 8733–8738.  CrossRef CAS Google Scholar
First citationRichardson, M. D. (2005). J. Antimicrob. Chemother. 56, i5–i11.  CrossRef CAS Google Scholar
First citationSheehan, D. J., Hitchcock, C. A. & Sibley, C. M. (1999). Clin. Microbiol. Rev. 12, 40–79.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, N. (2001). Clin. Infect. Dis. 33, 1692–1696.  CrossRef CAS Google Scholar
First citationSlavin, M. A. et al. (2002). J. Antimicrob. Chemother. 49, 3–6.  CAS Google Scholar
First citationWingard, J. R. & Leather, H. (2004). Biol. Blood Marrow Transplant. 10, 73–90.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds