metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3-Chloro-N′-(2-oxidonaphthalen-1-yl­methyl­idene)benzohydrazidato]methanol(methanolato)oxidovanadium(V)

aDepartment of Chemistry, Dezhou University, Dezhou Shandong 253023, People's Republic of China
*Correspondence e-mail: wfm99999@126.com

(Received 4 August 2011; accepted 12 August 2011; online 17 August 2011)

In the title complex, [V(C18H11ClN2O2)(CH3O)O(CH3OH)], the VV ion is coordinated by a tridendate 3-chloro-N′-(2-oxidonaphthalen-1-ylmethylidene)benzohydrazidate ligand, one oxido ligand and by O atoms from a methanol and a methoxide ligand, forming a distorted octa­hedral geometry. The dihedral angle between the benzene ring and the naphthyl­ene ring system is 6.4 (3)°. The deviation of the VV ion from the plane defined by the three donor atoms of the tridentate ligand and the meth­oxy O atom towards the oxido O atom is 0.323 (2) Å. In the crystal, pairs of inter­molecular O—H⋯N hydrogen bonds form centrosymmetric dimers.

Related literature

For background to hydrazones and their complexes, see: Seena et al. (2008[Seena, E. B., Mathew, N., Kuriakose, M. & Kurup, M. R. P. (2008). Polyhedron 27, 1455-1462.]); Bastos et al. (2008[Bastos, A. M. B., da Silva, J. G., Maia, P. I. da S., Deflon, V. M., Batista, A. A., Ferreira, A. V. M., Botion, L. M., Niquet, E. & Beraldo, H. (2008). Polyhedron 27, 1787-1794.]); Sarkar & Pal (2008[Sarkar, A. & Pal, S. (2008). Inorg. Chim. Acta, 361, 2296-2304.]); Nica et al. (2007[Nica, S., Rudolph, M., Görls, H. & Plass, W. (2007). Inorg. Chim. Acta 360, 1743-1752.]). For the structure of a related oxidovanadium complex derived from N′-(5-bromo-2-hy­droxy­benzyl­idene)-2-chloro­benzohydrazide, see: Wang (2011[Wang, F.-M. (2011). Acta Cryst. E67, m433-m434.]). For other related oxidovanadium(V) complexes, see: Kurup et al. (2010[Kurup, M. R. P., Seena, E. B. & Kuriakose, M. (2010). Struct. Chem. 21, 599-605.]); Rajak et al. (2000[Rajak, K. K., Mondal, S. & Rath, S. P. (2000). Polyhedron 19, 931-936.]); Grüning et al. (1999[Grüning, C., Schmidt, H. & Rehder, D. (1999). Inorg. Chem. Commun. 2, 57-59.]); Mondal et al. (2009[Mondal, B., Drew, M. G. B. & Ghosh, T. (2009). Inorg. Chim. Acta, 362, 3303-3308.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C18H11ClN2O2)(CH3O)O(CH4O)]

  • Mr = 452.75

  • Monoclinic, P 21 /n

  • a = 12.872 (3) Å

  • b = 7.613 (2) Å

  • c = 20.695 (3) Å

  • β = 98.931 (3)°

  • V = 2003.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan SADABS (Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.890, Tmax = 0.907

  • 13592 measured reflections

  • 4368 independent reflections

  • 3104 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.109

  • S = 1.05

  • 4368 reflections

  • 268 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N2i 0.85 (1) 1.99 (1) 2.839 (3) 178 (4)
Symmetry code: (i) -x, -y, -z+2.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds and their oxovanadium complexes have received much attention due to their structural and biological properties (Seena et al., 2008; Bastos et al., 2008; Sarkar & Pal, 2008; Nica et al., 2007). Recently, the author has reported a oxovanadium complex derived from N'-(5-bromo-2-hydroxybenzylidene)-2-chlorobenzohydrazide (Wang, 2011). In this paper, the crystal structure of the title compound is reported.

The VV ion in the title complex, Fig. 1, is six-coordinated by the phenolic O, imine N, and enolic O atoms of the hydrazone ligand, by one oxo O atom, and by two O atoms respectively from a methanol molecule and a methanolate ligand, forming a distorted octahedral geometry. The dihedral angle between the benzene ring and the naphthylene ring system of the hydrazone ligand is 6.4 (3)°. The deviation of the V atom from the plane defined by the three donor atoms of the hydrazone ligand and the methoxy O atom towards the oxo O atom is 0.323 (2) Å. The bond lengths and angles at the VV ion are comparable with those observed in similar oxovanadium(V) complexes (Kurup et al., 2010; Rajak et al., 2000; Grüning et al., 1999; Mondal et al., 2009). In the crystal, pairs of intermolecular O—H···N hydrogen bonds form centrosymmetric dimers (Fig. 2).

Related literature top

For background to hydrazone compounds and their complexes, see: Seena et al. (2008); Bastos et al. (2008); Sarkar & Pal (2008); Nica et al. (2007). For the structure of a related oxovanadium complex derived from N'-(5-bromo-2-hydroxybenzylidene)-2-chlorobenzohydrazide, see: Wang (2011). For other related oxovanadium(V) complexes, see: Kurup et al. (2010); Rajak et al. (2000); Grüning et al. (1999); Mondal et al. (2009).

Experimental top

2-Hydroxy-1-naphthaldehyde (1 mmol, 0.17 g), 3-chlorobenzohydrazide 1 mmol, 0.17 g), and VO(acac)2 (1 mmol, 0.26 g) were mixed in methanol (30 ml). The mixture was boiled under reflux for 2 h, then cooled to room temperature. Brown block-like single crystals, suitable for X-ray diffraction, were formed after slow evaporation of the solution in air for a few days.

Refinement top

Atom H4 was located from a difference Fourier map and refined isotropically. The O4—H4 distance was restrained to 0.85 (1) Å. The remaining hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
[3-Chloro-N'-(2-oxidonaphthalen-1- ylmethylidene)benzohydrazidato]methanol(methanolato)oxidovanadium(V) top
Crystal data top
[V(C18H11ClN2O2)(CH3O)O(CH4O)]F(000) = 928
Mr = 452.75Dx = 1.501 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3491 reflections
a = 12.872 (3) Åθ = 2.8–26.0°
b = 7.613 (2) ŵ = 0.66 mm1
c = 20.695 (3) ÅT = 298 K
β = 98.931 (3)°Block, brown
V = 2003.4 (8) Å30.18 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4368 independent reflections
Radiation source: fine-focus sealed tube3104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scanθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 1416
Tmin = 0.890, Tmax = 0.907k = 99
13592 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.042P)2 + 0.9229P]
where P = (Fo2 + 2Fc2)/3
4368 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.43 e Å3
Crystal data top
[V(C18H11ClN2O2)(CH3O)O(CH4O)]V = 2003.4 (8) Å3
Mr = 452.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.872 (3) ŵ = 0.66 mm1
b = 7.613 (2) ÅT = 298 K
c = 20.695 (3) Å0.18 × 0.17 × 0.15 mm
β = 98.931 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4368 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
3104 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.907Rint = 0.036
13592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
4368 reflectionsΔρmin = 0.43 e Å3
268 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.26454 (3)0.08667 (6)0.99698 (2)0.03892 (14)
Cl10.15025 (8)0.45711 (15)1.28761 (4)0.0857 (3)
N10.10581 (15)0.1236 (2)0.95334 (9)0.0317 (4)
N20.04044 (15)0.2021 (3)0.99338 (9)0.0338 (5)
O10.26311 (14)0.0734 (3)0.92934 (8)0.0472 (5)
O20.19838 (13)0.2083 (2)1.06222 (8)0.0417 (4)
O30.37183 (13)0.0107 (3)1.05311 (8)0.0467 (5)
O40.17893 (14)0.1470 (3)1.04327 (9)0.0469 (5)
O50.31027 (15)0.2518 (3)0.96509 (10)0.0601 (5)
C10.11838 (18)0.0029 (3)0.84704 (11)0.0328 (5)
C20.21637 (19)0.0746 (3)0.86749 (12)0.0367 (6)
C30.2684 (2)0.1682 (4)0.82235 (13)0.0438 (6)
H30.33290.22150.83650.053*
C40.2240 (2)0.1799 (4)0.75880 (13)0.0451 (7)
H4A0.25920.24120.72990.054*
C50.1258 (2)0.1019 (3)0.73489 (12)0.0418 (6)
C60.0817 (2)0.1125 (4)0.66811 (13)0.0547 (8)
H60.11830.17090.63920.066*
C70.0130 (3)0.0392 (5)0.64528 (15)0.0657 (9)
H70.04050.04650.60110.079*
C80.0688 (2)0.0469 (4)0.68830 (15)0.0626 (9)
H80.13430.09510.67270.075*
C90.0285 (2)0.0615 (4)0.75334 (13)0.0476 (7)
H90.06700.12070.78100.057*
C100.07055 (19)0.0116 (3)0.77942 (11)0.0360 (6)
C110.06312 (18)0.0867 (3)0.89423 (11)0.0331 (5)
H110.00720.11580.88130.040*
C120.09845 (18)0.2435 (3)1.04907 (11)0.0332 (5)
C130.05144 (19)0.3322 (3)1.10122 (11)0.0345 (5)
C140.1116 (2)0.3473 (3)1.16256 (12)0.0403 (6)
H140.17900.29991.17030.048*
C150.0718 (2)0.4319 (4)1.21188 (13)0.0485 (7)
C160.0294 (2)0.4999 (4)1.20174 (14)0.0525 (7)
H160.05650.55461.23570.063*
C170.0890 (2)0.4853 (4)1.14100 (14)0.0506 (7)
H170.15690.53081.13390.061*
C180.0496 (2)0.4041 (3)1.09024 (13)0.0424 (6)
H180.09020.39721.04900.051*
C190.4735 (2)0.0765 (5)1.07551 (15)0.0683 (10)
H19A0.49180.16171.04500.102*
H19B0.52320.01831.07930.102*
H19C0.47460.13081.11750.102*
C200.2289 (3)0.3005 (5)1.0690 (2)0.0865 (12)
H20A0.24430.37371.03400.130*
H20B0.18350.36261.09390.130*
H20C0.29320.27061.09700.130*
H40.1136 (9)0.162 (5)1.0318 (16)0.086 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0281 (2)0.0508 (3)0.0397 (2)0.0009 (2)0.01096 (17)0.0007 (2)
Cl10.0987 (7)0.1131 (8)0.0431 (4)0.0125 (6)0.0045 (4)0.0194 (5)
N10.0312 (10)0.0324 (11)0.0345 (10)0.0022 (9)0.0144 (8)0.0005 (8)
N20.0319 (11)0.0376 (12)0.0348 (10)0.0026 (9)0.0140 (9)0.0003 (9)
O10.0402 (10)0.0614 (12)0.0407 (10)0.0165 (9)0.0080 (8)0.0048 (9)
O20.0298 (9)0.0546 (12)0.0417 (9)0.0012 (8)0.0091 (7)0.0083 (8)
O30.0282 (9)0.0654 (13)0.0460 (10)0.0008 (9)0.0045 (8)0.0069 (9)
O40.0343 (11)0.0462 (11)0.0585 (12)0.0021 (9)0.0016 (9)0.0122 (9)
O50.0502 (12)0.0660 (14)0.0703 (13)0.0063 (11)0.0291 (10)0.0096 (11)
C10.0322 (13)0.0325 (13)0.0359 (12)0.0026 (11)0.0124 (10)0.0003 (10)
C20.0361 (13)0.0364 (14)0.0400 (13)0.0006 (11)0.0131 (11)0.0003 (11)
C30.0336 (14)0.0470 (16)0.0535 (16)0.0038 (12)0.0153 (12)0.0045 (13)
C40.0449 (16)0.0456 (17)0.0495 (16)0.0048 (13)0.0225 (13)0.0116 (13)
C50.0441 (15)0.0394 (15)0.0447 (14)0.0127 (12)0.0154 (12)0.0065 (12)
C60.0572 (19)0.064 (2)0.0453 (15)0.0155 (16)0.0163 (14)0.0188 (14)
C70.061 (2)0.087 (3)0.0462 (17)0.0128 (19)0.0015 (15)0.0195 (17)
C80.0508 (18)0.079 (2)0.0538 (18)0.0010 (16)0.0059 (15)0.0124 (16)
C90.0415 (15)0.0559 (18)0.0446 (15)0.0002 (13)0.0039 (12)0.0104 (13)
C100.0365 (14)0.0342 (14)0.0390 (13)0.0078 (11)0.0113 (11)0.0027 (11)
C110.0285 (12)0.0347 (13)0.0372 (12)0.0003 (11)0.0082 (10)0.0046 (11)
C120.0323 (13)0.0315 (13)0.0382 (12)0.0042 (11)0.0129 (10)0.0017 (10)
C130.0358 (13)0.0300 (13)0.0406 (13)0.0053 (11)0.0142 (11)0.0005 (10)
C140.0394 (14)0.0429 (15)0.0408 (14)0.0016 (12)0.0134 (11)0.0005 (11)
C150.0587 (18)0.0502 (18)0.0392 (14)0.0060 (15)0.0163 (13)0.0045 (12)
C160.063 (2)0.0482 (18)0.0529 (17)0.0029 (15)0.0306 (15)0.0096 (14)
C170.0446 (16)0.0410 (16)0.071 (2)0.0002 (13)0.0229 (15)0.0087 (14)
C180.0435 (15)0.0377 (15)0.0474 (15)0.0021 (12)0.0111 (12)0.0042 (12)
C190.0375 (16)0.108 (3)0.0586 (19)0.0146 (17)0.0047 (14)0.0152 (19)
C200.070 (2)0.065 (2)0.111 (3)0.0051 (19)0.026 (2)0.032 (2)
Geometric parameters (Å, º) top
V1—O51.576 (2)C6—H60.9300
V1—O31.7587 (18)C7—C81.392 (4)
V1—O11.8539 (18)C7—H70.9300
V1—O21.9398 (17)C8—C91.370 (4)
V1—N12.120 (2)C8—H80.9300
V1—O42.371 (2)C9—C101.419 (4)
Cl1—C151.738 (3)C9—H90.9300
N1—C111.292 (3)C11—H110.9300
N1—N21.403 (3)C12—C131.480 (3)
N2—C121.311 (3)C13—C141.385 (3)
O1—C21.327 (3)C13—C181.397 (4)
O2—C121.301 (3)C14—C151.371 (4)
O3—C191.410 (3)C14—H140.9300
O4—C201.400 (4)C15—C161.387 (4)
O4—H40.845 (10)C16—C171.372 (4)
C1—C21.397 (3)C16—H160.9300
C1—C101.443 (3)C17—C181.382 (4)
C1—C111.443 (3)C17—H170.9300
C2—C31.423 (3)C18—H180.9300
C3—C41.353 (4)C19—H19A0.9600
C3—H30.9300C19—H19B0.9600
C4—C51.415 (4)C19—H19C0.9600
C4—H4A0.9300C20—H20A0.9600
C5—C61.413 (4)C20—H20B0.9600
C5—C101.425 (3)C20—H20C0.9600
C6—C71.357 (4)
O5—V1—O3103.46 (10)C9—C8—C7120.8 (3)
O5—V1—O199.70 (10)C9—C8—H8119.6
O3—V1—O1101.38 (8)C7—C8—H8119.6
O5—V1—O298.26 (9)C8—C9—C10121.5 (3)
O3—V1—O294.70 (8)C8—C9—H9119.2
O1—V1—O2152.31 (8)C10—C9—H9119.2
O5—V1—N196.54 (9)C9—C10—C5116.9 (2)
O3—V1—N1158.57 (8)C9—C10—C1124.2 (2)
O1—V1—N182.51 (8)C5—C10—C1118.9 (2)
O2—V1—N174.64 (7)N1—C11—C1123.7 (2)
O5—V1—O4174.17 (9)N1—C11—H11118.1
O3—V1—O481.55 (8)C1—C11—H11118.1
O1—V1—O482.03 (8)O2—C12—N2123.0 (2)
O2—V1—O478.18 (8)O2—C12—C13116.4 (2)
N1—V1—O478.11 (7)N2—C12—C13120.6 (2)
C11—N1—N2116.49 (19)C14—C13—C18119.4 (2)
C11—N1—V1127.92 (16)C14—C13—C12118.2 (2)
N2—N1—V1115.56 (14)C18—C13—C12122.4 (2)
C12—N2—N1108.04 (19)C15—C14—C13120.1 (3)
C2—O1—V1133.04 (16)C15—C14—H14120.0
C12—O2—V1118.64 (15)C13—C14—H14120.0
C19—O3—V1133.9 (2)C14—C15—C16120.8 (3)
C20—O4—V1124.4 (2)C14—C15—Cl1119.5 (2)
C20—O4—H4112 (3)C16—C15—Cl1119.7 (2)
V1—O4—H4119 (2)C17—C16—C15119.2 (3)
C2—C1—C10119.4 (2)C17—C16—H16120.4
C2—C1—C11119.9 (2)C15—C16—H16120.4
C10—C1—C11120.6 (2)C16—C17—C18120.9 (3)
O1—C2—C1122.8 (2)C16—C17—H17119.5
O1—C2—C3116.6 (2)C18—C17—H17119.5
C1—C2—C3120.5 (2)C17—C18—C13119.6 (3)
C4—C3—C2120.1 (2)C17—C18—H18120.2
C4—C3—H3120.0C13—C18—H18120.2
C2—C3—H3120.0O3—C19—H19A109.5
C3—C4—C5122.1 (2)O3—C19—H19B109.5
C3—C4—H4A118.9H19A—C19—H19B109.5
C5—C4—H4A118.9O3—C19—H19C109.5
C6—C5—C4121.3 (2)H19A—C19—H19C109.5
C6—C5—C10119.7 (3)H19B—C19—H19C109.5
C4—C5—C10119.0 (2)O4—C20—H20A109.5
C7—C6—C5121.3 (3)O4—C20—H20B109.5
C7—C6—H6119.3H20A—C20—H20B109.5
C5—C6—H6119.3O4—C20—H20C109.5
C6—C7—C8119.7 (3)H20A—C20—H20C109.5
C6—C7—H7120.1H20B—C20—H20C109.5
C8—C7—H7120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N2i0.85 (1)1.99 (1)2.839 (3)178 (4)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formula[V(C18H11ClN2O2)(CH3O)O(CH4O)]
Mr452.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.872 (3), 7.613 (2), 20.695 (3)
β (°) 98.931 (3)
V3)2003.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.18 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.890, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
13592, 4368, 3104
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.05
No. of reflections4368
No. of parameters268
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.43

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N2i0.845 (10)1.994 (11)2.839 (3)178 (4)
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

This work was supported financially by Dezhou University, People's Republic of China.

References

First citationBastos, A. M. B., da Silva, J. G., Maia, P. I. da S., Deflon, V. M., Batista, A. A., Ferreira, A. V. M., Botion, L. M., Niquet, E. & Beraldo, H. (2008). Polyhedron 27, 1787-1794.  Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrüning, C., Schmidt, H. & Rehder, D. (1999). Inorg. Chem. Commun. 2, 57–59.  Google Scholar
First citationKurup, M. R. P., Seena, E. B. & Kuriakose, M. (2010). Struct. Chem. 21, 599–605.  CSD CrossRef CAS Google Scholar
First citationMondal, B., Drew, M. G. B. & Ghosh, T. (2009). Inorg. Chim. Acta, 362, 3303–3308.  CrossRef CAS Google Scholar
First citationNica, S., Rudolph, M., Görls, H. & Plass, W. (2007). Inorg. Chim. Acta 360, 1743–1752.  Google Scholar
First citationRajak, K. K., Mondal, S. & Rath, S. P. (2000). Polyhedron 19, 931–936.  Google Scholar
First citationSarkar, A. & Pal, S. (2008). Inorg. Chim. Acta, 361, 2296–2304.  CrossRef CAS Google Scholar
First citationSeena, E. B., Mathew, N., Kuriakose, M. & Kurup, M. R. P. (2008). Polyhedron 27, 1455–1462.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F.-M. (2011). Acta Cryst. E67, m433–m434.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds