metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hy­dr­oxy-2-methyl­quinolinium di­chlorido(2-methyl­quinolin-8-olato-κ2N,O)zincate aceto­nitrile disolvate

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 August 2011; accepted 9 August 2011; online 27 August 2011)

The reaction of 2-methyl-8-hy­droxy­quinoline and zinc chloride in acetonitrile affords the title solvated salt, (C10H10NO)[Zn(C10H8NO)Cl2]·2CH3CN, in which the ZnII atom is coordinated by an­ N,O-chelating 2-methyl­quinolin-8-olate ligand and two chloride ligands in a distorted tetra­hedral geometry. The cation is linked to the heterocyclic anion by an O—H⋯O hydrogen bond and the quinolinium H atom forms a inter­molecular N—H⋯N hydrogen bond with one of the acetonitrile solvent mol­ecules.

Related literature

For related structures, see: Najafi et al. (2010a[Najafi, E., Amini, M. M. & Ng, S. W. (2010a). Acta Cryst. E66, m1276.],b[Najafi, E., Amini, M. M. & Ng, S. W. (2010b). Acta Cryst. E66, m1277.]); Sattarzadeh et al. (2009[Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10NO)[Zn(C10H8NO)Cl2]·2C2H3N

  • Mr = 536.74

  • Monoclinic, P 21 /n

  • a = 9.9913 (2) Å

  • b = 23.1642 (5) Å

  • c = 10.4317 (2) Å

  • β = 95.687 (2)°

  • V = 2402.43 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.664, Tmax = 0.741

  • 11981 measured reflections

  • 5349 independent reflections

  • 4576 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 1.04

  • 5349 reflections

  • 310 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N3 0.87 (1) 2.15 (1) 2.988 (2) 161 (2)
O2—H2⋯O1 0.84 (1) 1.71 (1) 2.554 (2) 176 (3)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have synthesized methanol solvated 8-hydroxy-2-methylquinolinium dihalo(2-methylquinolin-8-olato)zincates(II) by the direct reaction of a zinc halide and 8-hydroxy-2-methylquinoline in methanol. In these salts, the ZnII ion is in a tetrahedral geometry, and the ion-pairs are linked to the solvent molecules by hydrogen bonds (Najafi et al., 2010a; Najafi et al., 2010b; Sattarzadeh et al., 2009). In the present study, the corresponding reaction of zinc chloride and the quinoline in acetonitrile yielded an analogous solvated salt (Fig. 1). In (C10H10NO)[ZnCl2(C10H8NO)].2CH3CN, the metal in the anion is N,O-chelated by the deprotonated ligand and it exists in a distorted tetrahedral geometry. The cation is linked to the anion by an O–H···O hydrogen bond and the quinolinium H atom forms a hydrogen bond with one of the solvent molecules (Table 1).

Related literature top

For related structures, see: Najafi et al. (2010a,b); Sattarzadeh et al. (2009).

Experimental top

Zinc chloride (0.10 g, 0.75 mmol) and 2-methyl-8-hydroxyquinoline (0.24 g, 1.5 mmol) were loaded into a convection tube and the tube was filled with acetonitrile and kept at 333 K. Yellow crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N and O bound H atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01, O–H 0.84±0.01 Å; their Uiso(H) parameters were refined. The (5 6 11) reflection was removed.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (C10H10NO)[ZnCl2(C10H8NO)].2CH3CN at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
8-Hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato-κ2N,O)zincate acetonitrile disolvate top
Crystal data top
(C10H10NO)[Zn(C10H8NO)Cl2]·2C2H3NF(000) = 1104
Mr = 536.74Dx = 1.484 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6293 reflections
a = 9.9913 (2) Åθ = 2.6–27.5°
b = 23.1642 (5) ŵ = 1.27 mm1
c = 10.4317 (2) ÅT = 100 K
β = 95.687 (2)°Block, yellow
V = 2402.43 (8) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5349 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4576 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.6°
ω scansh = 1013
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1930
Tmin = 0.664, Tmax = 0.741l = 1312
11981 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.9529P]
where P = (Fo2 + 2Fc2)/3
5349 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 0.38 e Å3
Crystal data top
(C10H10NO)[Zn(C10H8NO)Cl2]·2C2H3NV = 2402.43 (8) Å3
Mr = 536.74Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.9913 (2) ŵ = 1.27 mm1
b = 23.1642 (5) ÅT = 100 K
c = 10.4317 (2) Å0.35 × 0.30 × 0.25 mm
β = 95.687 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5349 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4576 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.741Rint = 0.026
11981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.38 e Å3
5349 reflectionsΔρmin = 0.38 e Å3
310 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50594 (2)0.616546 (9)0.82369 (2)0.01365 (7)
Cl10.29181 (4)0.60211 (2)0.86105 (4)0.02035 (11)
Cl20.59332 (5)0.54481 (2)0.71722 (5)0.02002 (11)
O10.52662 (12)0.69544 (5)0.75329 (12)0.0166 (3)
O20.52356 (13)0.74218 (6)0.53126 (12)0.0183 (3)
N10.62045 (14)0.64878 (7)0.98072 (14)0.0129 (3)
N20.43930 (15)0.79211 (7)0.30728 (15)0.0147 (3)
N30.48880 (18)0.88039 (8)0.51544 (17)0.0257 (4)
N40.4352 (2)0.95235 (9)0.86812 (19)0.0363 (5)
C10.62800 (17)0.70784 (8)0.96775 (17)0.0134 (4)
C20.57490 (17)0.73143 (8)0.84652 (17)0.0137 (4)
C30.57620 (17)0.79080 (8)0.83285 (18)0.0160 (4)
H30.54080.80780.75380.019*
C40.62944 (18)0.82644 (8)0.93482 (19)0.0186 (4)
H40.62770.86710.92340.022*
C50.68383 (17)0.80403 (8)1.05027 (18)0.0169 (4)
H50.72040.82891.11730.020*
C60.68473 (17)0.74367 (8)1.06793 (17)0.0145 (4)
C70.73945 (17)0.71553 (9)1.18220 (18)0.0176 (4)
H70.78020.73761.25220.021*
C80.73379 (18)0.65707 (9)1.19184 (18)0.0178 (4)
H80.77200.63851.26800.021*
C90.67119 (17)0.62375 (8)1.08874 (18)0.0151 (4)
C100.6608 (2)0.55949 (8)1.09901 (18)0.0201 (4)
H10A0.62330.54361.01610.030*
H10B0.60190.54961.16550.030*
H10C0.75040.54321.12220.030*
C110.43571 (17)0.73305 (8)0.31627 (17)0.0143 (4)
C120.48188 (17)0.70639 (8)0.43413 (17)0.0151 (4)
C130.48303 (19)0.64703 (8)0.43976 (18)0.0194 (4)
H130.51670.62810.51710.023*
C140.4344 (2)0.61412 (9)0.33107 (19)0.0219 (4)
H140.43480.57320.33700.026*
C150.38685 (19)0.63977 (9)0.21745 (19)0.0206 (4)
H150.35390.61680.14560.025*
C160.38707 (17)0.70040 (8)0.20771 (17)0.0165 (4)
C170.34114 (18)0.73119 (9)0.09457 (18)0.0198 (4)
H170.30410.71070.02050.024*
C180.34947 (18)0.78995 (9)0.09070 (18)0.0203 (4)
H180.31970.80990.01350.024*
C190.40153 (18)0.82124 (9)0.19951 (18)0.0180 (4)
C200.4180 (2)0.88510 (9)0.1995 (2)0.0242 (4)
H20A0.49890.89570.25540.036*
H20B0.33920.90320.23160.036*
H20C0.42670.89840.11160.036*
C210.54598 (19)0.91734 (9)0.56751 (19)0.0209 (4)
C220.6214 (2)0.96503 (9)0.6311 (2)0.0286 (5)
H22A0.65860.95300.71740.043*
H22B0.56140.99810.63810.043*
H22C0.69490.97610.58040.043*
C230.3541 (2)0.98177 (9)0.90117 (19)0.0235 (4)
C240.2502 (2)1.01887 (10)0.9443 (2)0.0283 (5)
H24A0.16191.00590.90570.042*
H24B0.26561.05870.91800.042*
H24C0.25311.01701.03840.042*
H10.463 (2)0.8111 (10)0.3782 (15)0.041 (7)*
H20.528 (3)0.7256 (11)0.6035 (15)0.050 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01575 (11)0.01283 (11)0.01221 (11)0.00044 (8)0.00062 (8)0.00073 (8)
Cl10.0171 (2)0.0268 (3)0.0173 (2)0.00230 (19)0.00304 (18)0.0017 (2)
Cl20.0212 (2)0.0164 (2)0.0227 (2)0.00204 (18)0.00295 (19)0.00457 (19)
O10.0234 (7)0.0148 (7)0.0112 (6)0.0032 (5)0.0013 (5)0.0007 (5)
O20.0248 (7)0.0178 (7)0.0116 (7)0.0021 (6)0.0013 (6)0.0010 (6)
N10.0124 (7)0.0145 (8)0.0118 (7)0.0016 (6)0.0011 (6)0.0007 (6)
N20.0151 (7)0.0165 (8)0.0125 (8)0.0017 (6)0.0013 (6)0.0015 (7)
N30.0297 (9)0.0237 (10)0.0245 (9)0.0034 (8)0.0065 (8)0.0017 (8)
N40.0380 (11)0.0362 (12)0.0327 (11)0.0087 (9)0.0070 (9)0.0074 (9)
C10.0113 (8)0.0146 (9)0.0147 (9)0.0002 (7)0.0036 (7)0.0016 (7)
C20.0127 (8)0.0152 (9)0.0136 (9)0.0003 (7)0.0030 (7)0.0001 (7)
C30.0148 (8)0.0162 (9)0.0170 (9)0.0001 (7)0.0016 (7)0.0033 (8)
C40.0178 (9)0.0131 (9)0.0252 (10)0.0010 (7)0.0042 (8)0.0019 (8)
C50.0140 (8)0.0166 (9)0.0199 (10)0.0025 (7)0.0006 (8)0.0046 (8)
C60.0102 (8)0.0181 (9)0.0153 (9)0.0020 (7)0.0020 (7)0.0031 (8)
C70.0142 (8)0.0238 (10)0.0143 (9)0.0012 (8)0.0009 (7)0.0049 (8)
C80.0165 (9)0.0231 (10)0.0132 (9)0.0029 (8)0.0015 (7)0.0022 (8)
C90.0126 (8)0.0169 (9)0.0158 (9)0.0021 (7)0.0020 (7)0.0001 (8)
C100.0249 (10)0.0192 (10)0.0158 (9)0.0025 (8)0.0005 (8)0.0033 (8)
C110.0119 (8)0.0154 (9)0.0162 (9)0.0007 (7)0.0043 (7)0.0016 (8)
C120.0137 (8)0.0189 (10)0.0132 (9)0.0001 (7)0.0035 (7)0.0016 (8)
C130.0226 (9)0.0195 (10)0.0171 (9)0.0019 (8)0.0075 (8)0.0027 (8)
C140.0262 (10)0.0159 (10)0.0256 (11)0.0026 (8)0.0121 (9)0.0042 (8)
C150.0218 (10)0.0217 (10)0.0194 (10)0.0056 (8)0.0076 (8)0.0079 (9)
C160.0129 (8)0.0219 (10)0.0153 (9)0.0020 (7)0.0047 (7)0.0039 (8)
C170.0136 (9)0.0319 (12)0.0140 (9)0.0006 (8)0.0016 (7)0.0058 (8)
C180.0168 (9)0.0300 (11)0.0140 (9)0.0058 (8)0.0010 (8)0.0025 (8)
C190.0141 (8)0.0235 (10)0.0165 (9)0.0055 (8)0.0027 (7)0.0017 (8)
C200.0289 (11)0.0211 (11)0.0227 (11)0.0063 (9)0.0034 (9)0.0043 (9)
C210.0220 (10)0.0218 (11)0.0198 (10)0.0029 (9)0.0067 (8)0.0030 (9)
C220.0331 (11)0.0223 (11)0.0300 (11)0.0030 (9)0.0008 (10)0.0029 (9)
C230.0268 (10)0.0249 (11)0.0169 (10)0.0051 (9)0.0066 (8)0.0021 (9)
C240.0300 (11)0.0302 (12)0.0249 (11)0.0025 (9)0.0034 (9)0.0028 (10)
Geometric parameters (Å, º) top
Zn1—O11.9880 (13)C10—H10A0.9800
Zn1—N12.0441 (15)C10—H10B0.9800
Zn1—Cl22.2246 (5)C10—H10C0.9800
Zn1—Cl12.2375 (5)C11—C161.408 (3)
O1—C21.334 (2)C11—C121.412 (3)
O2—C121.343 (2)C12—C131.376 (3)
O2—H20.843 (10)C13—C141.412 (3)
N1—C91.323 (2)C13—H130.9500
N1—C11.378 (2)C14—C151.368 (3)
N2—C191.333 (2)C14—H140.9500
N2—C111.372 (2)C15—C161.408 (3)
N2—H10.874 (10)C15—H150.9500
N3—C211.137 (3)C16—C171.416 (3)
N4—C231.138 (3)C17—C181.365 (3)
C1—C61.409 (2)C17—H170.9500
C1—C21.431 (2)C18—C191.403 (3)
C2—C31.383 (3)C18—H180.9500
C3—C41.408 (3)C19—C201.488 (3)
C3—H30.9500C20—H20A0.9800
C4—C51.373 (3)C20—H20B0.9800
C4—H40.9500C20—H20C0.9800
C5—C61.410 (3)C21—C221.459 (3)
C5—H50.9500C22—H22A0.9800
C6—C71.420 (3)C22—H22B0.9800
C7—C81.360 (3)C22—H22C0.9800
C7—H70.9500C23—C241.453 (3)
C8—C91.418 (3)C24—H24A0.9800
C8—H80.9500C24—H24B0.9800
C9—C101.497 (3)C24—H24C0.9800
O1—Zn1—N183.67 (6)N2—C11—C16119.35 (17)
O1—Zn1—Cl2116.23 (4)N2—C11—C12119.16 (16)
N1—Zn1—Cl2117.18 (4)C16—C11—C12121.50 (17)
O1—Zn1—Cl1109.75 (4)O2—C12—C13125.73 (17)
N1—Zn1—Cl1112.58 (4)O2—C12—C11115.91 (16)
Cl2—Zn1—Cl1113.870 (19)C13—C12—C11118.34 (17)
C2—O1—Zn1110.39 (11)C12—C13—C14120.30 (18)
C12—O2—H2112.2 (19)C12—C13—H13119.9
C9—N1—C1119.93 (16)C14—C13—H13119.9
C9—N1—Zn1131.25 (13)C15—C14—C13121.57 (18)
C1—N1—Zn1108.42 (11)C15—C14—H14119.2
C19—N2—C11123.72 (17)C13—C14—H14119.2
C19—N2—H1119.3 (17)C14—C15—C16119.51 (18)
C11—N2—H1116.9 (17)C14—C15—H15120.2
N1—C1—C6122.28 (16)C16—C15—H15120.2
N1—C1—C2116.55 (16)C11—C16—C15118.74 (17)
C6—C1—C2121.17 (17)C11—C16—C17117.22 (17)
O1—C2—C3123.55 (17)C15—C16—C17124.04 (18)
O1—C2—C1118.77 (16)C18—C17—C16120.76 (18)
C3—C2—C1117.68 (17)C18—C17—H17119.6
C2—C3—C4120.78 (17)C16—C17—H17119.6
C2—C3—H3119.6C17—C18—C19120.69 (18)
C4—C3—H3119.6C17—C18—H18119.7
C5—C4—C3121.86 (18)C19—C18—H18119.7
C5—C4—H4119.1N2—C19—C18118.17 (18)
C3—C4—H4119.1N2—C19—C20118.75 (17)
C4—C5—C6119.09 (17)C18—C19—C20123.07 (18)
C4—C5—H5120.5C19—C20—H20A109.5
C6—C5—H5120.5C19—C20—H20B109.5
C1—C6—C5119.36 (17)H20A—C20—H20B109.5
C1—C6—C7116.46 (17)C19—C20—H20C109.5
C5—C6—C7124.18 (17)H20A—C20—H20C109.5
C8—C7—C6120.27 (17)H20B—C20—H20C109.5
C8—C7—H7119.9N3—C21—C22178.3 (2)
C6—C7—H7119.9C21—C22—H22A109.5
C7—C8—C9120.30 (18)C21—C22—H22B109.5
C7—C8—H8119.8H22A—C22—H22B109.5
C9—C8—H8119.8C21—C22—H22C109.5
N1—C9—C8120.70 (17)H22A—C22—H22C109.5
N1—C9—C10118.26 (16)H22B—C22—H22C109.5
C8—C9—C10121.04 (17)N4—C23—C24179.4 (3)
C9—C10—H10A109.5C23—C24—H24A109.5
C9—C10—H10B109.5C23—C24—H24B109.5
H10A—C10—H10B109.5H24A—C24—H24B109.5
C9—C10—H10C109.5C23—C24—H24C109.5
H10A—C10—H10C109.5H24A—C24—H24C109.5
H10B—C10—H10C109.5H24B—C24—H24C109.5
N1—Zn1—O1—C213.18 (11)C6—C7—C8—C91.1 (3)
Cl2—Zn1—O1—C2130.42 (10)C1—N1—C9—C80.1 (2)
Cl1—Zn1—O1—C298.57 (10)Zn1—N1—C9—C8171.82 (12)
O1—Zn1—N1—C9175.78 (16)C1—N1—C9—C10179.93 (15)
Cl2—Zn1—N1—C959.49 (16)Zn1—N1—C9—C108.2 (2)
Cl1—Zn1—N1—C975.43 (15)C7—C8—C9—N11.7 (3)
O1—Zn1—N1—C111.78 (11)C7—C8—C9—C10178.36 (17)
Cl2—Zn1—N1—C1128.07 (10)C19—N2—C11—C161.4 (3)
Cl1—Zn1—N1—C197.01 (10)C19—N2—C11—C12178.10 (16)
C9—N1—C1—C62.1 (2)N2—C11—C12—O21.6 (2)
Zn1—N1—C1—C6171.36 (13)C16—C11—C12—O2178.84 (15)
C9—N1—C1—C2177.96 (15)N2—C11—C12—C13177.21 (16)
Zn1—N1—C1—C28.60 (17)C16—C11—C12—C132.3 (3)
Zn1—O1—C2—C3167.34 (14)O2—C12—C13—C14179.05 (16)
Zn1—O1—C2—C112.42 (18)C11—C12—C13—C142.2 (3)
N1—C1—C2—O12.4 (2)C12—C13—C14—C150.9 (3)
C6—C1—C2—O1177.65 (15)C13—C14—C15—C160.5 (3)
N1—C1—C2—C3177.38 (15)N2—C11—C16—C15178.55 (16)
C6—C1—C2—C32.6 (2)C12—C11—C16—C151.0 (2)
O1—C2—C3—C4179.59 (16)N2—C11—C16—C171.4 (2)
C1—C2—C3—C40.6 (2)C12—C11—C16—C17179.06 (15)
C2—C3—C4—C51.1 (3)C14—C15—C16—C110.4 (3)
C3—C4—C5—C60.9 (3)C14—C15—C16—C17179.50 (17)
N1—C1—C6—C5177.17 (16)C11—C16—C17—C182.6 (2)
C2—C1—C6—C52.8 (2)C15—C16—C17—C18177.32 (17)
N1—C1—C6—C72.6 (2)C16—C17—C18—C191.1 (3)
C2—C1—C6—C7177.46 (15)C11—N2—C19—C183.0 (2)
C4—C5—C6—C11.0 (3)C11—N2—C19—C20176.26 (16)
C4—C5—C6—C7179.25 (16)C17—C18—C19—N21.7 (3)
C1—C6—C7—C81.0 (2)C17—C18—C19—C20177.56 (17)
C5—C6—C7—C8178.77 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N30.87 (1)2.15 (1)2.988 (2)161 (2)
O2—H2···O10.84 (1)1.71 (1)2.554 (2)176 (3)

Experimental details

Crystal data
Chemical formula(C10H10NO)[Zn(C10H8NO)Cl2]·2C2H3N
Mr536.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.9913 (2), 23.1642 (5), 10.4317 (2)
β (°) 95.687 (2)
V3)2402.43 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.664, 0.741
No. of measured, independent and
observed [I > 2σ(I)] reflections
11981, 5349, 4576
Rint0.026
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.04
No. of reflections5349
No. of parameters310
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.38

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N30.87 (1)2.15 (1)2.988 (2)161 (2)
O2—H2···O10.84 (1)1.71 (1)2.554 (2)176 (3)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2010a). Acta Cryst. E66, m1276.  Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2010b). Acta Cryst. E66, m1277.  Google Scholar
First citationSattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds