metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hy­dr­oxy-2-methyl­quinolinium di­bromido(2-methyl­quinolin-8-olato-κ2N,O)zincate aceto­nitrile mono­solvate

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 August 2011; accepted 9 August 2011; online 27 August 2011)

The reaction of 2-methyl-8-hy­droxy­quinoline and zinc bromide in acetonitrile affords the title solvated salt, (C10H10NO)[ZnBr2(C10H8NO)]·CH3CN, in which the ZnII ion is coordinated by a N,O-chelating 2-methyl­quinolin-8-olate ligand and two bromide ligands in a distorted tetra­hedral geometry. The cation is linked to the anion by an O—H⋯O hydrogen bond and the quinolinium H atom forms an inter­molecular N—H⋯N hydrogen bond with the acetonitrile solvent mol­ecule.

Related literature

For the crystal structure of 8-hy­droxy-2-methyl­quinolinium dichlorido(2-methyl­quinolin-8-olato)zincate acetonitrile disolvate, see: Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1280.]). For the crystal structures of related methanol solvates, see: Najafi et al. (2010a[Najafi, E., Amini, M. M. & Ng, S. W. (2010a). Acta Cryst. E66, m1276.], 2010b[Najafi, E., Amini, M. M. & Ng, S. W. (2010b). Acta Cryst. E66, m1277.]); Sattarzadeh et al. (2009[Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10NO)[ZnBr2(C10H8NO)]·C2H3N

  • Mr = 584.61

  • Triclinic, [P \overline 1]

  • a = 7.1870 (3) Å

  • b = 9.7795 (5) Å

  • c = 16.2520 (7) Å

  • α = 86.159 (4)°

  • β = 80.775 (4)°

  • γ = 85.098 (4)°

  • V = 1121.73 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.68 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.387, Tmax = 0.540

  • 8710 measured reflections

  • 4970 independent reflections

  • 4197 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.065

  • S = 1.01

  • 4970 reflections

  • 282 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 (1) 1.73 (1) 2.561 (2) 173 (4)
N2—H1⋯N3 0.88 (1) 2.08 (1) 2.943 (3) 171 (3)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have synthesized methanol-solvated 8-hydroxy-2-methylquinolinium dihalo(2-methylquinolin-8-olato)zincates(II) by the direct reaction of the zinc halide and 8-hydroxy-2-methylquinolin in methanol. The salts have the ZnII atom in a tetrahedral geometry, and the ion-pairs are linked to the solvent molecules by hydrogen bonds (Najafi et al., 2010a; Najafi et al., 2010b; Sattarzadeh et al., 2009). In this study we used acetonitrile as a solvent. In a previous study, the reaction of zinc chloride and the quinoline in acetonitrile yielded the disolvated salt (Najafi et al., 2011). In the present study, zinc dibromide gave a mono-solvated salt (Fig. 1). In (C10H10NO)[ZnBr2(C10H8NO)].CH3CN, the metal in the anion is N,O-chelated by the deprotonated ligand and it exists in a distorted tetrahedral geometry. The cation is linked to the anion by an O–H···O hydrogen bond and the quinolinium H atom forms a hydrogen bond with the solvent molecule (Table 1).

Related literature top

For the crystal structure of 8-hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato)zincate acetonitrile disolvate, see: Najafi et al. (2011). For the crystal structures of related methanol solvates, see: Najafi et al. (2010a, 2010b); Sattarzadeh et al. (2009).

Experimental top

Zinc chloride (0.23 g, 0.75 mmol) and 2-methyl-8-hydroxyquinoline (0.24 g, 1.5 mmol) were loaded into a convection tube and the tube was filled with acetonitrile and kept at 333 K. Yellow crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N and O bound H atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01, O–H 0.84±0.01 Å; their temperature factors were refined. The (2 - 2 7) and (0 1 1) were removed.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of (C10H10NO)[ZnBr2(C10H8NO)].CH3CN at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
8-Hydroxy-2-methylquinolinium dibromido(2-methylquinolin-8-olato-κ2N,O)zincate acetonitrile monosolvate top
Crystal data top
(C10H10NO)[ZnBr2(C10H8NO)]·C2H3NZ = 2
Mr = 584.61F(000) = 580
Triclinic, P1Dx = 1.731 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1870 (3) ÅCell parameters from 4618 reflections
b = 9.7795 (5) Åθ = 2.4–29.1°
c = 16.2520 (7) ŵ = 4.68 mm1
α = 86.159 (4)°T = 100 K
β = 80.775 (4)°Block, yellow
γ = 85.098 (4)°0.25 × 0.20 × 0.15 mm
V = 1121.73 (9) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4970 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4197 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 912
Tmin = 0.387, Tmax = 0.540l = 2021
8710 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0183P)2]
where P = (Fo2 + 2Fc2)/3
4970 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.54 e Å3
2 restraintsΔρmin = 0.86 e Å3
Crystal data top
(C10H10NO)[ZnBr2(C10H8NO)]·C2H3Nγ = 85.098 (4)°
Mr = 584.61V = 1121.73 (9) Å3
Triclinic, P1Z = 2
a = 7.1870 (3) ÅMo Kα radiation
b = 9.7795 (5) ŵ = 4.68 mm1
c = 16.2520 (7) ÅT = 100 K
α = 86.159 (4)°0.25 × 0.20 × 0.15 mm
β = 80.775 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4970 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4197 reflections with I > 2σ(I)
Tmin = 0.387, Tmax = 0.540Rint = 0.033
8710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.54 e Å3
4970 reflectionsΔρmin = 0.86 e Å3
282 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.88168 (4)0.83050 (3)0.860009 (16)0.02244 (8)
Br20.50073 (4)0.95447 (3)0.711001 (16)0.02404 (8)
Zn10.61597 (4)0.77959 (3)0.800839 (17)0.01579 (8)
O10.6552 (2)0.59396 (18)0.75476 (10)0.0164 (4)
O20.7760 (2)0.49663 (19)0.61189 (10)0.0180 (4)
H20.735 (4)0.535 (3)0.6565 (12)0.051 (11)*
N10.4256 (3)0.6890 (2)0.88999 (12)0.0138 (5)
N20.8330 (3)0.3677 (2)0.46831 (12)0.0137 (5)
H10.853 (4)0.323 (3)0.5148 (10)0.026 (8)*
N30.9248 (3)0.1939 (2)0.61350 (15)0.0268 (6)
C10.4381 (3)0.5504 (3)0.87876 (14)0.0135 (5)
C20.5632 (3)0.5020 (3)0.80728 (14)0.0149 (5)
C30.5768 (4)0.3633 (3)0.79535 (15)0.0173 (6)
H30.65820.32880.74810.021*
C40.4733 (4)0.2716 (3)0.85143 (15)0.0182 (6)
H40.48600.17650.84110.022*
C50.3544 (3)0.3161 (3)0.92073 (16)0.0187 (6)
H50.28570.25270.95810.022*
C60.3357 (3)0.4576 (3)0.93569 (15)0.0156 (5)
C70.2193 (3)0.5165 (3)1.00595 (15)0.0179 (6)
H70.14980.45911.04710.022*
C80.2076 (3)0.6539 (3)1.01421 (15)0.0181 (6)
H80.12750.69221.06060.022*
C90.3124 (3)0.7408 (3)0.95511 (15)0.0156 (6)
C100.3020 (4)0.8932 (3)0.96312 (16)0.0222 (6)
H10A0.42810.92630.94620.033*
H10B0.25550.91441.02130.033*
H10C0.21550.93870.92710.033*
C110.7546 (3)0.5007 (3)0.46969 (15)0.0134 (5)
C120.7190 (3)0.5680 (3)0.54621 (15)0.0143 (5)
C130.6326 (3)0.6992 (3)0.54599 (16)0.0173 (6)
H130.60710.74630.59630.021*
C140.5817 (3)0.7643 (3)0.47216 (16)0.0190 (6)
H140.52010.85420.47400.023*
C150.6185 (3)0.7019 (3)0.39779 (16)0.0182 (6)
H150.58360.74800.34860.022*
C160.7093 (3)0.5677 (3)0.39514 (15)0.0159 (6)
C170.7563 (3)0.4941 (3)0.32169 (16)0.0202 (6)
H170.73260.53750.26990.024*
C180.8347 (3)0.3626 (3)0.32364 (16)0.0200 (6)
H180.86500.31520.27350.024*
C190.8711 (3)0.2964 (3)0.39969 (16)0.0173 (6)
C200.9466 (4)0.1505 (3)0.40586 (17)0.0248 (6)
H20A0.96910.12600.46310.037*
H20B1.06570.13800.36730.037*
H20C0.85480.09130.39130.037*
C210.9679 (4)0.1787 (3)0.67766 (18)0.0220 (6)
C221.0230 (4)0.1609 (3)0.76012 (17)0.0322 (7)
H22A1.14770.11050.75640.048*
H22B0.93010.10900.79760.048*
H22C1.02850.25120.78200.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02081 (15)0.02701 (17)0.02033 (14)0.00692 (12)0.00113 (11)0.00586 (12)
Br20.03621 (17)0.01423 (15)0.02002 (14)0.00516 (12)0.00265 (12)0.00189 (11)
Zn10.01904 (16)0.01350 (17)0.01443 (15)0.00166 (13)0.00014 (12)0.00329 (12)
O10.0210 (9)0.0138 (10)0.0130 (8)0.0004 (8)0.0010 (7)0.0027 (7)
O20.0249 (10)0.0167 (10)0.0112 (9)0.0011 (8)0.0001 (8)0.0020 (8)
N10.0138 (10)0.0161 (12)0.0120 (10)0.0006 (9)0.0024 (8)0.0043 (9)
N20.0137 (11)0.0139 (12)0.0126 (11)0.0010 (9)0.0015 (9)0.0028 (9)
N30.0290 (14)0.0192 (14)0.0296 (14)0.0031 (11)0.0006 (11)0.0007 (11)
C10.0136 (12)0.0148 (14)0.0136 (12)0.0001 (10)0.0059 (10)0.0046 (10)
C20.0157 (13)0.0187 (15)0.0109 (12)0.0003 (11)0.0038 (10)0.0030 (11)
C30.0197 (13)0.0191 (15)0.0132 (12)0.0042 (11)0.0033 (11)0.0065 (11)
C40.0245 (14)0.0115 (14)0.0210 (13)0.0003 (11)0.0106 (11)0.0032 (11)
C50.0190 (13)0.0187 (15)0.0202 (13)0.0052 (12)0.0068 (11)0.0006 (11)
C60.0132 (12)0.0201 (15)0.0147 (12)0.0020 (11)0.0051 (10)0.0016 (11)
C70.0144 (13)0.0252 (16)0.0146 (12)0.0035 (12)0.0025 (10)0.0016 (11)
C80.0125 (12)0.0279 (16)0.0139 (12)0.0004 (12)0.0000 (10)0.0067 (12)
C90.0143 (13)0.0181 (15)0.0160 (13)0.0004 (11)0.0059 (10)0.0061 (11)
C100.0224 (14)0.0221 (16)0.0225 (14)0.0008 (12)0.0021 (12)0.0095 (12)
C110.0081 (12)0.0136 (13)0.0183 (13)0.0027 (10)0.0001 (10)0.0015 (11)
C120.0125 (12)0.0157 (14)0.0139 (12)0.0042 (11)0.0025 (10)0.0033 (11)
C130.0168 (13)0.0160 (14)0.0185 (13)0.0049 (11)0.0028 (11)0.0051 (11)
C140.0153 (13)0.0125 (14)0.0279 (15)0.0013 (11)0.0006 (11)0.0009 (11)
C150.0175 (13)0.0172 (15)0.0194 (13)0.0026 (11)0.0026 (11)0.0034 (11)
C160.0113 (12)0.0204 (15)0.0162 (13)0.0028 (11)0.0007 (10)0.0030 (11)
C170.0175 (14)0.0276 (17)0.0162 (13)0.0050 (12)0.0024 (11)0.0033 (12)
C180.0181 (14)0.0263 (16)0.0161 (13)0.0008 (12)0.0003 (11)0.0133 (12)
C190.0132 (13)0.0177 (15)0.0211 (14)0.0024 (11)0.0005 (11)0.0066 (11)
C200.0282 (15)0.0195 (16)0.0263 (15)0.0037 (13)0.0029 (12)0.0086 (12)
C210.0205 (14)0.0115 (14)0.0302 (16)0.0020 (11)0.0054 (13)0.0000 (12)
C220.0312 (17)0.036 (2)0.0251 (15)0.0058 (15)0.0005 (13)0.0072 (14)
Geometric parameters (Å, º) top
Br1—Zn12.3738 (4)C9—C101.500 (4)
Br2—Zn12.3566 (4)C10—H10A0.9800
Zn1—O11.9907 (18)C10—H10B0.9800
Zn1—N12.0386 (19)C10—H10C0.9800
O1—C21.339 (3)C11—C161.409 (3)
O2—C121.336 (3)C11—C121.423 (3)
O2—H20.837 (10)C12—C131.377 (4)
N1—C91.328 (3)C13—C141.406 (4)
N1—C11.373 (3)C13—H130.9500
N2—C191.334 (3)C14—C151.369 (4)
N2—C111.373 (3)C14—H140.9500
N2—H10.875 (10)C15—C161.415 (4)
N3—C211.131 (3)C15—H150.9500
C1—C61.416 (3)C16—C171.415 (4)
C1—C21.431 (3)C17—C181.360 (4)
C2—C31.375 (4)C17—H170.9500
C3—C41.406 (4)C18—C191.408 (4)
C3—H30.9500C18—H180.9500
C4—C51.372 (3)C19—C201.485 (4)
C4—H40.9500C20—H20A0.9800
C5—C61.412 (4)C20—H20B0.9800
C5—H50.9500C20—H20C0.9800
C6—C71.426 (3)C21—C221.453 (4)
C7—C81.353 (4)C22—H22A0.9800
C7—H70.9500C22—H22B0.9800
C8—C91.407 (4)C22—H22C0.9800
C8—H80.9500
O1—Zn1—N183.97 (8)C9—C10—H10C109.5
O1—Zn1—Br2114.56 (5)H10A—C10—H10C109.5
N1—Zn1—Br2117.98 (6)H10B—C10—H10C109.5
O1—Zn1—Br1111.06 (5)N2—C11—C16119.2 (2)
N1—Zn1—Br1109.80 (6)N2—C11—C12119.6 (2)
Br2—Zn1—Br1115.446 (16)C16—C11—C12121.2 (2)
C2—O1—Zn1110.82 (14)O2—C12—C13126.2 (2)
C12—O2—H2112 (2)O2—C12—C11115.8 (2)
C9—N1—C1120.2 (2)C13—C12—C11118.0 (2)
C9—N1—Zn1130.70 (18)C12—C13—C14120.8 (2)
C1—N1—Zn1108.86 (15)C12—C13—H13119.6
C19—N2—C11123.8 (2)C14—C13—H13119.6
C19—N2—H1116.0 (19)C15—C14—C13121.8 (3)
C11—N2—H1120.1 (19)C15—C14—H14119.1
N1—C1—C6122.2 (2)C13—C14—H14119.1
N1—C1—C2117.1 (2)C14—C15—C16119.1 (2)
C6—C1—C2120.7 (2)C14—C15—H15120.4
O1—C2—C3123.9 (2)C16—C15—H15120.4
O1—C2—C1118.5 (2)C11—C16—C17117.0 (2)
C3—C2—C1117.6 (2)C11—C16—C15119.0 (2)
C2—C3—C4121.5 (2)C17—C16—C15124.0 (2)
C2—C3—H3119.2C18—C17—C16121.4 (3)
C4—C3—H3119.2C18—C17—H17119.3
C5—C4—C3121.6 (3)C16—C17—H17119.3
C5—C4—H4119.2C17—C18—C19120.2 (2)
C3—C4—H4119.2C17—C18—H18119.9
C4—C5—C6119.0 (2)C19—C18—H18119.9
C4—C5—H5120.5N2—C19—C18118.2 (2)
C6—C5—H5120.5N2—C19—C20119.5 (2)
C1—C6—C5119.5 (2)C18—C19—C20122.3 (2)
C1—C6—C7116.0 (2)C19—C20—H20A109.5
C5—C6—C7124.5 (2)C19—C20—H20B109.5
C8—C7—C6120.2 (2)H20A—C20—H20B109.5
C8—C7—H7119.9C19—C20—H20C109.5
C6—C7—H7119.9H20A—C20—H20C109.5
C7—C8—C9121.0 (2)H20B—C20—H20C109.5
C7—C8—H8119.5N3—C21—C22179.3 (3)
C9—C8—H8119.5C21—C22—H22A109.5
N1—C9—C8120.4 (2)C21—C22—H22B109.5
N1—C9—C10117.7 (2)H22A—C22—H22B109.5
C8—C9—C10121.9 (2)C21—C22—H22C109.5
C9—C10—H10A109.5H22A—C22—H22C109.5
C9—C10—H10B109.5H22B—C22—H22C109.5
H10A—C10—H10B109.5
N1—Zn1—O1—C27.93 (16)C6—C7—C8—C91.4 (4)
Br2—Zn1—O1—C2125.99 (14)C1—N1—C9—C81.5 (3)
Br1—Zn1—O1—C2101.00 (15)Zn1—N1—C9—C8172.56 (17)
O1—Zn1—N1—C9178.6 (2)C1—N1—C9—C10178.9 (2)
Br2—Zn1—N1—C964.0 (2)Zn1—N1—C9—C107.1 (3)
Br1—Zn1—N1—C971.1 (2)C7—C8—C9—N10.2 (4)
O1—Zn1—N1—C16.82 (15)C7—C8—C9—C10179.8 (2)
Br2—Zn1—N1—C1121.47 (14)C19—N2—C11—C160.4 (4)
Br1—Zn1—N1—C1103.42 (15)C19—N2—C11—C12179.9 (2)
C9—N1—C1—C61.1 (4)N2—C11—C12—O23.6 (3)
Zn1—N1—C1—C6174.10 (19)C16—C11—C12—O2176.9 (2)
C9—N1—C1—C2179.9 (2)N2—C11—C12—C13177.2 (2)
Zn1—N1—C1—C24.7 (3)C16—C11—C12—C132.2 (3)
Zn1—O1—C2—C3174.4 (2)O2—C12—C13—C14179.0 (2)
Zn1—O1—C2—C17.7 (3)C11—C12—C13—C140.1 (4)
N1—C1—C2—O12.0 (3)C12—C13—C14—C151.2 (4)
C6—C1—C2—O1179.2 (2)C13—C14—C15—C160.4 (4)
N1—C1—C2—C3180.0 (2)N2—C11—C16—C172.8 (3)
C6—C1—C2—C31.2 (4)C12—C11—C16—C17177.8 (2)
O1—C2—C3—C4178.4 (2)N2—C11—C16—C15176.4 (2)
C1—C2—C3—C40.5 (4)C12—C11—C16—C153.1 (3)
C2—C3—C4—C50.2 (4)C14—C15—C16—C111.7 (4)
C3—C4—C5—C60.2 (4)C14—C15—C16—C17179.2 (2)
N1—C1—C6—C5180.0 (2)C11—C16—C17—C182.6 (4)
C2—C1—C6—C51.3 (4)C15—C16—C17—C18176.5 (2)
N1—C1—C6—C70.5 (3)C16—C17—C18—C190.0 (4)
C2—C1—C6—C7178.3 (2)C11—N2—C19—C182.2 (4)
C4—C5—C6—C10.6 (4)C11—N2—C19—C20176.8 (2)
C4—C5—C6—C7179.0 (2)C17—C18—C19—N22.3 (4)
C1—C6—C7—C81.7 (4)C17—C18—C19—C20176.6 (2)
C5—C6—C7—C8178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.84 (1)1.73 (1)2.561 (2)173 (4)
N2—H1···N30.88 (1)2.08 (1)2.943 (3)171 (3)

Experimental details

Crystal data
Chemical formula(C10H10NO)[ZnBr2(C10H8NO)]·C2H3N
Mr584.61
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.1870 (3), 9.7795 (5), 16.2520 (7)
α, β, γ (°)86.159 (4), 80.775 (4), 85.098 (4)
V3)1121.73 (9)
Z2
Radiation typeMo Kα
µ (mm1)4.68
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.387, 0.540
No. of measured, independent and
observed [I > 2σ(I)] reflections
8710, 4970, 4197
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.065, 1.01
No. of reflections4970
No. of parameters282
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.86

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.84 (1)1.73 (1)2.561 (2)173 (4)
N2—H1···N30.88 (1)2.08 (1)2.943 (3)171 (3)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2010a). Acta Cryst. E66, m1276.  Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2010b). Acta Cryst. E66, m1277.  Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1280.  Google Scholar
First citationSattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds