metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hy­dr­oxy-2-methyl­quinolinium di­iodido(2-methyl­quinolin-8-olato-κ2N,O)zincate

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 August 2011; accepted 9 August 2011; online 27 August 2011)

The reaction of 2-methyl-8-hy­droxy­quinoline and zinc iodide in acetonitrile affords the title salt, (C10H10NO)[Zn(C10H8NO)I2], in which the ZnII ion is coordinated by a N,O-chelating 2-methyl­quinolin-8-olate ligand and two iodide ligands in a distorted tetra­hedral geometry. The cation is linked to the anion by an O—H⋯O hydrogen bond.

Related literature

For the crystal structures of two related 8-hy­droxy-2-methyl­quinolinium dihalo(2-methyl­quinolin-8-olato)zincate aceto­nitrile solvates, see: Najafi et al. (2011a[Najafi, E., Amini, M. M. & Ng, S. W. (2011a). Acta Cryst. E67, m1280.],b[Najafi, E., Amini, M. M. & Ng, S. W. (2011b). Acta Cryst. E67, m1281.]). For the crystal structures of related methanol solvates, see: Najafi et al. (2010a[Najafi, E., Amini, M. M. & Ng, S. W. (2010a). Acta Cryst. E66, m1276.],b[Najafi, E., Amini, M. M. & Ng, S. W. (2010b). Acta Cryst. E66, m1277.]); Sattarzadeh et al. (2009[Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10NO)[Zn(C10H8NO)I2]

  • Mr = 637.53

  • Monoclinic, P 21

  • a = 8.1794 (2) Å

  • b = 13.9441 (3) Å

  • c = 9.1838 (2) Å

  • β = 102.503 (3)°

  • V = 1022.61 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.24 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.282, Tmax = 0.485

  • 4995 measured reflections

  • 3765 independent reflections

  • 3692 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.04

  • 3765 reflections

  • 247 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −1.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) 1389 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯O1 0.84 1.71 2.542 (6) 170

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have synthesized methanol-solvated 8-hydroxy-2-methylquinolinium dihalo(2-methylquinolin-8-olato)zincates(II) by the direct reaction of the zinc halide and 8-hydroxy-2-methylquinolin in methanol. The salts have the ZnII atom in a tetrahedral geometry, and the ion-pairs are linked to the solvent molecules by hydrogen bonds (Najafi et al., 2010a; Najafi et al., 2010b; Sattarzadeh et al., 2009). These studies have been extended to the use of acetonitrile as a solvent. In a previous study, the reaction of zinc chloride/bromide and the quinoline in acetonitrile yielded the disolvated/monosolvated salts (Najafi et al., 2011a, 2011b). In the present study, using zinc iodide gave a solvent-free (Fig. 1) crystal structure. In (C10H10NO)[ZnI2(C10H8NO)], the metal in the anion is N,O-chelated by the deprotonated ligand and it exists in a distorted tetrahedral geometry. The cation is linked to the anion by an O–H···O hydrogen bond (Table 1).

Related literature top

For the crystal structures of two related 8-hydroxy-2-methylquinolinium dihalo(2-methylquinolin-8-olato)zincate acetonitrile solvates, see: Najafi et al. (2011a,b). For the crystal structures of related methanol solvates, see: Najafi et al. (2010a,b); Sattarzadeh et al. (2009).

Experimental top

Zinc iodide (0.32 g, 0.75 mmol) and 2-methyl-8-hydroxyquinoline (0.24 g, 1.5 mmol) were loaded into a convection tube and the tube was filled with acetonitrile and kept at 333 K. Yellow crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N and O bound H atoms were similarly treated [N–H 0.88, O–H 0.84 Å; Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O) ]. The (-2 8 1), (-2 3 5), (-2 2 5), (-2 4 5) and (-2 5 5) reflections were removed.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (C10H10NO)[ZnI2(C10H8NO)] at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
8-Hydroxy-2-methylquinolinium diiodido(2-methylquinolin-8-olato-κ2N,O)zincate top
Crystal data top
(C10H10NO)[Zn(C10H8NO)I2]F(000) = 608
Mr = 637.53Dx = 2.070 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4585 reflections
a = 8.1794 (2) Åθ = 2.6–26.3°
b = 13.9441 (3) ŵ = 4.24 mm1
c = 9.1838 (2) ÅT = 100 K
β = 102.503 (3)°Block, yellow
V = 1022.61 (4) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3765 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3692 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1718
Tmin = 0.282, Tmax = 0.485l = 117
4995 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.3294P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3765 reflectionsΔρmax = 0.99 e Å3
247 parametersΔρmin = 1.53 e Å3
1 restraintAbsolute structure: Flack (1983) 1389 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
(C10H10NO)[Zn(C10H8NO)I2]V = 1022.61 (4) Å3
Mr = 637.53Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.1794 (2) ŵ = 4.24 mm1
b = 13.9441 (3) ÅT = 100 K
c = 9.1838 (2) Å0.40 × 0.30 × 0.20 mm
β = 102.503 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3765 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3692 reflections with I > 2σ(I)
Tmin = 0.282, Tmax = 0.485Rint = 0.025
4995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.99 e Å3
S = 1.04Δρmin = 1.53 e Å3
3765 reflectionsAbsolute structure: Flack (1983) 1389 Friedel pairs
247 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.34742 (4)0.50002 (2)0.27609 (4)0.01513 (10)
I20.86547 (4)0.57723 (3)0.30050 (4)0.01526 (10)
Zn10.65211 (7)0.50245 (5)0.42920 (6)0.01153 (14)
O10.7152 (5)0.3768 (3)0.5317 (4)0.0140 (8)
O20.7800 (6)0.2102 (3)0.4468 (5)0.0185 (9)
H2O0.75560.26690.46450.028*
N10.6329 (6)0.5443 (4)0.6384 (6)0.0128 (10)
N20.8374 (6)0.0372 (4)0.3439 (6)0.0124 (10)
H2N0.79210.04520.42170.015*
C10.6269 (7)0.4639 (5)0.7234 (7)0.0118 (12)
C20.6735 (7)0.3762 (5)0.6652 (6)0.0127 (11)
C30.6735 (8)0.2940 (5)0.7488 (7)0.0164 (12)
H30.70450.23440.71260.020*
C40.6277 (7)0.2983 (5)0.8879 (7)0.0180 (12)
H40.62770.24070.94310.022*
C50.5831 (8)0.3824 (5)0.9472 (7)0.0176 (12)
H50.55210.38311.04110.021*
C60.5844 (7)0.4686 (5)0.8641 (7)0.0134 (12)
C70.5476 (7)0.5605 (5)0.9138 (6)0.0163 (14)
H70.51530.56701.00670.020*
C80.5583 (8)0.6396 (5)0.8297 (7)0.0156 (12)
H80.53730.70140.86540.019*
C90.6008 (8)0.6297 (5)0.6886 (7)0.0134 (13)
C100.6195 (8)0.7153 (4)0.5938 (7)0.0160 (12)
H10A0.57440.77230.63370.024*
H10B0.55800.70400.49120.024*
H10C0.73830.72540.59470.024*
C110.8860 (8)0.1179 (5)0.2762 (7)0.0137 (12)
C120.8575 (8)0.2094 (5)0.3348 (8)0.0144 (12)
C130.9136 (8)0.2891 (4)0.2680 (7)0.0164 (12)
H130.89880.35160.30430.020*
C140.9923 (8)0.2774 (5)0.1470 (7)0.0190 (13)
H141.03150.33280.10490.023*
C151.0147 (8)0.1899 (5)0.0878 (7)0.0179 (12)
H151.06550.18470.00440.021*
C160.9607 (8)0.1066 (4)0.1530 (7)0.0133 (12)
C170.9785 (8)0.0115 (5)0.1023 (7)0.0172 (12)
H171.02730.00120.01870.021*
C180.9261 (8)0.0647 (4)0.1728 (7)0.0156 (12)
H180.93740.12780.13720.019*
C190.8552 (7)0.0510 (6)0.2982 (7)0.0130 (15)
C200.8021 (8)0.1330 (5)0.3803 (7)0.0187 (12)
H20A0.77570.10980.47330.028*
H20B0.89300.18000.40330.028*
H20C0.70270.16310.31860.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01258 (17)0.01704 (18)0.01573 (17)0.00109 (15)0.00297 (12)0.00069 (15)
I20.01426 (17)0.01766 (18)0.01540 (17)0.00195 (15)0.00660 (12)0.00132 (15)
Zn10.0134 (3)0.0116 (3)0.0105 (3)0.0006 (3)0.0048 (2)0.0002 (3)
O10.021 (2)0.0107 (18)0.012 (2)0.0033 (17)0.0093 (16)0.0002 (16)
O20.025 (2)0.0118 (19)0.022 (2)0.0044 (18)0.0115 (18)0.0004 (17)
N10.012 (2)0.014 (2)0.013 (2)0.001 (2)0.0035 (18)0.003 (2)
N20.013 (2)0.013 (2)0.012 (2)0.003 (2)0.0051 (19)0.001 (2)
C10.010 (3)0.013 (3)0.012 (3)0.001 (2)0.002 (2)0.001 (2)
C20.011 (3)0.017 (3)0.010 (3)0.002 (2)0.003 (2)0.000 (2)
C30.017 (3)0.011 (3)0.020 (3)0.002 (2)0.003 (2)0.000 (2)
C40.019 (3)0.016 (3)0.019 (3)0.001 (3)0.006 (2)0.008 (2)
C50.021 (3)0.021 (3)0.013 (3)0.005 (3)0.007 (2)0.000 (2)
C60.012 (3)0.013 (3)0.015 (3)0.001 (2)0.002 (2)0.000 (2)
C70.020 (3)0.022 (4)0.008 (3)0.001 (3)0.005 (2)0.003 (2)
C80.018 (3)0.012 (3)0.017 (3)0.002 (2)0.004 (2)0.004 (2)
C90.012 (3)0.012 (3)0.016 (3)0.007 (3)0.004 (2)0.003 (2)
C100.017 (3)0.013 (3)0.018 (3)0.003 (2)0.004 (2)0.001 (2)
C110.012 (3)0.013 (3)0.016 (3)0.003 (2)0.002 (2)0.000 (2)
C120.012 (3)0.015 (3)0.014 (3)0.001 (2)0.001 (2)0.002 (2)
C130.019 (3)0.013 (3)0.017 (3)0.001 (2)0.005 (2)0.001 (2)
C140.021 (3)0.018 (3)0.019 (3)0.002 (2)0.004 (2)0.001 (2)
C150.018 (3)0.023 (3)0.014 (3)0.001 (3)0.008 (2)0.001 (2)
C160.011 (2)0.013 (3)0.015 (3)0.003 (2)0.002 (2)0.001 (2)
C170.014 (3)0.020 (3)0.018 (3)0.003 (3)0.005 (2)0.006 (3)
C180.019 (3)0.011 (3)0.016 (3)0.006 (2)0.005 (2)0.004 (2)
C190.016 (3)0.013 (3)0.010 (3)0.003 (2)0.002 (2)0.001 (2)
C200.022 (3)0.016 (3)0.019 (3)0.001 (2)0.006 (2)0.001 (2)
Geometric parameters (Å, º) top
I1—Zn12.5831 (7)C8—C91.420 (9)
I2—Zn12.5343 (7)C8—H80.9500
Zn1—O12.003 (4)C9—C101.505 (9)
Zn1—N12.046 (5)C10—H10A0.9800
O1—C21.342 (7)C10—H10B0.9800
O2—C121.320 (8)C10—H10C0.9800
O2—H2O0.8400C11—C161.406 (9)
N1—C91.323 (8)C11—C121.423 (9)
N1—C11.373 (8)C12—C131.394 (9)
N2—C191.317 (9)C13—C141.409 (8)
N2—C111.386 (8)C13—H130.9500
N2—H2N0.8800C14—C151.365 (9)
C1—C61.410 (9)C14—H140.9500
C1—C21.420 (9)C15—C161.420 (9)
C2—C31.380 (9)C15—H150.9500
C3—C41.407 (8)C16—C171.423 (9)
C3—H30.9500C17—C181.362 (9)
C4—C51.376 (9)C17—H170.9500
C4—H40.9500C18—C191.409 (8)
C5—C61.424 (9)C18—H180.9500
C5—H50.9500C19—C201.486 (9)
C6—C71.415 (9)C20—H20A0.9800
C7—C81.360 (9)C20—H20B0.9800
C7—H70.9500C20—H20C0.9800
O1—Zn1—N182.69 (19)C8—C9—C10121.8 (6)
O1—Zn1—I2116.46 (12)C9—C10—H10A109.5
N1—Zn1—I2121.41 (14)C9—C10—H10B109.5
O1—Zn1—I1111.38 (13)H10A—C10—H10B109.5
N1—Zn1—I1104.68 (14)C9—C10—H10C109.5
I2—Zn1—I1115.60 (3)H10A—C10—H10C109.5
C2—O1—Zn1110.1 (3)H10B—C10—H10C109.5
C12—O2—H2O109.5N2—C11—C16119.1 (6)
C9—N1—C1120.2 (5)N2—C11—C12118.2 (6)
C9—N1—Zn1130.2 (4)C16—C11—C12122.7 (6)
C1—N1—Zn1108.7 (4)O2—C12—C13126.5 (6)
C19—N2—C11123.5 (5)O2—C12—C11116.6 (6)
C19—N2—H2N118.2C13—C12—C11116.8 (6)
C11—N2—H2N118.2C12—C13—C14120.3 (6)
N1—C1—C6122.0 (6)C12—C13—H13119.8
N1—C1—C2116.4 (5)C14—C13—H13119.8
C6—C1—C2121.6 (6)C15—C14—C13122.7 (6)
O1—C2—C3123.0 (6)C15—C14—H14118.6
O1—C2—C1118.7 (5)C13—C14—H14118.6
C3—C2—C1118.3 (5)C14—C15—C16118.9 (5)
C2—C3—C4120.1 (6)C14—C15—H15120.6
C2—C3—H3119.9C16—C15—H15120.6
C4—C3—H3119.9C11—C16—C15118.4 (6)
C5—C4—C3122.8 (5)C11—C16—C17117.5 (6)
C5—C4—H4118.6C15—C16—C17124.1 (5)
C3—C4—H4118.6C18—C17—C16120.4 (5)
C4—C5—C6118.3 (5)C18—C17—H17119.8
C4—C5—H5120.9C16—C17—H17119.8
C6—C5—H5120.9C17—C18—C19120.7 (6)
C1—C6—C7116.7 (6)C17—C18—H18119.7
C1—C6—C5119.0 (6)C19—C18—H18119.7
C7—C6—C5124.3 (5)N2—C19—C18118.8 (6)
C8—C7—C6120.5 (5)N2—C19—C20119.4 (5)
C8—C7—H7119.8C18—C19—C20121.8 (6)
C6—C7—H7119.8C19—C20—H20A109.5
C7—C8—C9119.9 (6)C19—C20—H20B109.5
C7—C8—H8120.1H20A—C20—H20B109.5
C9—C8—H8120.1C19—C20—H20C109.5
N1—C9—C8120.8 (6)H20A—C20—H20C109.5
N1—C9—C10117.3 (5)H20B—C20—H20C109.5
N1—Zn1—O1—C215.2 (4)C6—C7—C8—C92.2 (9)
I2—Zn1—O1—C2136.8 (3)C1—N1—C9—C80.7 (9)
I1—Zn1—O1—C287.7 (4)Zn1—N1—C9—C8166.6 (4)
O1—Zn1—N1—C9175.6 (6)C1—N1—C9—C10176.5 (5)
I2—Zn1—N1—C959.0 (6)Zn1—N1—C9—C1016.3 (9)
I1—Zn1—N1—C974.1 (6)C7—C8—C9—N11.0 (9)
O1—Zn1—N1—C115.9 (4)C7—C8—C9—C10178.0 (6)
I2—Zn1—N1—C1132.6 (3)C19—N2—C11—C160.8 (8)
I1—Zn1—N1—C194.3 (4)C19—N2—C11—C12179.0 (6)
C9—N1—C1—C61.1 (9)N2—C11—C12—O22.6 (8)
Zn1—N1—C1—C6168.6 (5)C16—C11—C12—O2177.2 (5)
C9—N1—C1—C2176.1 (6)N2—C11—C12—C13177.6 (5)
Zn1—N1—C1—C214.1 (6)C16—C11—C12—C132.6 (9)
Zn1—O1—C2—C3167.8 (5)O2—C12—C13—C14178.9 (6)
Zn1—O1—C2—C112.1 (6)C11—C12—C13—C140.9 (9)
N1—C1—C2—O11.7 (8)C12—C13—C14—C151.3 (10)
C6—C1—C2—O1178.9 (6)C13—C14—C15—C161.7 (9)
N1—C1—C2—C3178.3 (5)N2—C11—C16—C15178.0 (5)
C6—C1—C2—C31.1 (9)C12—C11—C16—C152.2 (9)
O1—C2—C3—C4179.8 (5)N2—C11—C16—C171.4 (8)
C1—C2—C3—C40.2 (9)C12—C11—C16—C17178.4 (6)
C2—C3—C4—C50.6 (10)C14—C15—C16—C110.0 (9)
C3—C4—C5—C60.3 (9)C14—C15—C16—C17179.4 (6)
N1—C1—C6—C70.1 (9)C11—C16—C17—C180.6 (9)
C2—C1—C6—C7177.1 (5)C15—C16—C17—C18178.8 (6)
N1—C1—C6—C5179.1 (5)C16—C17—C18—C190.8 (9)
C2—C1—C6—C52.0 (9)C11—N2—C19—C180.6 (9)
C4—C5—C6—C11.6 (9)C11—N2—C19—C20178.8 (6)
C4—C5—C6—C7177.5 (6)C17—C18—C19—N21.4 (9)
C1—C6—C7—C81.7 (9)C17—C18—C19—C20178.0 (6)
C5—C6—C7—C8177.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O10.841.712.542 (6)170

Experimental details

Crystal data
Chemical formula(C10H10NO)[Zn(C10H8NO)I2]
Mr637.53
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.1794 (2), 13.9441 (3), 9.1838 (2)
β (°) 102.503 (3)
V3)1022.61 (4)
Z2
Radiation typeMo Kα
µ (mm1)4.24
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.282, 0.485
No. of measured, independent and
observed [I > 2σ(I)] reflections
4995, 3765, 3692
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.04
No. of reflections3765
No. of parameters247
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.99, 1.53
Absolute structureFlack (1983) 1389 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O10.841.712.542 (6)170
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2010a). Acta Cryst. E66, m1276.  Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2010b). Acta Cryst. E66, m1277.  Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011a). Acta Cryst. E67, m1280.  Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011b). Acta Cryst. E67, m1281.  Google Scholar
First citationSattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds