organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)morpholine-4-carboxamide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 7 August 2011; accepted 23 August 2011; online 27 August 2011)

In the title mol­ecule, C11H13ClN2O2, the morpholine ring has a chair conformation. In the crystal, mol­ecules are linked into chains along [100] by N—H⋯O hydrogen bonds.

Related literature

For the applications of morpholine compounds, see: Arrieta et al. (2007[Arrieta, A., Otaegui, D., Zubia, A., Cossío, F. P., Díaz-Ortiz, A., Hoz, A., Herrero, A., Prieto, P., Foces-Foces, C., Pizarro, J. L. & Arriortua, M. I. (2007). J. Org. Chem. 72, 4313-4322.]). For related structures, see: Li (2011a[Li, Y.-F. (2011a). Acta Cryst. E67, o1796.],b[Li, Y.-F. (2011b). Acta Cryst. E67, o1792.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13ClN2O2

  • Mr = 240.68

  • Orthorhombic, P b c a

  • a = 9.3359 (19) Å

  • b = 11.105 (2) Å

  • c = 22.426 (5) Å

  • V = 2325.0 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.26 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 20865 measured reflections

  • 2660 independent reflections

  • 2081 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.07

  • 2660 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O2i 0.838 (19) 2.114 (19) 2.9226 (19) 162.2 (19)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Morpholine compounds are an important intermediate reagent in organic synthesis (Arrieta et al., 2007). As part of our search for new carboxamide compounds (Li, 2011a,b) we have determined the crystal structure of the title compound containing a morpholine ring. The molecular structure of the title compound is shown in Fig. 1. The morpholine ring (N1/C1/C2/C3/C4/O1) is in a chair conformation. In the crystal, molecules are linked into chains along [100] by N—H···O hydrogen bonds.

Related literature top

For the applications of morpholine compounds, see: Arrieta et al. (2007). For related structures, see: Li (2011a,b).

Experimental top

A mixture of morpholine (0.1 mol), and (4-chlorophenyl)carbamic chloride (0.1 mol) was stirred in refluxing ethanol (20 ml) for 4 h to afford the title compound (0.065 mol, yield 65%). Colourless blocks of the title compound were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C). The H atom bonded to N2 was refined independently with an isotropic displacement parameter.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
N-(4-Chlorophenyl)morpholine-4-carboxamide top
Crystal data top
C11H13ClN2O2F(000) = 1008
Mr = 240.68Dx = 1.375 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2081 reflections
a = 9.3359 (19) Åθ = 2.6–27.4°
b = 11.105 (2) ŵ = 0.32 mm1
c = 22.426 (5) ÅT = 293 K
V = 2325.0 (8) Å3Block, colorless
Z = 80.26 × 0.19 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2081 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1112
20865 measured reflectionsk = 1414
2660 independent reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.5192P]
where P = (Fo2 + 2Fc2)/3
2660 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H13ClN2O2V = 2325.0 (8) Å3
Mr = 240.68Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.3359 (19) ŵ = 0.32 mm1
b = 11.105 (2) ÅT = 293 K
c = 22.426 (5) Å0.26 × 0.19 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2081 reflections with I > 2σ(I)
20865 measured reflectionsRint = 0.059
2660 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.40 e Å3
2660 reflectionsΔρmin = 0.29 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12457 (6)0.60377 (5)0.44436 (2)0.0656 (2)
O10.41840 (19)0.16232 (19)0.04233 (6)0.0854 (6)
O20.14298 (12)0.24548 (12)0.21323 (5)0.0505 (3)
N10.34301 (15)0.19345 (14)0.16222 (6)0.0473 (4)
N20.35998 (15)0.31812 (13)0.24422 (6)0.0407 (3)
C10.2740 (3)0.1513 (3)0.06064 (9)0.0782 (7)
H1A0.22520.09400.03510.094*
H1B0.22640.22850.05670.094*
C20.2651 (2)0.1097 (2)0.12415 (8)0.0598 (5)
H2B0.16570.10580.13650.072*
H2C0.30610.02980.12770.072*
C30.48960 (18)0.21365 (17)0.14282 (7)0.0477 (4)
H3A0.54560.14110.14890.057*
H3B0.53220.27770.16630.057*
C40.4918 (2)0.2472 (2)0.07824 (9)0.0695 (6)
H4A0.44770.32570.07330.083*
H4B0.59030.25310.06490.083*
C50.27454 (16)0.25192 (14)0.20668 (7)0.0377 (3)
C60.30274 (16)0.38724 (13)0.29171 (7)0.0370 (3)
C70.36139 (17)0.37550 (15)0.34817 (7)0.0416 (4)
H7A0.43720.32260.35450.050*
C80.30729 (19)0.44249 (15)0.39539 (7)0.0452 (4)
H8A0.34650.43500.43330.054*
C90.19474 (19)0.52025 (14)0.38526 (7)0.0450 (4)
C100.13723 (18)0.53487 (15)0.32897 (8)0.0459 (4)
H10A0.06260.58880.32260.055*
C110.19215 (18)0.46827 (14)0.28228 (7)0.0426 (4)
H11A0.15460.47790.24420.051*
H1N0.445 (2)0.2955 (18)0.2483 (9)0.052 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0811 (4)0.0609 (3)0.0549 (3)0.0125 (2)0.0184 (2)0.0133 (2)
O10.0807 (11)0.1309 (16)0.0446 (7)0.0306 (11)0.0110 (8)0.0221 (8)
O20.0341 (6)0.0664 (8)0.0511 (7)0.0016 (5)0.0026 (5)0.0106 (5)
N10.0405 (7)0.0582 (9)0.0432 (7)0.0077 (6)0.0057 (6)0.0150 (6)
N20.0347 (7)0.0469 (8)0.0404 (7)0.0043 (6)0.0000 (6)0.0087 (6)
C10.0687 (14)0.115 (2)0.0509 (12)0.0185 (14)0.0091 (11)0.0168 (12)
C20.0559 (11)0.0712 (13)0.0522 (10)0.0190 (9)0.0065 (9)0.0229 (9)
C30.0364 (8)0.0592 (10)0.0475 (9)0.0008 (7)0.0050 (7)0.0114 (8)
C40.0668 (13)0.0873 (16)0.0543 (11)0.0210 (12)0.0089 (11)0.0037 (10)
C50.0346 (8)0.0410 (8)0.0375 (8)0.0013 (6)0.0002 (6)0.0008 (6)
C60.0376 (8)0.0342 (8)0.0391 (8)0.0014 (6)0.0045 (6)0.0013 (6)
C70.0441 (9)0.0378 (8)0.0429 (9)0.0044 (6)0.0011 (7)0.0006 (6)
C80.0537 (10)0.0437 (9)0.0383 (8)0.0004 (7)0.0031 (7)0.0000 (7)
C90.0537 (9)0.0356 (8)0.0457 (9)0.0019 (7)0.0134 (8)0.0036 (6)
C100.0488 (9)0.0354 (8)0.0534 (10)0.0062 (7)0.0072 (8)0.0019 (7)
C110.0475 (9)0.0380 (8)0.0422 (8)0.0033 (7)0.0007 (7)0.0035 (6)
Geometric parameters (Å, º) top
Cl1—C91.7452 (16)C3—C41.496 (3)
O1—C11.415 (3)C3—H3A0.9700
O1—C41.417 (3)C3—H3B0.9700
O2—C51.2390 (19)C4—H4A0.9700
N1—C51.351 (2)C4—H4B0.9700
N1—C31.453 (2)C6—C71.385 (2)
N1—C21.457 (2)C6—C111.386 (2)
N2—C51.373 (2)C7—C81.389 (2)
N2—C61.4175 (19)C7—H7A0.9300
N2—H1N0.84 (2)C8—C91.379 (2)
C1—C21.499 (3)C8—H8A0.9300
C1—H1A0.9700C9—C101.381 (3)
C1—H1B0.9700C10—C111.381 (2)
C2—H2B0.9700C10—H10A0.9300
C2—H2C0.9700C11—H11A0.9300
C1—O1—C4110.71 (16)O1—C4—H4A109.2
C5—N1—C3126.33 (14)C3—C4—H4A109.2
C5—N1—C2120.22 (14)O1—C4—H4B109.2
C3—N1—C2113.14 (13)C3—C4—H4B109.2
C5—N2—C6122.11 (14)H4A—C4—H4B107.9
C5—N2—H1N117.2 (13)O2—C5—N1121.93 (14)
C6—N2—H1N116.0 (13)O2—C5—N2122.28 (14)
O1—C1—C2110.80 (19)N1—C5—N2115.78 (13)
O1—C1—H1A109.5C7—C6—C11119.67 (15)
C2—C1—H1A109.5C7—C6—N2119.12 (14)
O1—C1—H1B109.5C11—C6—N2121.19 (14)
C2—C1—H1B109.5C6—C7—C8120.16 (15)
H1A—C1—H1B108.1C6—C7—H7A119.9
N1—C2—C1109.42 (17)C8—C7—H7A119.9
N1—C2—H2B109.8C9—C8—C7119.14 (16)
C1—C2—H2B109.8C9—C8—H8A120.4
N1—C2—H2C109.8C7—C8—H8A120.4
C1—C2—H2C109.8C8—C9—C10121.34 (15)
H2B—C2—H2C108.2C8—C9—Cl1119.59 (14)
N1—C3—C4109.94 (15)C10—C9—Cl1119.06 (14)
N1—C3—H3A109.7C11—C10—C9119.06 (16)
C4—C3—H3A109.7C11—C10—H10A120.5
N1—C3—H3B109.7C9—C10—H10A120.5
C4—C3—H3B109.7C10—C11—C6120.59 (16)
H3A—C3—H3B108.2C10—C11—H11A119.7
O1—C4—C3112.21 (18)C6—C11—H11A119.7
C4—O1—C1—C260.2 (3)C6—N2—C5—N1177.97 (15)
C5—N1—C2—C1120.4 (2)C5—N2—C6—C7130.52 (17)
C3—N1—C2—C153.6 (2)C5—N2—C6—C1151.2 (2)
O1—C1—C2—N157.1 (3)C11—C6—C7—C81.6 (2)
C5—N1—C3—C4121.82 (19)N2—C6—C7—C8179.86 (15)
C2—N1—C3—C451.7 (2)C6—C7—C8—C90.1 (2)
C1—O1—C4—C358.8 (3)C7—C8—C9—C101.6 (3)
N1—C3—C4—O153.6 (2)C7—C8—C9—Cl1179.34 (13)
C3—N1—C5—O2166.36 (17)C8—C9—C10—C111.3 (3)
C2—N1—C5—O26.8 (3)Cl1—C9—C10—C11179.61 (13)
C3—N1—C5—N214.0 (2)C9—C10—C11—C60.4 (3)
C2—N1—C5—N2172.86 (16)C7—C6—C11—C101.8 (2)
C6—N2—C5—O22.4 (2)N2—C6—C11—C10179.88 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2i0.838 (19)2.114 (19)2.9226 (19)162.2 (19)
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H13ClN2O2
Mr240.68
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.3359 (19), 11.105 (2), 22.426 (5)
V3)2325.0 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.26 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20865, 2660, 2081
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.07
No. of reflections2660
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.29

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2i0.838 (19)2.114 (19)2.9226 (19)162.2 (19)
Symmetry code: (i) x+1/2, y, z+1/2.
 

References

First citationArrieta, A., Otaegui, D., Zubia, A., Cossío, F. P., Díaz-Ortiz, A., Hoz, A., Herrero, A., Prieto, P., Foces-Foces, C., Pizarro, J. L. & Arriortua, M. I. (2007). J. Org. Chem. 72, 4313–4322.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. (2011a). Acta Cryst. E67, o1796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. (2011b). Acta Cryst. E67, o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds