organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­methyl-1H-pyrazole–2-hy­dr­oxy-5-(phenyl­diazen­yl)benzoic acid (1/1)

aTianmu college of ZheJiang A & F University, Lin'An 311300, People's Republic of China
*Correspondence e-mail: JINSW@yahoo.cn

(Received 12 August 2011; accepted 25 August 2011; online 31 August 2011)

There are two independent 3,5-dimethyl­pyrazole and two independent 2-hy­droxy-5-(phenyl­diazen­yl)benzoic acid mol­ecules [in which intra­molecular O—H⋯O bonds form S(6) graph-set motifs] in the asymmetric unit of the title compound, C5H8N2·C13H10N2O3. In the crystal, the components are linked by inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, forming four-component clusters. Further stabilization is provided by weak C—H⋯π inter­actions.

Related literature

For general background to hydrogen-bonding inter­actions, see: Lam & Mak (2000[Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657-6665.]); Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]); Liu et al. (2008[Liu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Zhong, F., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 173-182.]); Biswas et al. (2009[Biswas, C., Drew, M. G. B., Escudero, D., Frontera, A. & Ghosh, A. (2009). Eur. J. Inorg. Chem. pp. 2238-2246.]); Jin et al. (2010[Jin, S. W., Zhang, W. B., Liu, L., Gao, H. F., Wang, D. Q., Chen, R. P. & Xu, X. L. (2010). J. Mol. Struct. 975, 128-136.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N2·C13H10N2O3

  • Mr = 338.36

  • Triclinic, [P \overline 1]

  • a = 11.4871 (11) Å

  • b = 12.4746 (13) Å

  • c = 13.2235 (16) Å

  • α = 86.650 (2)°

  • β = 67.540 (1)°

  • γ = 77.715 (1)°

  • V = 1710.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.38 × 0.28 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.982

  • 8928 measured reflections

  • 5945 independent reflections

  • 2614 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.159

  • S = 0.99

  • 5945 reflections

  • 455 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C31–C36 and C25–C30 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O2i 0.82 2.43 3.019 (3) 129
O6—H6⋯O5 0.82 1.89 2.605 (3) 145
O4—H4A⋯N4ii 0.82 1.75 2.564 (3) 169
O3—H3A⋯O5iii 0.82 2.45 3.019 (3) 128
O3—H3A⋯O2 0.82 1.85 2.574 (3) 147
O1—H1A⋯N1iv 0.82 1.75 2.565 (3) 171
N3—H3⋯O3v 0.86 2.17 3.008 (3) 165
N2—H2⋯O6vi 0.86 2.15 3.002 (3) 170
C1—H1DCg1vii 0.96 2.75 3.677 (4) 164
C5—H5BCg2vii 0.96 2.96 3.840 (4) 153
Symmetry codes: (i) x, y-1, z-1; (ii) -x+2, -y+1, -z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) -x+2, -y+2, -z+1; (vi) x, y+1, z; (vii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Intermolecular interactions are responsible for crystal packing and gaining an understanding of these interactions allows the comprehension of the collective properties and permits the design of new crystals with specific physical and chemical properties (Lam & Mak, 2000). Hydrogen bonding is one of the most important noncovalent interactions that determines and controls the assembly of molecules and ions (Desiraju, 2002, Liu et al., 2008, Biswas et al., 2009). As an extension of our study concentrating on hydrogen bonded assembly of organic acids and organic bases (Jin et al., 2010), herein we report the crystal structure of the 1:1 adduct of 3,5-dimethyl pyrazole and 2-hydroxy-5-(phenyldiazenyl)benzoic acid.

The asymmetric unit of the compound consists of two independent 3,5-dimethyl pyrazole and two independent 2-hydroxy-5-(phenyldiazenyl)benzoic acid molecules (Fig. 1). Intramolecular hydrogen bonds between the phenol O—H groups and the carbonyl groups form S(6) graph motifs (Bernstein et al., 1995). The two independent carboxylic acid molecules form a dimer through O—H···O hydrogen bonds in which the phenol group is the donor and the carbonyl O atom acts as the acceptor. The two pyrazole molecules are linked to the carboxylic dimer through the N—H···O, and O—H···N hydrogen bonds to form a four component adduct containing R22(12) and R33(9) ring motifs (Fig. 2). Further stabilization is provided by weak C—H···π interactions.

Related literature top

For general background to hydrogen-bonding interactions, see: Lam & Mak (2000); Desiraju (2002); Liu et al. (2008); Biswas et al. (2009); Jin et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of 3,5-dimethyl pyrazole (19.2 mg, 0.2 mmol) in 5 ml of MeOH was added to a MeOH solution (3 ml) containing 2-hydroxy-5-(phenyldiazenyl)benzoic acid (48.4 mg, 0.2 mmol) under continuous stirring. The solution was stirred for about 1 h at room temperature, then the solution was filtered into a test tube. The solution was left standing at room temperature for several days, red block-shaped crystals were isolated after slow evaporation of the solution in air at ambient temperature.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93-0.96 Å, N—H = 0.86Å and O—H = 0.82Å and were included in the refinement with Uiso(H)=1.2Ueq(C,N) or Uiso(H)=1.2Ueq(Cmethyl,O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
3,5-Dimethyl-1H-pyrazole–2-hydroxy-5-(phenyldiazenyl)benzoic acid (1/1) top
Crystal data top
C5H8N2·C13H10N2O3Z = 4
Mr = 338.36F(000) = 712
Triclinic, P1Dx = 1.314 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.4871 (11) ÅCell parameters from 1438 reflections
b = 12.4746 (13) Åθ = 2.4–21.4°
c = 13.2235 (16) ŵ = 0.09 mm1
α = 86.650 (2)°T = 298 K
β = 67.540 (1)°Block, red
γ = 77.715 (1)°0.38 × 0.28 × 0.20 mm
V = 1710.5 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
5945 independent reflections
Radiation source: fine-focus sealed tube2614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1313
Tmin = 0.970, Tmax = 0.982k = 1414
8928 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
5945 reflections(Δ/σ)max < 0.001
455 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C5H8N2·C13H10N2O3γ = 77.715 (1)°
Mr = 338.36V = 1710.5 (3) Å3
Triclinic, P1Z = 4
a = 11.4871 (11) ÅMo Kα radiation
b = 12.4746 (13) ŵ = 0.09 mm1
c = 13.2235 (16) ÅT = 298 K
α = 86.650 (2)°0.38 × 0.28 × 0.20 mm
β = 67.540 (1)°
Data collection top
Bruker SMART CCD
diffractometer
5945 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2614 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.982Rint = 0.025
8928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.99Δρmax = 0.21 e Å3
5945 reflectionsΔρmin = 0.17 e Å3
455 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4488 (2)0.8896 (2)0.1548 (2)0.0495 (7)
N20.4409 (2)0.9469 (2)0.2418 (2)0.0517 (7)
H20.48420.99670.23720.062*
N30.8917 (3)0.8335 (2)0.1146 (2)0.0589 (8)
H30.94000.87780.11390.071*
N40.9161 (3)0.7637 (2)0.0310 (2)0.0627 (8)
N50.8889 (2)0.7607 (2)0.5787 (2)0.0552 (8)
N60.9694 (2)0.7542 (2)0.4833 (2)0.0556 (8)
N70.6155 (3)0.3798 (2)0.5330 (2)0.0520 (7)
N80.5186 (3)0.4064 (2)0.6184 (2)0.0538 (7)
O10.61956 (19)0.87430 (17)0.95957 (16)0.0598 (7)
H1A0.56620.88611.02230.090*
O20.7063 (2)0.99484 (18)1.01085 (16)0.0576 (6)
O30.9136 (2)1.04618 (19)0.87199 (18)0.0731 (8)
H3A0.85531.04480.93180.110*
O40.8984 (2)0.25974 (19)0.15689 (17)0.0732 (8)
H4A0.95520.24440.09620.110*
O50.8065 (2)0.1510 (2)0.09796 (19)0.0806 (8)
O60.5691 (2)0.13862 (17)0.21526 (17)0.0638 (7)
H60.63700.12660.16180.096*
C10.3553 (3)0.7443 (3)0.1208 (3)0.0678 (11)
H1B0.39860.76330.04640.102*
H1C0.26570.74980.13530.102*
H1D0.39280.67050.13230.102*
C20.3689 (3)0.8209 (3)0.1960 (3)0.0491 (8)
C30.3104 (3)0.8361 (3)0.3096 (2)0.0548 (9)
H3B0.25080.79820.35760.066*
C40.3572 (3)0.9167 (3)0.3362 (2)0.0492 (9)
C50.3317 (3)0.9694 (3)0.4430 (2)0.0640 (10)
H5A0.40390.99990.43730.096*
H5B0.31870.91560.49890.096*
H5C0.25591.02680.46150.096*
C60.7346 (3)0.8921 (3)0.3023 (3)0.0678 (10)
H6A0.78350.86180.34590.102*
H6B0.64530.89160.34270.102*
H6C0.74470.96620.28460.102*
C70.7820 (3)0.8248 (3)0.1991 (3)0.0526 (9)
C80.7350 (3)0.7468 (3)0.1691 (3)0.0580 (10)
H80.66000.72250.21060.070*
C90.8199 (3)0.7099 (3)0.0644 (3)0.0576 (9)
C100.8155 (4)0.6257 (3)0.0085 (3)0.0884 (13)
H10A0.85950.64270.08350.133*
H10B0.72750.62540.00440.133*
H10C0.85690.55480.00660.133*
C110.7069 (3)0.9320 (3)0.9424 (2)0.0466 (8)
C120.8086 (3)0.9170 (2)0.8312 (2)0.0421 (8)
C130.9061 (3)0.9767 (3)0.8012 (3)0.0527 (9)
C140.9967 (3)0.9671 (3)0.6950 (3)0.0680 (11)
H141.05961.00910.67430.082*
C150.9950 (3)0.8972 (3)0.6202 (3)0.0606 (10)
H151.05730.89110.54950.073*
C160.9007 (3)0.8348 (3)0.6493 (2)0.0489 (8)
C170.8081 (3)0.8470 (2)0.7541 (2)0.0473 (8)
H170.74350.80700.77340.057*
C180.9564 (3)0.6770 (3)0.4144 (3)0.0529 (9)
C191.0231 (3)0.6814 (3)0.3045 (3)0.0679 (11)
H191.07420.73310.27720.081*
C201.0147 (4)0.6087 (4)0.2336 (3)0.0809 (12)
H201.05990.61180.15860.097*
C210.9407 (4)0.5330 (4)0.2733 (4)0.0923 (14)
H210.93580.48340.22600.111*
C220.8738 (5)0.5302 (4)0.3826 (4)0.127 (2)
H220.82140.47930.40990.152*
C230.8823 (4)0.6011 (3)0.4529 (3)0.1058 (17)
H230.83700.59730.52770.127*
C240.8065 (3)0.2099 (3)0.1692 (3)0.0570 (9)
C250.6965 (3)0.2315 (2)0.2758 (2)0.0465 (8)
C260.5819 (3)0.1987 (2)0.2917 (3)0.0483 (8)
C270.4752 (3)0.2303 (3)0.3866 (3)0.0560 (9)
H270.39800.21100.39560.067*
C280.4815 (3)0.2895 (3)0.4676 (2)0.0528 (9)
H280.40900.30990.53120.063*
C290.5965 (3)0.3193 (2)0.4548 (3)0.0468 (8)
C300.7017 (3)0.2909 (2)0.3588 (2)0.0488 (8)
H300.77800.31210.34930.059*
C310.5405 (3)0.4670 (2)0.6963 (2)0.0496 (9)
C320.6597 (4)0.4840 (3)0.6864 (3)0.0624 (10)
H320.73290.45400.62660.075*
C330.6705 (4)0.5451 (3)0.7646 (3)0.0713 (11)
H330.75040.55750.75690.086*
C340.5632 (4)0.5873 (3)0.8538 (3)0.0774 (12)
H340.57030.62800.90710.093*
C350.4450 (4)0.5699 (3)0.8646 (3)0.0725 (11)
H350.37240.59920.92520.087*
C360.4329 (3)0.5094 (3)0.7868 (3)0.0613 (10)
H360.35270.49720.79510.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0481 (16)0.0578 (18)0.0385 (16)0.0182 (14)0.0075 (13)0.0027 (14)
N20.0525 (17)0.0597 (18)0.0410 (17)0.0227 (14)0.0094 (14)0.0031 (14)
N30.0597 (19)0.073 (2)0.0483 (18)0.0304 (16)0.0164 (16)0.0005 (16)
N40.0631 (19)0.079 (2)0.0451 (18)0.0292 (17)0.0107 (15)0.0092 (16)
N50.0552 (17)0.0649 (19)0.0401 (17)0.0225 (15)0.0053 (15)0.0099 (14)
N60.0554 (18)0.0650 (19)0.0389 (17)0.0170 (15)0.0061 (15)0.0080 (14)
N70.0613 (18)0.0526 (17)0.0398 (17)0.0159 (14)0.0140 (15)0.0031 (14)
N80.0633 (18)0.0515 (17)0.0436 (18)0.0136 (15)0.0154 (16)0.0032 (14)
O10.0581 (14)0.0766 (16)0.0376 (13)0.0327 (13)0.0008 (11)0.0085 (11)
O20.0603 (15)0.0695 (16)0.0400 (13)0.0207 (12)0.0098 (11)0.0132 (12)
O30.0655 (15)0.0945 (19)0.0567 (16)0.0406 (14)0.0035 (13)0.0268 (14)
O40.0658 (16)0.0992 (19)0.0498 (15)0.0391 (15)0.0022 (13)0.0172 (13)
O50.0840 (18)0.101 (2)0.0523 (16)0.0412 (16)0.0049 (14)0.0297 (14)
O60.0666 (15)0.0741 (16)0.0534 (15)0.0312 (13)0.0141 (12)0.0171 (12)
C10.081 (3)0.065 (2)0.051 (2)0.024 (2)0.010 (2)0.0082 (18)
C20.056 (2)0.049 (2)0.041 (2)0.0153 (17)0.0139 (17)0.0006 (16)
C30.065 (2)0.052 (2)0.038 (2)0.0221 (18)0.0052 (18)0.0043 (16)
C40.053 (2)0.053 (2)0.035 (2)0.0107 (17)0.0085 (17)0.0008 (16)
C50.076 (2)0.067 (2)0.047 (2)0.018 (2)0.0182 (19)0.0062 (18)
C60.070 (2)0.073 (3)0.056 (2)0.011 (2)0.018 (2)0.0111 (19)
C70.053 (2)0.058 (2)0.045 (2)0.0157 (18)0.0140 (18)0.0003 (17)
C80.050 (2)0.066 (2)0.053 (2)0.0246 (18)0.0064 (18)0.0033 (18)
C90.059 (2)0.065 (2)0.050 (2)0.0225 (19)0.0167 (19)0.0048 (18)
C100.092 (3)0.099 (3)0.071 (3)0.036 (3)0.014 (2)0.029 (2)
C110.049 (2)0.054 (2)0.037 (2)0.0130 (18)0.0145 (17)0.0024 (17)
C120.0398 (18)0.0488 (19)0.0351 (18)0.0133 (15)0.0085 (15)0.0032 (15)
C130.050 (2)0.062 (2)0.048 (2)0.0189 (18)0.0142 (18)0.0120 (17)
C140.053 (2)0.084 (3)0.060 (2)0.041 (2)0.004 (2)0.019 (2)
C150.048 (2)0.075 (3)0.049 (2)0.0275 (19)0.0019 (18)0.0128 (19)
C160.0465 (19)0.054 (2)0.040 (2)0.0152 (17)0.0064 (17)0.0090 (16)
C170.0467 (19)0.053 (2)0.041 (2)0.0220 (16)0.0085 (17)0.0013 (16)
C180.047 (2)0.058 (2)0.046 (2)0.0089 (17)0.0081 (17)0.0142 (18)
C190.067 (2)0.082 (3)0.044 (2)0.020 (2)0.005 (2)0.012 (2)
C200.093 (3)0.096 (3)0.048 (2)0.004 (3)0.025 (2)0.021 (2)
C210.083 (3)0.102 (4)0.087 (4)0.019 (3)0.019 (3)0.048 (3)
C220.142 (4)0.140 (4)0.081 (4)0.090 (4)0.014 (3)0.048 (3)
C230.135 (4)0.106 (4)0.058 (3)0.075 (3)0.013 (3)0.031 (2)
C240.062 (2)0.064 (2)0.046 (2)0.023 (2)0.0150 (19)0.0086 (18)
C250.052 (2)0.049 (2)0.0391 (19)0.0183 (16)0.0127 (17)0.0016 (16)
C260.057 (2)0.048 (2)0.044 (2)0.0199 (17)0.0167 (18)0.0067 (16)
C270.055 (2)0.059 (2)0.054 (2)0.0256 (18)0.0110 (19)0.0089 (18)
C280.056 (2)0.055 (2)0.042 (2)0.0190 (18)0.0075 (17)0.0059 (17)
C290.055 (2)0.046 (2)0.041 (2)0.0146 (17)0.0171 (18)0.0020 (16)
C300.052 (2)0.052 (2)0.043 (2)0.0195 (17)0.0147 (18)0.0019 (16)
C310.071 (2)0.045 (2)0.036 (2)0.0153 (18)0.0224 (19)0.0015 (16)
C320.072 (3)0.063 (2)0.050 (2)0.018 (2)0.018 (2)0.0057 (18)
C330.079 (3)0.079 (3)0.064 (3)0.023 (2)0.030 (2)0.012 (2)
C340.099 (3)0.077 (3)0.062 (3)0.006 (3)0.041 (3)0.022 (2)
C350.083 (3)0.077 (3)0.052 (2)0.007 (2)0.022 (2)0.022 (2)
C360.067 (2)0.062 (2)0.050 (2)0.0120 (19)0.017 (2)0.0081 (18)
Geometric parameters (Å, º) top
N1—C21.331 (3)C10—H10B0.9600
N1—N21.353 (3)C10—H10C0.9600
N2—C41.345 (3)C11—C121.480 (4)
N2—H20.8600C12—C171.384 (4)
N3—C71.348 (4)C12—C131.395 (4)
N3—N41.353 (3)C13—C141.385 (4)
N3—H30.8600C14—C151.365 (4)
N4—C91.333 (4)C14—H140.9300
N5—N61.242 (3)C15—C161.390 (4)
N5—C161.413 (4)C15—H150.9300
N6—C181.430 (4)C16—C171.379 (4)
N7—N81.245 (3)C17—H170.9300
N7—C291.420 (4)C18—C231.355 (4)
N8—C311.436 (4)C18—C191.363 (4)
O1—C111.301 (3)C19—C201.385 (5)
O1—H1A0.8200C19—H190.9300
O2—C111.228 (3)C20—C211.353 (5)
O3—C131.351 (3)C20—H200.9300
O3—H3A0.8200C21—C221.356 (5)
O4—C241.290 (4)C21—H210.9300
O4—H4A0.8200C22—C231.363 (5)
O5—C241.228 (4)C22—H220.9300
O6—C261.362 (3)C23—H230.9300
O6—H60.8200C24—C251.482 (4)
C1—C21.490 (4)C25—C301.385 (4)
C1—H1B0.9600C25—C261.397 (4)
C1—H1C0.9600C26—C271.382 (4)
C1—H1D0.9600C27—C281.368 (4)
C2—C31.397 (4)C27—H270.9300
C3—C41.357 (4)C28—C291.395 (4)
C3—H3B0.9300C28—H280.9300
C4—C51.490 (4)C29—C301.377 (4)
C5—H5A0.9600C30—H300.9300
C5—H5B0.9600C31—C361.380 (4)
C5—H5C0.9600C31—C321.386 (4)
C6—C71.495 (4)C32—C331.377 (4)
C6—H6A0.9600C32—H320.9300
C6—H6B0.9600C33—C341.369 (5)
C6—H6C0.9600C33—H330.9300
C7—C81.352 (4)C34—C351.372 (5)
C8—C91.390 (4)C34—H340.9300
C8—H80.9300C35—C361.376 (4)
C9—C101.487 (4)C35—H350.9300
C10—H10A0.9600C36—H360.9300
C2—N1—N2105.5 (2)C15—C14—H14119.5
C4—N2—N1111.8 (3)C13—C14—H14119.5
C4—N2—H2124.1C14—C15—C16120.2 (3)
N1—N2—H2124.1C14—C15—H15119.9
C7—N3—N4111.4 (3)C16—C15—H15119.9
C7—N3—H3124.3C17—C16—C15118.7 (3)
N4—N3—H3124.3C17—C16—N5116.2 (3)
C9—N4—N3105.6 (3)C15—C16—N5125.1 (3)
N6—N5—C16115.6 (3)C16—C17—C12122.0 (3)
N5—N6—C18114.2 (3)C16—C17—H17119.0
N8—N7—C29114.6 (3)C12—C17—H17119.0
N7—N8—C31113.5 (3)C23—C18—C19119.2 (3)
C11—O1—H1A109.5C23—C18—N6123.5 (3)
C13—O3—H3A109.5C19—C18—N6117.3 (3)
C24—O4—H4A109.5C18—C19—C20120.0 (4)
C26—O6—H6109.5C18—C19—H19120.0
C2—C1—H1B109.5C20—C19—H19120.0
C2—C1—H1C109.5C21—C20—C19120.0 (4)
H1B—C1—H1C109.5C21—C20—H20120.0
C2—C1—H1D109.5C19—C20—H20120.0
H1B—C1—H1D109.5C20—C21—C22119.5 (4)
H1C—C1—H1D109.5C20—C21—H21120.3
N1—C2—C3109.6 (3)C22—C21—H21120.3
N1—C2—C1119.3 (3)C21—C22—C23120.7 (4)
C3—C2—C1131.1 (3)C21—C22—H22119.6
C4—C3—C2106.7 (3)C23—C22—H22119.6
C4—C3—H3B126.6C18—C23—C22120.5 (4)
C2—C3—H3B126.6C18—C23—H23119.7
N2—C4—C3106.3 (3)C22—C23—H23119.7
N2—C4—C5121.4 (3)O5—C24—O4123.6 (3)
C3—C4—C5132.3 (3)O5—C24—C25121.4 (3)
C4—C5—H5A109.5O4—C24—C25115.0 (3)
C4—C5—H5B109.5C30—C25—C26118.6 (3)
H5A—C5—H5B109.5C30—C25—C24121.0 (3)
C4—C5—H5C109.5C26—C25—C24120.3 (3)
H5A—C5—H5C109.5O6—C26—C27117.8 (3)
H5B—C5—H5C109.5O6—C26—C25122.5 (3)
C7—C6—H6A109.5C27—C26—C25119.7 (3)
C7—C6—H6B109.5C28—C27—C26121.0 (3)
H6A—C6—H6B109.5C28—C27—H27119.5
C7—C6—H6C109.5C26—C27—H27119.5
H6A—C6—H6C109.5C27—C28—C29120.0 (3)
H6B—C6—H6C109.5C27—C28—H28120.0
N3—C7—C8106.5 (3)C29—C28—H28120.0
N3—C7—C6121.8 (3)C30—C29—C28119.0 (3)
C8—C7—C6131.7 (3)C30—C29—N7115.7 (3)
C7—C8—C9107.0 (3)C28—C29—N7125.3 (3)
C7—C8—H8126.5C29—C30—C25121.6 (3)
C9—C8—H8126.5C29—C30—H30119.2
N4—C9—C8109.6 (3)C25—C30—H30119.2
N4—C9—C10120.2 (3)C36—C31—C32119.4 (3)
C8—C9—C10130.2 (3)C36—C31—N8115.9 (3)
C9—C10—H10A109.5C32—C31—N8124.8 (3)
C9—C10—H10B109.5C33—C32—C31120.4 (3)
H10A—C10—H10B109.5C33—C32—H32119.8
C9—C10—H10C109.5C31—C32—H32119.8
H10A—C10—H10C109.5C34—C33—C32119.7 (4)
H10B—C10—H10C109.5C34—C33—H33120.1
O2—C11—O1124.0 (3)C32—C33—H33120.1
O2—C11—C12121.9 (3)C33—C34—C35120.2 (3)
O1—C11—C12114.1 (3)C33—C34—H34119.9
C17—C12—C13118.5 (3)C35—C34—H34119.9
C17—C12—C11121.6 (3)C34—C35—C36120.6 (4)
C13—C12—C11119.9 (3)C34—C35—H35119.7
O3—C13—C14118.4 (3)C36—C35—H35119.7
O3—C13—C12122.0 (3)C35—C36—C31119.6 (3)
C14—C13—C12119.6 (3)C35—C36—H36120.2
C15—C14—C13121.1 (3)C31—C36—H36120.2
C2—N1—N2—C40.6 (3)N5—N6—C18—C2313.3 (5)
C7—N3—N4—C90.3 (4)N5—N6—C18—C19166.9 (3)
C16—N5—N6—C18178.9 (3)C23—C18—C19—C200.0 (6)
C29—N7—N8—C31179.7 (2)N6—C18—C19—C20179.9 (3)
N2—N1—C2—C30.3 (3)C18—C19—C20—C210.3 (6)
N2—N1—C2—C1179.6 (3)C19—C20—C21—C221.0 (7)
N1—C2—C3—C40.1 (4)C20—C21—C22—C231.4 (8)
C1—C2—C3—C4180.0 (3)C19—C18—C23—C220.4 (7)
N1—N2—C4—C30.7 (3)N6—C18—C23—C22179.7 (4)
N1—N2—C4—C5179.4 (3)C21—C22—C23—C181.1 (8)
C2—C3—C4—N20.5 (4)O5—C24—C25—C30174.8 (3)
C2—C3—C4—C5179.6 (3)O4—C24—C25—C307.0 (5)
N4—N3—C7—C80.3 (4)O5—C24—C25—C269.7 (5)
N4—N3—C7—C6179.1 (3)O4—C24—C25—C26168.5 (3)
N3—C7—C8—C90.1 (4)C30—C25—C26—O6178.9 (3)
C6—C7—C8—C9178.8 (3)C24—C25—C26—O65.5 (5)
N3—N4—C9—C80.2 (4)C30—C25—C26—C273.1 (5)
N3—N4—C9—C10179.7 (3)C24—C25—C26—C27172.5 (3)
C7—C8—C9—N40.1 (4)O6—C26—C27—C28179.2 (3)
C7—C8—C9—C10179.5 (4)C25—C26—C27—C282.8 (5)
O2—C11—C12—C17179.3 (3)C26—C27—C28—C290.3 (5)
O1—C11—C12—C170.1 (4)C27—C28—C29—C301.8 (5)
O2—C11—C12—C131.1 (5)C27—C28—C29—N7179.5 (3)
O1—C11—C12—C13178.1 (3)N8—N7—C29—C30178.8 (3)
C17—C12—C13—O3179.6 (3)N8—N7—C29—C280.0 (4)
C11—C12—C13—O32.2 (5)C28—C29—C30—C251.4 (5)
C17—C12—C13—C142.0 (5)N7—C29—C30—C25179.7 (3)
C11—C12—C13—C14176.2 (3)C26—C25—C30—C291.0 (5)
O3—C13—C14—C15179.1 (3)C24—C25—C30—C29174.5 (3)
C12—C13—C14—C152.5 (5)N7—N8—C31—C36172.8 (3)
C13—C14—C15—C160.8 (6)N7—N8—C31—C327.7 (4)
C14—C15—C16—C171.3 (5)C36—C31—C32—C331.7 (5)
C14—C15—C16—N5179.4 (3)N8—C31—C32—C33178.8 (3)
N6—N5—C16—C17176.9 (3)C31—C32—C33—C341.3 (6)
N6—N5—C16—C151.2 (5)C32—C33—C34—C350.6 (6)
C15—C16—C17—C121.7 (5)C33—C34—C35—C360.4 (6)
N5—C16—C17—C12180.0 (3)C34—C35—C36—C310.7 (6)
C13—C12—C17—C160.1 (5)C32—C31—C36—C351.4 (5)
C11—C12—C17—C16178.3 (3)N8—C31—C36—C35179.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C31–C36 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O6—H6···O2i0.822.433.019 (3)129
O6—H6···O50.821.892.605 (3)145
O4—H4A···N4ii0.821.752.564 (3)169
O3—H3A···O5iii0.822.453.019 (3)128
O3—H3A···O20.821.852.574 (3)147
O1—H1A···N1iv0.821.752.565 (3)171
N3—H3···O3v0.862.173.008 (3)165
N2—H2···O6vi0.862.153.002 (3)170
C1—H1D···Cg1vii0.962.753.677 (4)164
C5—H5B···Cg2vii0.962.963.840 (4)153
Symmetry codes: (i) x, y1, z1; (ii) x+2, y+1, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x+2, y+2, z+1; (vi) x, y+1, z; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H8N2·C13H10N2O3
Mr338.36
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.4871 (11), 12.4746 (13), 13.2235 (16)
α, β, γ (°)86.650 (2), 67.540 (1), 77.715 (1)
V3)1710.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.28 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.970, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8928, 5945, 2614
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.159, 0.99
No. of reflections5945
No. of parameters455
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C31–C36 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O6—H6···O2i0.822.433.019 (3)129.1
O6—H6···O50.821.892.605 (3)145.4
O4—H4A···N4ii0.821.752.564 (3)168.8
O3—H3A···O5iii0.822.453.019 (3)127.8
O3—H3A···O20.821.852.574 (3)146.5
O1—H1A···N1iv0.821.752.565 (3)170.7
N3—H3···O3v0.862.173.008 (3)165.4
N2—H2···O6vi0.862.153.002 (3)170.1
C1—H1D···Cg1vii0.962.753.677 (4)164
C5—H5B···Cg2vii0.962.963.840 (4)153
Symmetry codes: (i) x, y1, z1; (ii) x+2, y+1, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x+2, y+2, z+1; (vi) x, y+1, z; (vii) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by the Education Office Foundation of ZheJiang Province (project No. Y201017321) and the innovation project of ZheJiang A & F University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiswas, C., Drew, M. G. B., Escudero, D., Frontera, A. & Ghosh, A. (2009). Eur. J. Inorg. Chem. pp. 2238–2246.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJin, S. W., Zhang, W. B., Liu, L., Gao, H. F., Wang, D. Q., Chen, R. P. & Xu, X. L. (2010). J. Mol. Struct. 975, 128–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationLam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657–6665.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Zhong, F., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 173–182.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds