metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1276-m1277

catena-Poly[[tri­phenyl­tin(IV)]-μ-5-amino-2-nitro­benzoato-κ2O1:O1′]

aDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Perak Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 August 2011; accepted 16 August 2011; online 27 August 2011)

The title compound, [Sn(C6H5)3(C7H5N2O4)]n, forms polymeric chains along [010]. The SnIV ion is five-coordinated in a distorted trigonal–bipyramidal geometry by two monodentate carboxyl­ate groups and three phenyl rings. The axial sites are occupied by the O atoms of two symmetry-related carboxyl­ate groups [O—Sn—O = 170.88 (3)°]. The benzene ring of the 5-amino-2-nitro­benzoate ligand forms dihedral angles of 82.92 (6), 81.10 (6) and 83.54 (6)° with respect to the three phenyl rings. In the crystal, the chains are linked by inter­molecular N—H⋯O and weak C—H⋯O inter­actions into a three-dimensional network. The crystal structure is further stabilized by weak inter­molecular C—H⋯π inter­actions.

Related literature

For general background to and the coordination environment of triphenyl­tin(IV) carboxyl­ate complexes, see: Yeap & Teoh (2003[Yeap, L.-L. & Teoh, S.-G. (2003). J. Coord. Chem. 56, 701-708.]); Win et al. (2006[Win, Y. F., Guan, T. S. & Yamin, B. M. (2006). Acta Cryst. E62, m34-m36.], 2008[Win, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, m1530-m1531.], 2011a[Win, Y.-F., Choong, C.-S., Ha, S.-T., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, m535.],b[Win, Y.-F., Choong, C.-S., Heng, M.-H., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, m561-m562.],c[Win, Y.-F., Choong, C.-S., Teoh, S. G., Quah, C. K. & Fun, H.-K. (2011c). Acta Cryst. E67, m1270-m1271.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C7H5N2O4)]

  • Mr = 531.12

  • Monoclinic, P 21 /c

  • a = 10.9752 (1) Å

  • b = 11.8342 (1) Å

  • c = 17.4160 (2) Å

  • β = 102.164 (1)°

  • V = 2211.25 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 100 K

  • 0.37 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.671, Tmax = 0.783

  • 27219 measured reflections

  • 7981 independent reflections

  • 7370 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.046

  • S = 1.07

  • 7981 reflections

  • 297 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N1⋯O1i 0.85 (2) 2.498 (19) 3.0619 (14) 124.3 (15)
C5—H5A⋯O4ii 0.95 2.40 3.3288 (16) 167
C3—H3ACg2iii 0.95 2.58 3.4430 (14) 152
C21—H21ACg1iv 0.95 2.70 3.4669 (12) 138
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Generally, the tin(IV) atom moiety of triphenyltin(IV) carboxylate complexes could existed as four- or five-coordinated depending on the coordination manner of the carboxylate anions and the coordinating solvent (Yeap and Teoh, 2003; Win et al., 2006; 2008; 2011a,b,c). In this study, the title complex is found to be similar to the reported structure of (2-amino-5-nitrobenzoato)triphenyltin(IV) (Win et al., 2006) except that the amino group is substituted at meta-position and the nitro group is substituted at ortho-position to the benzoate group.

The asymmetric unit of the title compound is shown in Fig. 1. The overall structure consists of polymeric one-dimensional chains along [010] (Fig. 2). The Sn1 atom is five-coordinate, with a distorted trigonal-bipyramidal coordination geometry, formed by two monodentate symmetry related carboxylate groups and three phenyl rings. The axial sites are occupied by the O atoms of the two carboxylate groups [O1-Sn1-O2i = 170.88 (3)°, symmetry code: (i) 2-x,-1/2+y,1/2-z], with the three phenyl rings occupying the equatorial plane. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The benzene ring (C20-C25) of the 5-amino-2-nitrobenzoato ligand makes dihedral angles of 82.92 (6), 81.10 (6) and 83.54 (6)° with respect to the three phenyl rings (C1-C6, C7-C12 and C13-C18).

In the crystal (Fig. 3), the polymeric one-dimensional chains are linked by intermolecular N1–H2N1···O1iii and weak C5–H5A···O4iv interactions into a three-dimensional network. The crystal structure is further consolidated by C21–H21A···Cg1ii and C3–H3A···Cg2v (Table 1) interactions, where Cg1 and Cg2 are the centroids of C1-C6 and C7-C12 phenyl rings, repectively.

Related literature top

For general background to and the coordination environment of triphenyltin(IV) carboxylate complexes, see: Yeap & Teoh (2003); Win et al. (2006, 2008, 2011a,b,c). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title complex was obtained by heating under reflux a 1:1 molar mixture of triphenyltin(IV) hydroxide (0.73 g, 2 mmol) and 5-amino-2-nitrobenzoic acid (0.36 g, 2 mmol) in methanol (50 ml) for 3 h. A clear yellow transparent solution was separated by filtration and kept in a bottle. After a few days, yellow crystals (0.48 g, 89.0 % yield) were collected. Melting point: 442-443 K. Analysis for C25H20N2O4Sn: C, 55.89; H, 3.84; N, 5.14 %. Calculated for C25H20N2O4Sn: C, 56.53; H, 3.80; N, 5.27 %.

Refinement top

Atoms H1N1 and H2N1 were located from the difference Fourier map and refined freely [N1–H = 0.852 (18) and 0.853 (19) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 0.67 Å from atom C25 and the deepest hole is located at 0.71 Å from atom Sn1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The polymeric structure of the title compound, viewed along the c axis, showing one-dimensional chains along [010].
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
catena-Poly[[triphenyltin(IV)]-µ-5-amino-2-nitrobenzoato- κ2O1:O1'] top
Crystal data top
[Sn(C6H5)3(C7H5N2O4)]F(000) = 1064
Mr = 531.12Dx = 1.595 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9281 reflections
a = 10.9752 (1) Åθ = 2.4–32.7°
b = 11.8342 (1) ŵ = 1.19 mm1
c = 17.4160 (2) ÅT = 100 K
β = 102.164 (1)°Block, yellow
V = 2211.25 (4) Å30.37 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7981 independent reflections
Radiation source: fine-focus sealed tube7370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 32.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.671, Tmax = 0.783k = 1715
27219 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0187P)2 + 0.9636P]
where P = (Fo2 + 2Fc2)/3
7981 reflections(Δ/σ)max = 0.003
297 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Sn(C6H5)3(C7H5N2O4)]V = 2211.25 (4) Å3
Mr = 531.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9752 (1) ŵ = 1.19 mm1
b = 11.8342 (1) ÅT = 100 K
c = 17.4160 (2) Å0.37 × 0.25 × 0.22 mm
β = 102.164 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7981 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7370 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.783Rint = 0.017
27219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.51 e Å3
7981 reflectionsΔρmin = 0.54 e Å3
297 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.980205 (6)0.157183 (6)0.217102 (4)0.01124 (2)
O10.93081 (8)0.32432 (7)0.16122 (5)0.01487 (14)
O20.97650 (7)0.46996 (7)0.24440 (4)0.01352 (14)
O30.70740 (8)0.38800 (8)0.21137 (5)0.02102 (17)
O40.53208 (8)0.43580 (10)0.13585 (6)0.0329 (2)
N10.89051 (11)0.67399 (10)0.04786 (6)0.0218 (2)
N20.64692 (9)0.43960 (9)0.15452 (6)0.01829 (18)
C10.87574 (10)0.17504 (9)0.30535 (6)0.01377 (18)
C20.89877 (11)0.25962 (10)0.36218 (7)0.0193 (2)
H2A0.95970.31580.35990.023*
C30.83296 (13)0.26235 (12)0.42251 (7)0.0243 (2)
H3A0.84960.31990.46130.029*
C40.74309 (12)0.18074 (12)0.42582 (7)0.0247 (2)
H4A0.69880.18230.46720.030*
C50.71792 (11)0.09704 (12)0.36888 (7)0.0224 (2)
H5A0.65570.04190.37080.027*
C60.78424 (10)0.09427 (10)0.30890 (7)0.0176 (2)
H6A0.76700.03680.27000.021*
C70.86334 (10)0.08532 (9)0.11625 (6)0.01378 (18)
C80.73920 (10)0.12127 (11)0.09743 (7)0.0191 (2)
H8A0.71180.17960.12720.023*
C90.65528 (12)0.07180 (14)0.03508 (7)0.0276 (3)
H9A0.57120.09690.02220.033*
C100.69493 (13)0.01430 (14)0.00817 (8)0.0293 (3)
H10A0.63750.04860.05020.035*
C110.81737 (14)0.05009 (11)0.00968 (7)0.0257 (3)
H11A0.84420.10890.02000.031*
C120.90166 (12)0.00017 (10)0.07139 (7)0.0186 (2)
H12A0.98610.02390.08300.022*
C131.17373 (10)0.19205 (10)0.23296 (6)0.01591 (19)
C141.25426 (11)0.11915 (12)0.20473 (7)0.0212 (2)
H14A1.22240.05270.17700.025*
C151.38145 (12)0.14349 (14)0.21712 (8)0.0290 (3)
H15A1.43560.09380.19740.035*
C161.42905 (12)0.23968 (14)0.25801 (10)0.0352 (4)
H16A1.51550.25610.26610.042*
C171.34983 (13)0.31200 (13)0.28711 (12)0.0383 (4)
H17A1.38250.37740.31580.046*
C181.22256 (11)0.28880 (11)0.27429 (9)0.0271 (3)
H18A1.16870.33910.29380.032*
C190.92115 (9)0.42633 (9)0.18082 (6)0.01185 (17)
C200.84255 (9)0.49904 (9)0.11779 (6)0.01259 (17)
C210.90148 (10)0.55602 (9)0.06630 (6)0.01415 (18)
H21A0.98950.55120.07300.017*
C220.83273 (11)0.62117 (10)0.00411 (6)0.01612 (19)
C230.70317 (11)0.63147 (11)0.00281 (7)0.0196 (2)
H23A0.65620.67840.04250.024*
C240.64407 (10)0.57407 (11)0.04748 (7)0.0194 (2)
H24A0.55640.58060.04200.023*
C250.71282 (10)0.50604 (10)0.10674 (6)0.01502 (19)
H1N10.8472 (16)0.6975 (16)0.0914 (11)0.028 (4)*
H2N10.9684 (18)0.6650 (15)0.0455 (11)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01332 (3)0.00974 (4)0.01053 (3)0.00065 (2)0.00225 (2)0.00024 (2)
O10.0199 (3)0.0093 (4)0.0152 (3)0.0003 (3)0.0032 (3)0.0005 (3)
O20.0169 (3)0.0107 (4)0.0122 (3)0.0003 (3)0.0013 (2)0.0001 (3)
O30.0179 (4)0.0240 (5)0.0210 (4)0.0006 (3)0.0037 (3)0.0069 (3)
O40.0126 (4)0.0446 (7)0.0399 (5)0.0017 (4)0.0019 (4)0.0139 (5)
N10.0300 (5)0.0202 (5)0.0158 (4)0.0032 (4)0.0060 (4)0.0064 (4)
N20.0147 (4)0.0192 (5)0.0207 (4)0.0001 (3)0.0032 (3)0.0007 (4)
C10.0163 (4)0.0126 (5)0.0127 (4)0.0008 (3)0.0035 (3)0.0008 (3)
C20.0264 (5)0.0143 (5)0.0187 (5)0.0024 (4)0.0080 (4)0.0027 (4)
C30.0340 (6)0.0220 (6)0.0194 (5)0.0012 (5)0.0109 (5)0.0050 (4)
C40.0279 (6)0.0298 (7)0.0198 (5)0.0035 (5)0.0125 (4)0.0028 (5)
C50.0205 (5)0.0256 (6)0.0225 (5)0.0029 (4)0.0076 (4)0.0041 (5)
C60.0179 (4)0.0177 (5)0.0169 (5)0.0020 (4)0.0033 (4)0.0007 (4)
C70.0180 (4)0.0110 (5)0.0121 (4)0.0022 (4)0.0025 (3)0.0001 (3)
C80.0170 (4)0.0239 (6)0.0164 (5)0.0026 (4)0.0037 (4)0.0024 (4)
C90.0190 (5)0.0422 (8)0.0203 (5)0.0086 (5)0.0014 (4)0.0037 (5)
C100.0326 (6)0.0358 (8)0.0186 (5)0.0178 (6)0.0030 (5)0.0081 (5)
C110.0426 (7)0.0173 (6)0.0176 (5)0.0072 (5)0.0075 (5)0.0059 (4)
C120.0282 (5)0.0120 (5)0.0155 (5)0.0010 (4)0.0041 (4)0.0004 (4)
C130.0152 (4)0.0144 (5)0.0174 (5)0.0005 (4)0.0019 (3)0.0052 (4)
C140.0192 (5)0.0284 (7)0.0166 (5)0.0016 (4)0.0052 (4)0.0017 (4)
C150.0184 (5)0.0444 (9)0.0259 (6)0.0052 (5)0.0082 (4)0.0084 (6)
C160.0165 (5)0.0367 (9)0.0500 (9)0.0036 (5)0.0012 (5)0.0195 (7)
C170.0202 (6)0.0196 (7)0.0683 (11)0.0053 (5)0.0064 (6)0.0053 (7)
C180.0180 (5)0.0140 (6)0.0453 (8)0.0004 (4)0.0020 (5)0.0000 (5)
C190.0123 (4)0.0114 (5)0.0124 (4)0.0002 (3)0.0039 (3)0.0015 (3)
C200.0154 (4)0.0096 (5)0.0120 (4)0.0007 (3)0.0013 (3)0.0010 (3)
C210.0175 (4)0.0120 (5)0.0126 (4)0.0011 (4)0.0023 (3)0.0004 (3)
C220.0231 (5)0.0122 (5)0.0125 (4)0.0012 (4)0.0025 (4)0.0000 (4)
C230.0221 (5)0.0173 (5)0.0170 (5)0.0038 (4)0.0017 (4)0.0031 (4)
C240.0163 (4)0.0194 (6)0.0202 (5)0.0030 (4)0.0012 (4)0.0016 (4)
C250.0154 (4)0.0137 (5)0.0152 (4)0.0002 (4)0.0016 (3)0.0003 (4)
Geometric parameters (Å, º) top
Sn1—C12.1129 (11)C9—C101.390 (2)
Sn1—C72.1222 (10)C9—H9A0.9500
Sn1—C132.1239 (11)C10—C111.381 (2)
Sn1—O12.2205 (8)C10—H10A0.9500
Sn1—O2i2.3345 (8)C11—C121.3949 (17)
O1—C191.2651 (13)C11—H11A0.9500
O2—C191.2563 (12)C12—H12A0.9500
O2—Sn1ii2.3345 (8)C13—C141.3965 (17)
O3—N21.2315 (13)C13—C181.3978 (18)
O4—N21.2344 (12)C14—C151.3968 (17)
N1—C221.3616 (15)C14—H14A0.9500
N1—H1N10.852 (18)C15—C161.385 (2)
N1—H2N10.853 (19)C15—H15A0.9500
N2—C251.4447 (15)C16—C171.390 (2)
C1—C21.3928 (16)C16—H16A0.9500
C1—C61.3972 (16)C17—C181.3947 (18)
C2—C31.3952 (17)C17—H17A0.9500
C2—H2A0.9500C18—H18A0.9500
C3—C41.390 (2)C19—C201.5135 (14)
C3—H3A0.9500C20—C211.3862 (15)
C4—C51.3876 (19)C20—C251.3984 (14)
C4—H4A0.9500C21—C221.4116 (15)
C5—C61.3937 (16)C21—H21A0.9500
C5—H5A0.9500C22—C231.4068 (16)
C6—H6A0.9500C23—C241.3742 (17)
C7—C121.3933 (16)C23—H23A0.9500
C7—C81.3988 (15)C24—C251.3982 (15)
C8—C91.3960 (16)C24—H24A0.9500
C8—H8A0.9500
C1—Sn1—C7108.43 (4)C9—C10—H10A119.9
C1—Sn1—C13124.55 (4)C10—C11—C12119.92 (12)
C7—Sn1—C13126.79 (4)C10—C11—H11A120.0
C1—Sn1—O196.31 (4)C12—C11—H11A120.0
C7—Sn1—O186.85 (4)C7—C12—C11120.73 (11)
C13—Sn1—O191.67 (4)C7—C12—H12A119.6
C1—Sn1—O2i89.71 (4)C11—C12—H12A119.6
C7—Sn1—O2i84.74 (3)C14—C13—C18119.01 (11)
C13—Sn1—O2i90.55 (4)C14—C13—Sn1121.60 (9)
O1—Sn1—O2i170.88 (3)C18—C13—Sn1119.37 (9)
C19—O1—Sn1139.32 (7)C13—C14—C15120.28 (13)
C19—O2—Sn1ii132.42 (7)C13—C14—H14A119.9
C22—N1—H1N1119.4 (12)C15—C14—H14A119.9
C22—N1—H2N1120.9 (13)C16—C15—C14120.35 (13)
H1N1—N1—H2N1116.6 (17)C16—C15—H15A119.8
O3—N2—O4122.76 (11)C14—C15—H15A119.8
O3—N2—C25118.84 (9)C15—C16—C17119.76 (12)
O4—N2—C25118.39 (10)C15—C16—H16A120.1
C2—C1—C6119.00 (10)C17—C16—H16A120.1
C2—C1—Sn1122.94 (8)C16—C17—C18120.20 (15)
C6—C1—Sn1117.97 (8)C16—C17—H17A119.9
C1—C2—C3120.43 (11)C18—C17—H17A119.9
C1—C2—H2A119.8C17—C18—C13120.40 (14)
C3—C2—H2A119.8C17—C18—H18A119.8
C4—C3—C2119.97 (12)C13—C18—H18A119.8
C4—C3—H3A120.0O2—C19—O1125.29 (10)
C2—C3—H3A120.0O2—C19—C20120.10 (10)
C5—C4—C3120.16 (11)O1—C19—C20114.46 (9)
C5—C4—H4A119.9C21—C20—C25118.85 (9)
C3—C4—H4A119.9C21—C20—C19118.26 (9)
C4—C5—C6119.71 (12)C25—C20—C19122.80 (9)
C4—C5—H5A120.1C20—C21—C22121.02 (10)
C6—C5—H5A120.1C20—C21—H21A119.5
C5—C6—C1120.71 (11)C22—C21—H21A119.5
C5—C6—H6A119.6N1—C22—C23120.48 (11)
C1—C6—H6A119.6N1—C22—C21120.82 (11)
C12—C7—C8118.86 (10)C23—C22—C21118.70 (10)
C12—C7—Sn1123.56 (8)C24—C23—C22120.46 (10)
C8—C7—Sn1117.46 (8)C24—C23—H23A119.8
C9—C8—C7120.34 (12)C22—C23—H23A119.8
C9—C8—H8A119.8C23—C24—C25120.09 (10)
C7—C8—H8A119.8C23—C24—H24A120.0
C10—C9—C8119.88 (12)C25—C24—H24A120.0
C10—C9—H9A120.1C24—C25—C20120.74 (10)
C8—C9—H9A120.1C24—C25—N2118.73 (10)
C11—C10—C9120.25 (11)C20—C25—N2120.48 (9)
C11—C10—H10A119.9
C1—Sn1—O1—C1944.23 (11)O2i—Sn1—C13—C1445.61 (9)
C7—Sn1—O1—C19152.44 (11)C1—Sn1—C13—C1842.79 (11)
C13—Sn1—O1—C1980.80 (11)C7—Sn1—C13—C18143.36 (9)
C7—Sn1—C1—C2150.32 (9)O1—Sn1—C13—C1856.05 (10)
C13—Sn1—C1—C234.87 (11)O2i—Sn1—C13—C18132.81 (10)
O1—Sn1—C1—C261.55 (10)C18—C13—C14—C150.60 (18)
O2i—Sn1—C1—C2125.33 (9)Sn1—C13—C14—C15179.01 (9)
C7—Sn1—C1—C633.28 (10)C13—C14—C15—C160.5 (2)
C13—Sn1—C1—C6141.54 (8)C14—C15—C16—C170.3 (2)
O1—Sn1—C1—C6122.05 (8)C15—C16—C17—C180.9 (2)
O2i—Sn1—C1—C651.08 (9)C16—C17—C18—C130.8 (2)
C6—C1—C2—C31.14 (17)C14—C13—C18—C170.0 (2)
Sn1—C1—C2—C3175.23 (9)Sn1—C13—C18—C17178.42 (12)
C1—C2—C3—C40.5 (2)Sn1ii—O2—C19—O1161.05 (8)
C2—C3—C4—C50.5 (2)Sn1ii—O2—C19—C2014.22 (14)
C3—C4—C5—C60.8 (2)Sn1—O1—C19—O223.95 (17)
C4—C5—C6—C10.13 (18)Sn1—O1—C19—C20160.54 (8)
C2—C1—C6—C50.84 (17)O2—C19—C20—C2184.57 (13)
Sn1—C1—C6—C5175.71 (9)O1—C19—C20—C2191.18 (12)
C1—Sn1—C7—C12137.16 (9)O2—C19—C20—C2599.06 (12)
C13—Sn1—C7—C1237.51 (11)O1—C19—C20—C2585.18 (13)
O1—Sn1—C7—C12127.23 (10)C25—C20—C21—C220.66 (16)
O2i—Sn1—C7—C1249.23 (9)C19—C20—C21—C22177.17 (10)
C1—Sn1—C7—C838.72 (10)C20—C21—C22—N1177.84 (11)
C13—Sn1—C7—C8146.61 (8)C20—C21—C22—C232.76 (17)
O1—Sn1—C7—C856.89 (9)N1—C22—C23—C24177.06 (12)
O2i—Sn1—C7—C8126.65 (9)C21—C22—C23—C243.54 (18)
C12—C7—C8—C90.47 (18)C22—C23—C24—C250.88 (19)
Sn1—C7—C8—C9175.60 (10)C23—C24—C25—C202.66 (18)
C7—C8—C9—C100.5 (2)C23—C24—C25—N2175.00 (11)
C8—C9—C10—C110.8 (2)C21—C20—C25—C243.40 (16)
C9—C10—C11—C120.1 (2)C19—C20—C25—C24179.75 (10)
C8—C7—C12—C111.23 (17)C21—C20—C25—N2174.21 (10)
Sn1—C7—C12—C11174.60 (9)C19—C20—C25—N22.13 (16)
C10—C11—C12—C70.96 (19)O3—N2—C25—C24173.22 (11)
C1—Sn1—C13—C14135.63 (9)O4—N2—C25—C247.77 (17)
C7—Sn1—C13—C1438.23 (11)O3—N2—C25—C209.12 (16)
O1—Sn1—C13—C14125.54 (9)O4—N2—C25—C20169.90 (11)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H2N1···O1iii0.85 (2)2.498 (19)3.0619 (14)124.3 (15)
C5—H5A···O4iv0.952.403.3288 (16)167
C3—H3A···Cg2v0.952.583.4430 (14)152
C21—H21A···Cg1ii0.952.703.4669 (12)138
Symmetry codes: (ii) x+2, y+1/2, z+1/2; (iii) x+2, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C7H5N2O4)]
Mr531.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.9752 (1), 11.8342 (1), 17.4160 (2)
β (°) 102.164 (1)
V3)2211.25 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.37 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.671, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
27219, 7981, 7370
Rint0.017
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.046, 1.07
No. of reflections7981
No. of parameters297
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H2N1···O1i0.85 (2)2.498 (19)3.0619 (14)124.3 (15)
C5—H5A···O4ii0.952.403.3288 (16)167
C3—H3A···Cg2iii0.952.583.4430 (14)152
C21—H21A···Cg1iv0.952.703.4669 (12)138
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z1/2; (iv) x+2, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors would like to thank Universiti Tunku Abdul Rahman (UTAR) for the UTAR Research Fund (project No. IPSR/RMC/UTARRF/C1–C11/C07) and Universiti Sains Malaysia (USM) for providing research facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWin, Y.-F., Choong, C.-S., Ha, S.-T., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, m535.  CrossRef IUCr Journals Google Scholar
First citationWin, Y.-F., Choong, C.-S., Heng, M.-H., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, m561–m562.  CrossRef IUCr Journals Google Scholar
First citationWin, Y.-F., Choong, C.-S., Teoh, S. G., Quah, C. K. & Fun, H.-K. (2011c). Acta Cryst. E67, m1270–m1271.  CrossRef IUCr Journals Google Scholar
First citationWin, Y. F., Guan, T. S. & Yamin, B. M. (2006). Acta Cryst. E62, m34–m36.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWin, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, m1530–m1531.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYeap, L.-L. & Teoh, S.-G. (2003). J. Coord. Chem. 56, 701–708.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1276-m1277
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds