organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Spiro­[cyclo­propane-1,3′-indolin]-2′-one

aCollege of Science, Northwest A&F University, Yangling 712100, Shannxi Province, People's Republic of China
*Correspondence e-mail: yuanms@nwsuaf.edu.cn

(Received 16 August 2011; accepted 20 August 2011; online 27 August 2011)

In the title mol­ecule, C10H9NO, the dihedral angle between the mean plane of the cyclo­propane ring and the essentially planar [maximum deviation = 0.032 (2) Å] indole ring system is 87.65 (17)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into one-dimensional chains along [100].

Related literature

For the applications of indoline-2-one and its derivatives, see: Wang et al. (2011[Wang, S. B., Zhao, Y. F., Zhang, G. G., Lv, Y. X., Zhang, N. & Gong, P. (2011). Eur. J. Med. Chem. 8, 3509-3518.]); Ji et al. (2010[Ji, L., Fang, Q., Yuan, M. S., Liu, Z. Q., Shen, Y. S. & Chen, H. F. (2010). Org. Lett. 12, 5192-5195.]). For a related structure, see: Yong et al. (2007[Yong, S. R., Ung, A. T., Pyne, S. G., Skelton, B. W. & White, A. H. (2007). Tetrahedron, 63, 1191-1199.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO

  • Mr = 159.18

  • Orthorhombic, P b c a

  • a = 7.4348 (6) Å

  • b = 14.0589 (11) Å

  • c = 15.6401 (16) Å

  • V = 1634.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.50 × 0.45 × 0.42 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.965

  • 7724 measured reflections

  • 1442 independent reflections

  • 1024 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.106

  • S = 1.09

  • 1442 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.00 2.855 (2) 170
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Indoline-2-one and its derivatives have been widely explored as materials for the synthesis of antitumor agents (Wang et al., 2011). Indoline-2-one may also be used as a precursor for synthesizing organic luminescent molecules because of its perfect conformation (Ji et al., 2010). In the course of exploring new electro-optic compounds, we obtained the title compound compound and the crystal structure is reported herein.

The title compound is a spiro-compound and has two substituent ring systems, an indoline-2-one ring and a cyclopropane ring which share the sprio atom C2 (Fig. 1). The dihedral angle between the two rings is 87.65 (17)°. The crystal structure of a similar compound ethyl(1'R,2'R)-2-oxo-1,2-dihydrospiro (cyclopropane-1',3-indole)-2'-carboxylate has been published (Yong et al. 2007). In the crystal, intermolecular N—H···O hydrogen bonds link molecules into one-dimensional chains along [100] (Fig. 2).

Related literature top

For the applications of indoline-2-one and its derivatives, see: Wang et al. (2011); Ji et al. (2010). For a related structure, see: Yong et al. (2007).

Experimental top

Indolin-2-one (0.50 g, 3.76 mmol) was dissolved in THF (20 mL) and KOH (0.80 g, 14.3 mmol) was slowly added. After heating the stirred mixture at reflux temperature for 30 min, a solution of 1,2-dibromoethane (1.00 g, 5.35 mmol) in THF was slowly added and the refluxing continued for 2 h. The mixture was then cooled to 333 K and poured into water (200 mL) and was extracted with chloroform and dried over Na2SO4. After removing the solvent, the crude product was purified by column chromatography on silica gel, affording the title compound (yield: 0.18 g, 30%). The compound was then dissolved in THF, and colorless crystals were formed on slow evaporation at room temperature over one week.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93-0.97 Å and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Spiro[cyclopropane-1,3'-indolin]-2'-one top
Crystal data top
C10H9NOF(000) = 672
Mr = 159.18Dx = 1.294 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2492 reflections
a = 7.4348 (6) Åθ = 2.9–26.3°
b = 14.0589 (11) ŵ = 0.09 mm1
c = 15.6401 (16) ÅT = 298 K
V = 1634.8 (2) Å3Block, colorless
Z = 80.50 × 0.45 × 0.42 mm
Data collection top
Bruker SMART CCD
diffractometer
1442 independent reflections
Radiation source: fine-focus sealed tube1024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 85
Tmin = 0.959, Tmax = 0.965k = 1616
7724 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.039P)2 + 0.514P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1442 reflectionsΔρmax = 0.15 e Å3
110 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (3)
Crystal data top
C10H9NOV = 1634.8 (2) Å3
Mr = 159.18Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.4348 (6) ŵ = 0.09 mm1
b = 14.0589 (11) ÅT = 298 K
c = 15.6401 (16) Å0.50 × 0.45 × 0.42 mm
Data collection top
Bruker SMART CCD
diffractometer
1442 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1024 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.965Rint = 0.033
7724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.09Δρmax = 0.15 e Å3
1442 reflectionsΔρmin = 0.11 e Å3
110 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.59216 (19)0.65349 (11)0.54786 (9)0.0505 (4)
H10.67120.67980.51540.061*
O10.38643 (18)0.77529 (9)0.55038 (10)0.0683 (5)
C10.4374 (2)0.69564 (13)0.57235 (12)0.0485 (5)
C20.3453 (2)0.62839 (13)0.63111 (11)0.0457 (5)
C30.4605 (2)0.54356 (12)0.63342 (11)0.0445 (5)
C40.6083 (2)0.56211 (12)0.58160 (11)0.0440 (4)
C50.7419 (3)0.49602 (16)0.56891 (13)0.0617 (6)
H50.84030.50910.53410.074*
C60.7245 (4)0.40906 (16)0.60998 (17)0.0771 (7)
H60.81310.36300.60290.092*
C70.5787 (4)0.38995 (16)0.66098 (17)0.0797 (8)
H70.56970.33110.68770.096*
C80.4454 (3)0.45660 (14)0.67318 (14)0.0651 (6)
H80.34680.44310.70770.078*
C90.1417 (2)0.62741 (16)0.63580 (14)0.0625 (6)
H9A0.07650.67040.59850.075*
H9B0.08310.56680.64560.075*
C100.2446 (3)0.66937 (17)0.70712 (13)0.0663 (6)
H10A0.24900.63430.76050.080*
H10B0.24240.73800.71340.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0398 (8)0.0637 (10)0.0481 (9)0.0077 (7)0.0010 (7)0.0114 (7)
O10.0568 (9)0.0588 (9)0.0892 (11)0.0017 (7)0.0157 (8)0.0200 (8)
C10.0412 (10)0.0541 (11)0.0502 (11)0.0046 (8)0.0123 (8)0.0059 (9)
C20.0391 (10)0.0552 (11)0.0429 (10)0.0060 (8)0.0023 (8)0.0017 (8)
C30.0453 (10)0.0490 (10)0.0394 (10)0.0077 (8)0.0089 (8)0.0019 (8)
C40.0402 (9)0.0532 (10)0.0386 (9)0.0024 (8)0.0092 (8)0.0033 (8)
C50.0459 (11)0.0789 (14)0.0602 (13)0.0048 (10)0.0129 (9)0.0202 (11)
C60.0754 (16)0.0609 (14)0.0949 (18)0.0185 (12)0.0395 (15)0.0222 (13)
C70.0890 (19)0.0562 (13)0.0939 (18)0.0028 (13)0.0356 (16)0.0110 (12)
C80.0685 (14)0.0618 (13)0.0651 (14)0.0127 (11)0.0119 (11)0.0146 (11)
C90.0403 (11)0.0805 (14)0.0668 (14)0.0067 (9)0.0014 (10)0.0049 (11)
C100.0555 (12)0.0875 (15)0.0558 (12)0.0020 (11)0.0062 (10)0.0075 (11)
Geometric parameters (Å, º) top
N1—C11.350 (2)C5—H50.9300
N1—C41.394 (2)C6—C71.373 (4)
N1—H10.8600C6—H60.9300
O1—C11.231 (2)C7—C81.377 (3)
C1—C21.486 (2)C7—H70.9300
C2—C31.469 (2)C8—H80.9300
C2—C91.515 (3)C9—C101.476 (3)
C2—C101.518 (3)C9—H9A0.9700
C3—C81.376 (2)C9—H9B0.9700
C3—C41.390 (2)C10—H10A0.9700
C4—C51.375 (3)C10—H10B0.9700
C5—C61.387 (3)
C1—N1—C4111.75 (15)C7—C6—C5121.0 (2)
C1—N1—H1124.1C7—C6—H6119.5
C4—N1—H1124.1C5—C6—H6119.5
O1—C1—N1125.62 (18)C6—C7—C8121.1 (2)
O1—C1—C2127.56 (18)C6—C7—H7119.5
N1—C1—C2106.81 (15)C8—C7—H7119.5
C3—C2—C1105.25 (15)C3—C8—C7118.9 (2)
C3—C2—C9125.03 (17)C3—C8—H8120.6
C1—C2—C9119.74 (16)C7—C8—H8120.6
C3—C2—C10125.19 (17)C10—C9—C260.99 (13)
C1—C2—C10118.04 (16)C10—C9—H9A117.7
C9—C2—C1058.22 (13)C2—C9—H9A117.7
C8—C3—C4119.65 (18)C10—C9—H9B117.7
C8—C3—C2133.21 (18)C2—C9—H9B117.7
C4—C3—C2107.12 (15)H9A—C9—H9B114.8
C5—C4—C3121.91 (18)C9—C10—C260.79 (13)
C5—C4—N1129.09 (18)C9—C10—H10A117.7
C3—C4—N1109.00 (15)C2—C10—H10A117.7
C4—C5—C6117.5 (2)C9—C10—H10B117.7
C4—C5—H5121.3C2—C10—H10B117.7
C6—C5—H5121.3H10A—C10—H10B114.8
C4—N1—C1—O1178.13 (17)C8—C3—C4—N1179.15 (16)
C4—N1—C1—C22.87 (19)C2—C3—C4—N10.42 (18)
O1—C1—C2—C3178.55 (18)C1—N1—C4—C5177.34 (17)
N1—C1—C2—C32.47 (18)C1—N1—C4—C32.14 (19)
O1—C1—C2—C931.3 (3)C3—C4—C5—C60.0 (3)
N1—C1—C2—C9149.71 (17)N1—C4—C5—C6179.43 (17)
O1—C1—C2—C1036.2 (3)C4—C5—C6—C70.3 (3)
N1—C1—C2—C10142.81 (16)C5—C6—C7—C80.2 (3)
C1—C2—C3—C8177.26 (19)C4—C3—C8—C70.5 (3)
C9—C2—C3—C832.3 (3)C2—C3—C8—C7178.80 (19)
C10—C2—C3—C840.7 (3)C6—C7—C8—C30.2 (3)
C1—C2—C3—C41.23 (18)C3—C2—C9—C10113.2 (2)
C9—C2—C3—C4146.22 (18)C1—C2—C9—C10106.4 (2)
C10—C2—C3—C4140.81 (17)C3—C2—C10—C9112.9 (2)
C8—C3—C4—C50.4 (3)C1—C2—C10—C9109.34 (19)
C2—C3—C4—C5179.11 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.002.855 (2)170
Symmetry code: (i) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H9NO
Mr159.18
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)7.4348 (6), 14.0589 (11), 15.6401 (16)
V3)1634.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.45 × 0.42
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
7724, 1442, 1024
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.106, 1.09
No. of reflections1442
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.11

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.002.855 (2)170
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

Financial support from the PhD Programs Foundation of the Ministry of Education of China (grant No. 20090204120033) is gratefully acknowledged.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJi, L., Fang, Q., Yuan, M. S., Liu, Z. Q., Shen, Y. S. & Chen, H. F. (2010). Org. Lett. 12, 5192–5195.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. B., Zhao, Y. F., Zhang, G. G., Lv, Y. X., Zhang, N. & Gong, P. (2011). Eur. J. Med. Chem. 8, 3509–3518.  Web of Science CrossRef Google Scholar
First citationYong, S. R., Ung, A. T., Pyne, S. G., Skelton, B. W. & White, A. H. (2007). Tetrahedron, 63, 1191–1199.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds