metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1182-m1183

(2-{[2-(1H-Benzimidazol-2-yl-κN3)phen­yl]imino­methyl-κN}-5-methyl­phenolato-κO)chloridozinc(II)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Pure and Applied Sciences, International University of Africa, Sudan, cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 17 July 2011; accepted 26 July 2011; online 2 August 2011)

In the title mononuclear complex, [Zn(C21H16N3O)Cl], the ZnII ion is coordinated in a distorted tetra­hedral geometry by two benzimidazole N atoms and one phenolate O atom from the tridentate Schiff base ligand and a chloride ligand. The benzimidazole ring system forms dihedral angles of 26.68 (9) and 56.16 (9)° with the adjacent benzene ring and the methyl­phenolate group benzene ring, respectively. In the crystal, mol­ecules are linked by N—H⋯Cl hydrogen bonds into chains along [100]. Furthermore, weak C—H⋯O and C—H⋯π inter­actions, in addition to ππ inter­actions with centroid–centroid distances in the range 3.5826 (13)–3.9681 (13) Å, are also observed.

Related literature

For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to benzimidazoles and their applications, see: Chassaing et al. (2008[Chassaing, C., Berger, M., Heckeroth, A., IIg, T., Jaeger, M., Kern, C., Schmid, K. & Uphoff, M. (2008). J. Med. Chem. 51, 1111-1114.]); Kucukbay et al. (2003[Kucukbay, H., Durmaz, R., Orhan, E. & Gunal, S. (2003). Farmaco, 58, 431-437.]); Podunavac-Kuzmanovic & Cvetkovic (2010[Podunavac-Kuzmanovic, S. & Cvetkovic, D. (2010). Rev. Roum. Chim. 55, 363-367.]); Podunavac-Kuzmanovic et al. (1999[Podunavac-Kuzmanovic, S. O., Leovac, L. M., Perisic-Janjic, N. U., Rogan, J. & Balaz, J. (1999). J. Serb. Chem. Soc. 64, 381-388.]); Podunavac-Kuzmanovic & Markov (2006[Podunavac-Kuzmanovic, S. O. & Markov, S. L. (2006). Centr. Eur. J. Occupat. Environ. Med. 12, 61-66.]); Xue et al. (2011[Xue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641-2649.]). For related structures, see: Eltayeb et al. (2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141-o4142.], 2009[Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613-o1614.]); Eltayeb, Teoh, Chantrapromma & Fun (2011[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, m1062-m1063.]); Eltayeb, Teoh, Yeap & Fun (2011[Eltayeb, N. E., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1721-o1722.]); Maldonado-Rogado et al. (2007[Maldonado-Rogado, M. A., Viñuelas-Zahínos, E., Luna-Giles, F. & Bernalte-García, A. (2007). Polyhedron, 26, 3112-3120.]); Tong & Ye (2004[Tong, Y.-P. & Ye, B.-H. (2004). Acta Cryst. E60, m1927-m1929.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C21H16N3O)Cl]

  • Mr = 427.21

  • Monoclinic, P 21 /c

  • a = 8.6338 (1) Å

  • b = 19.4952 (2) Å

  • c = 10.9687 (1) Å

  • β = 99.675 (1)°

  • V = 1819.97 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 100 K

  • 0.26 × 0.18 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.694, Tmax = 0.878

  • 22729 measured reflections

  • 5678 independent reflections

  • 3773 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.088

  • S = 1.03

  • 5678 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C15–C20 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N1⋯Cl1i 0.75 (3) 2.53 (3) 3.2352 (19) 157 (2)
C2—H2A⋯O1ii 0.93 2.59 3.425 (3) 149
C12—H12ACg1iii 0.93 2.96 3.762 (3) 145
C21—H21CCg2iv 0.96 2.92 3.741 (3) 144
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazole compounds and their complexes have been found to show diverse biological activity (Chassaing et al., 2008; Kucukbay et al., 2003; Podunavac-Kuzmanovic & Cvetkovic, 2010; Podunavac-Kuzmanovic et al., 1999; Podunavac-Kuzmanovic & Markov, 2006) including inhibition against enteroviruses (Xue et al., 2011). Our ongoing structural studies involves benzimidazoles (Eltayeb et al., 2007, 2009; Eltayeb, Teoh, Yeap & Fun, 2011) and their complexes (Eltayeb, Teoh, Chantrapromma & Fun, 2011). In the preparation of the title complex (I), 2-(2-aminophenyl)-1H-benzimidazole undergoes a condensation reaction with 2-hydroxy-4-methylbenzaldehyde to give a Schiff base ligand and forming the zinc(II) complex.

Complex (I) is a mononuclear zinc(II) complex (Fig. 1) in which the environment around the ZnII ion is a distorted tetrahedral geometry and the ZnII ion is four-coordinated by the two benzimidazole N atoms, one phenolate O atom and a Cl ligand. In the complex, the Schiff base ligand acts as a tridentate ligand. The bond angles around the central metal zinc(II) show large deviations from ideal tetrahedral geometry [O1-Zn1-Cl1 = 115.14 (5)°, N1-Zn1-Cl1 = 111.84 (5)°, N3-Zn1-Cl1 = 120.39 (6)°; and the bite angles N1–Zn1-N3 = 90.39 (7)° and O1-Zn1-N3 = 95.00 (7)°]. The Zn-N [1.9954 (17) and 2.2092 (18) Å], Zn-O [1.9137 (15) Å] and Zn-Cl [2.2249 (7) Å] bond lengths are comparable to those of similar Zn(II) benzimidazole complexes (Eltayeb, Teoh, Chantrapromma & Fun, 2011; Maldonado-Rogado et al., 2007; Tong & Ye, 2004). The benzimidazole ring system (C1–C7/N1–N2) is planar with an r.m.s. deviation of 0.0074 (2) Å and the largest deviation of 0.029 (2) Å for atom N1. The benzimidazole ring system forms dihedral angles of 26.68 (9) and 56.16 (9)° with the C8–C13 and C15–C20 rings, respectively. The dihedral angle between the C8–C13 and C15–C20 benzene rings is 35.26 (11)°. The bond lengths of ligand are within normal ranges (Allen et al., 1987).

In the crystal structure of (I) as shown Fig. 2, the molecules are linked through N—H···Cl hydrogen bonds (Table 1) into chains along the a axis. C—H···O and C—H···π weak interactions (Table 1) are also present. ππ interactions were also observed with centroid···centroid distances: Cg1···Cg2v = 3.6134 (13) Å; Cg1···Cg3vi = 3.9681 (13) Å and Cg2···Cg2v = 3.5826 (13) Å; Cg1, Cg2 and Cg3 are the centroids of the C1/C6–C7/N1–N2, C1–C6 and C8–C13 rings, respectively [symmetry codes: (v) 2-x, -x, 1-z; (vi) 2-x, -y, 2-z].

Related literature top

For standard bond-length data, see: Allen et al. (1987). For background to benzimidazoles and their applications, see: Chassaing et al. (2008); Kucukbay et al. (2003); Podunavac-Kuzmanovic & Cvetkovic (2010); Podunavac-Kuzmanovic et al. (1999); Podunavac-Kuzmanovic & Markov (2006); Xue et al. (2011). For related structures, see: Eltayeb et al. (2007, 2009); Eltayeb, Teoh, Chantrapromma & Fun (2011); Eltayeb, Teoh, Yeap & Fun (2011); Maldonado-Rogado et al. (2007); Tong & Ye (2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).

Experimental top

The title compound was synthesized by adding 2-hydroxy-4-methylbenzaldehyde (0.136 g, 1.0 mmol) to a solution of 2-(2-aminophenyl)-1H-benzimidazole (0.209 g, 1.0 mmol) in ethanol (30 mL). The color of the resulting solution was pale-yellow. Upon adding zinc chloride (0.136 g, 1.0 mmol), the color of the solution turned golden-yellow. The mixture was refluxed with stirring for 3 hrs. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were obtained from ethanol by slow evaporation at room temperature after several days.

Refinement top

H atom attached to N2 was located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH; and 0.96 Å for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.89 Å from Zn1 and the deepest hole is located at 0.74 Å from Zn1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed approximately along the c axis. N—H···Cl hydrogen bonds are shown as dashed lines.
(2-{[2-(1H-Benzimidazol-2-yl-κN3)phenyl]iminomethyl- κN}-5-methylphenolato-κO)chloridozinc(II) top
Crystal data top
[Zn(C21H16N3O)Cl]F(000) = 872
Mr = 427.21Dx = 1.559 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5678 reflections
a = 8.6338 (1) Åθ = 2.1–30.7°
b = 19.4952 (2) ŵ = 1.51 mm1
c = 10.9687 (1) ÅT = 100 K
β = 99.675 (1)°Block, yellow
V = 1819.97 (3) Å30.26 × 0.18 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5678 independent reflections
Radiation source: sealed tube3773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 30.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.694, Tmax = 0.878k = 2826
22729 measured reflectionsl = 1215
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.6885P]
where P = (Fo2 + 2Fc2)/3
5678 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(C21H16N3O)Cl]V = 1819.97 (3) Å3
Mr = 427.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6338 (1) ŵ = 1.51 mm1
b = 19.4952 (2) ÅT = 100 K
c = 10.9687 (1) Å0.26 × 0.18 × 0.09 mm
β = 99.675 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5678 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3773 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 0.878Rint = 0.042
22729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.64 e Å3
5678 reflectionsΔρmin = 0.39 e Å3
249 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.66403 (3)0.062335 (13)0.71581 (2)0.03608 (9)
Cl10.50460 (7)0.00213 (4)0.81468 (7)0.05647 (19)
O10.56252 (18)0.11090 (8)0.57283 (14)0.0414 (4)
N10.86821 (19)0.01439 (9)0.71573 (16)0.0330 (4)
N21.1246 (2)0.00194 (10)0.76330 (18)0.0375 (4)
N30.7792 (2)0.14557 (9)0.79697 (16)0.0349 (4)
C10.9123 (2)0.03570 (11)0.63665 (19)0.0336 (5)
C20.8211 (3)0.07198 (12)0.5421 (2)0.0413 (5)
H2A0.71330.06510.52210.050*
C30.8977 (3)0.11859 (13)0.4794 (2)0.0504 (6)
H3A0.84010.14470.41670.060*
C41.0616 (3)0.12755 (13)0.5080 (2)0.0496 (6)
H4A1.10980.15900.46280.060*
C51.1522 (3)0.09105 (12)0.6007 (2)0.0445 (6)
H5A1.26060.09670.61900.053*
C61.0740 (3)0.04558 (11)0.6655 (2)0.0358 (5)
C70.9989 (2)0.03287 (11)0.79017 (19)0.0318 (5)
C81.0111 (2)0.08132 (11)0.89379 (19)0.0332 (5)
C91.1357 (3)0.07388 (12)0.9935 (2)0.0388 (5)
H9A1.20780.03860.99190.047*
C101.1532 (3)0.11775 (13)1.0936 (2)0.0456 (6)
H10A1.23700.11231.15820.055*
C111.0461 (3)0.16957 (14)1.0971 (2)0.0520 (7)
H11A1.05670.19861.16530.062*
C120.9230 (3)0.17893 (13)1.0006 (2)0.0451 (6)
H12A0.85170.21441.00420.054*
C130.9045 (2)0.13597 (11)0.89831 (19)0.0351 (5)
C140.7407 (2)0.20702 (12)0.7581 (2)0.0374 (5)
H14A0.79120.24300.80420.045*
C150.6287 (2)0.22529 (11)0.6517 (2)0.0362 (5)
C160.6017 (3)0.29611 (12)0.6307 (2)0.0438 (6)
H16A0.65030.32730.68900.053*
C170.5065 (3)0.32035 (13)0.5274 (2)0.0470 (6)
H17A0.48930.36730.51720.056*
C180.4349 (3)0.27452 (12)0.4370 (2)0.0411 (5)
C190.4615 (3)0.20532 (12)0.4549 (2)0.0408 (5)
H19A0.41700.17530.39280.049*
C200.5529 (2)0.17729 (12)0.5628 (2)0.0365 (5)
C210.3284 (3)0.29989 (14)0.3235 (2)0.0541 (7)
H21A0.32990.26810.25690.081*
H21B0.36400.34400.30060.081*
H21C0.22320.30380.34050.081*
H1N11.208 (3)0.0047 (13)0.793 (2)0.051 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02462 (12)0.03720 (15)0.04474 (16)0.00021 (11)0.00096 (10)0.00267 (12)
Cl10.0295 (3)0.0641 (4)0.0770 (5)0.0005 (3)0.0123 (3)0.0210 (4)
O10.0393 (8)0.0357 (9)0.0447 (9)0.0003 (7)0.0063 (7)0.0032 (7)
N10.0269 (8)0.0347 (10)0.0367 (9)0.0008 (7)0.0029 (7)0.0039 (8)
N20.0252 (9)0.0420 (11)0.0433 (11)0.0027 (9)0.0000 (8)0.0006 (9)
N30.0280 (8)0.0382 (10)0.0372 (10)0.0010 (8)0.0018 (7)0.0020 (8)
C10.0344 (11)0.0308 (11)0.0357 (11)0.0002 (9)0.0062 (9)0.0037 (9)
C20.0374 (12)0.0410 (14)0.0442 (13)0.0029 (10)0.0030 (10)0.0003 (11)
C30.0646 (17)0.0414 (14)0.0440 (14)0.0089 (13)0.0054 (12)0.0046 (12)
C40.0651 (17)0.0369 (14)0.0507 (15)0.0040 (12)0.0211 (13)0.0006 (11)
C50.0437 (13)0.0407 (13)0.0505 (14)0.0077 (11)0.0118 (11)0.0068 (12)
C60.0337 (11)0.0356 (12)0.0388 (12)0.0015 (9)0.0079 (9)0.0054 (10)
C70.0262 (9)0.0350 (11)0.0340 (11)0.0007 (9)0.0043 (8)0.0070 (9)
C80.0288 (10)0.0352 (12)0.0356 (11)0.0040 (9)0.0055 (8)0.0050 (9)
C90.0322 (11)0.0425 (13)0.0401 (12)0.0009 (10)0.0014 (9)0.0066 (10)
C100.0396 (12)0.0573 (16)0.0365 (12)0.0095 (12)0.0038 (10)0.0043 (11)
C110.0538 (15)0.0623 (17)0.0377 (13)0.0100 (14)0.0017 (11)0.0110 (12)
C120.0430 (13)0.0491 (15)0.0429 (13)0.0009 (11)0.0061 (10)0.0089 (11)
C130.0281 (10)0.0392 (12)0.0367 (11)0.0046 (9)0.0021 (8)0.0006 (10)
C140.0331 (11)0.0389 (13)0.0400 (12)0.0001 (10)0.0060 (9)0.0046 (10)
C150.0327 (11)0.0366 (12)0.0398 (12)0.0038 (9)0.0075 (9)0.0011 (10)
C160.0417 (13)0.0394 (13)0.0497 (14)0.0029 (11)0.0056 (11)0.0042 (11)
C170.0442 (13)0.0387 (14)0.0581 (15)0.0063 (11)0.0084 (12)0.0055 (12)
C180.0344 (11)0.0458 (14)0.0440 (13)0.0070 (10)0.0089 (10)0.0078 (11)
C190.0370 (12)0.0460 (14)0.0385 (12)0.0024 (10)0.0036 (9)0.0001 (10)
C200.0272 (10)0.0426 (13)0.0402 (12)0.0003 (9)0.0070 (9)0.0010 (10)
C210.0474 (14)0.0585 (17)0.0544 (15)0.0114 (13)0.0022 (12)0.0111 (13)
Geometric parameters (Å, º) top
Zn1—O11.9137 (15)C8—C131.415 (3)
Zn1—N11.9954 (17)C9—C101.380 (3)
Zn1—N32.0292 (18)C9—H9A0.9300
Zn1—Cl12.2249 (7)C10—C111.375 (3)
O1—C201.300 (3)C10—H10A0.9300
N1—C71.327 (2)C11—C121.380 (3)
N1—C11.401 (3)C11—H11A0.9300
N2—C71.354 (3)C12—C131.388 (3)
N2—C61.381 (3)C12—H12A0.9300
N2—H1N10.75 (3)C14—C151.430 (3)
N3—C141.296 (3)C14—H14A0.9300
N3—C131.427 (2)C15—C161.413 (3)
C1—C21.386 (3)C15—C201.428 (3)
C1—C61.392 (3)C16—C171.367 (3)
C2—C31.375 (3)C16—H16A0.9300
C2—H2A0.9300C17—C181.399 (3)
C3—C41.408 (4)C17—H17A0.9300
C3—H3A0.9300C18—C191.377 (3)
C4—C51.373 (3)C18—C211.501 (3)
C4—H4A0.9300C19—C201.417 (3)
C5—C61.381 (3)C19—H19A0.9300
C5—H5A0.9300C21—H21A0.9600
C7—C81.468 (3)C21—H21B0.9600
C8—C91.406 (3)C21—H21C0.9600
O1—Zn1—N1120.95 (7)C10—C9—H9A119.3
O1—Zn1—N395.00 (7)C8—C9—H9A119.3
N1—Zn1—N390.39 (7)C11—C10—C9119.6 (2)
O1—Zn1—Cl1115.14 (5)C11—C10—H10A120.2
N1—Zn1—Cl1111.84 (5)C9—C10—H10A120.2
N3—Zn1—Cl1120.39 (6)C10—C11—C12120.7 (2)
C20—O1—Zn1125.15 (14)C10—C11—H11A119.7
C7—N1—C1106.20 (17)C12—C11—H11A119.7
C7—N1—Zn1122.18 (15)C11—C12—C13120.6 (2)
C1—N1—Zn1131.21 (13)C11—C12—H12A119.7
C7—N2—C6108.47 (18)C13—C12—H12A119.7
C7—N2—H1N1124 (2)C12—C13—C8119.72 (19)
C6—N2—H1N1127 (2)C12—C13—N3121.3 (2)
C14—N3—C13119.79 (18)C8—C13—N3118.95 (19)
C14—N3—Zn1120.98 (14)N3—C14—C15126.9 (2)
C13—N3—Zn1119.23 (14)N3—C14—H14A116.6
C2—C1—C6121.4 (2)C15—C14—H14A116.6
C2—C1—N1129.8 (2)C16—C15—C20119.0 (2)
C6—C1—N1108.80 (18)C16—C15—C14116.5 (2)
C3—C2—C1116.9 (2)C20—C15—C14124.3 (2)
C3—C2—H2A121.6C17—C16—C15122.2 (2)
C1—C2—H2A121.6C17—C16—H16A118.9
C2—C3—C4121.4 (2)C15—C16—H16A118.9
C2—C3—H3A119.3C16—C17—C18119.9 (2)
C4—C3—H3A119.3C16—C17—H17A120.0
C5—C4—C3121.8 (2)C18—C17—H17A120.0
C5—C4—H4A119.1C19—C18—C17118.8 (2)
C3—C4—H4A119.1C19—C18—C21120.3 (2)
C4—C5—C6116.5 (2)C17—C18—C21120.9 (2)
C4—C5—H5A121.7C18—C19—C20123.6 (2)
C6—C5—H5A121.7C18—C19—H19A118.2
C5—C6—N2132.6 (2)C20—C19—H19A118.2
C5—C6—C1122.0 (2)O1—C20—C19118.2 (2)
N2—C6—C1105.41 (19)O1—C20—C15125.38 (19)
N1—C7—N2111.11 (19)C19—C20—C15116.4 (2)
N1—C7—C8126.48 (19)C18—C21—H21A109.5
N2—C7—C8122.33 (18)C18—C21—H21B109.5
C9—C8—C13117.9 (2)H21A—C21—H21B109.5
C9—C8—C7118.8 (2)C18—C21—H21C109.5
C13—C8—C7123.31 (18)H21A—C21—H21C109.5
C10—C9—C8121.5 (2)H21B—C21—H21C109.5
N1—Zn1—O1—C20107.74 (18)N1—C7—C8—C9152.4 (2)
N3—Zn1—O1—C2014.28 (18)N2—C7—C8—C924.0 (3)
Cl1—Zn1—O1—C20112.73 (17)N1—C7—C8—C1328.3 (3)
O1—Zn1—N1—C7116.26 (16)N2—C7—C8—C13155.4 (2)
N3—Zn1—N1—C720.19 (17)C13—C8—C9—C100.7 (3)
Cl1—Zn1—N1—C7103.02 (16)C7—C8—C9—C10179.9 (2)
O1—Zn1—N1—C155.4 (2)C8—C9—C10—C110.7 (4)
N3—Zn1—N1—C1151.41 (18)C9—C10—C11—C121.2 (4)
Cl1—Zn1—N1—C185.37 (18)C10—C11—C12—C130.3 (4)
O1—Zn1—N3—C1413.98 (18)C11—C12—C13—C81.1 (4)
N1—Zn1—N3—C14135.10 (18)C11—C12—C13—N3179.0 (2)
Cl1—Zn1—N3—C14109.09 (17)C9—C8—C13—C121.6 (3)
O1—Zn1—N3—C13166.00 (15)C7—C8—C13—C12179.0 (2)
N1—Zn1—N3—C1344.88 (16)C9—C8—C13—N3178.56 (19)
Cl1—Zn1—N3—C1370.93 (16)C7—C8—C13—N30.8 (3)
C7—N1—C1—C2179.7 (2)C14—N3—C13—C1240.8 (3)
Zn1—N1—C1—C27.7 (3)Zn1—N3—C13—C12139.24 (19)
C7—N1—C1—C60.9 (2)C14—N3—C13—C8139.4 (2)
Zn1—N1—C1—C6171.74 (15)Zn1—N3—C13—C840.6 (2)
C6—C1—C2—C30.7 (3)C13—N3—C14—C15174.0 (2)
N1—C1—C2—C3180.0 (2)Zn1—N3—C14—C156.0 (3)
C1—C2—C3—C41.6 (3)N3—C14—C15—C16177.5 (2)
C2—C3—C4—C51.0 (4)N3—C14—C15—C207.2 (4)
C3—C4—C5—C60.7 (4)C20—C15—C16—C170.6 (4)
C4—C5—C6—N2179.1 (2)C14—C15—C16—C17175.0 (2)
C4—C5—C6—C11.6 (3)C15—C16—C17—C181.4 (4)
C7—N2—C6—C5178.7 (2)C16—C17—C18—C190.5 (4)
C7—N2—C6—C10.7 (2)C16—C17—C18—C21179.3 (2)
C2—C1—C6—C51.0 (3)C17—C18—C19—C202.6 (4)
N1—C1—C6—C5178.5 (2)C21—C18—C19—C20176.2 (2)
C2—C1—C6—N2179.6 (2)Zn1—O1—C20—C19174.38 (15)
N1—C1—C6—N21.0 (2)Zn1—O1—C20—C156.2 (3)
C1—N1—C7—N20.4 (2)C18—C19—C20—O1176.0 (2)
Zn1—N1—C7—N2173.03 (14)C18—C19—C20—C154.5 (3)
C1—N1—C7—C8176.3 (2)C16—C15—C20—O1177.2 (2)
Zn1—N1—C7—C810.3 (3)C14—C15—C20—O17.6 (4)
C6—N2—C7—N10.2 (2)C16—C15—C20—C193.4 (3)
C6—N2—C7—C8177.05 (19)C14—C15—C20—C19171.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N1···Cl1i0.75 (3)2.53 (3)3.2352 (19)157 (2)
C2—H2A···O1ii0.932.593.425 (3)149
C12—H12A···Cg1iii0.932.963.762 (3)145
C21—H21C···Cg2iv0.962.923.741 (3)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y1/2, z1/2; (iv) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formula[Zn(C21H16N3O)Cl]
Mr427.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.6338 (1), 19.4952 (2), 10.9687 (1)
β (°) 99.675 (1)
V3)1819.97 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.26 × 0.18 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.694, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
22729, 5678, 3773
Rint0.042
(sin θ/λ)max1)0.719
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.088, 1.03
No. of reflections5678
No. of parameters249
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N1···Cl1i0.75 (3)2.53 (3)3.2352 (19)157 (2)
C2—H2A···O1ii0.932.593.425 (3)149
C12—H12A···Cg1iii0.932.963.762 (3)145
C21—H21C···Cg2iv0.962.923.741 (3)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y1/2, z1/2; (iv) x, y1/2, z3/2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian government and Universiti Sains Malaysia for the Research University Grant No. 1001/PKIMIA/815067. NEE thanks Universiti Sains Malaysia for a postdoctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. The authors also thank the Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChassaing, C., Berger, M., Heckeroth, A., IIg, T., Jaeger, M., Kern, C., Schmid, K. & Uphoff, M. (2008). J. Med. Chem. 51, 1111–1114.  Web of Science CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141–o4142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, m1062–m1063.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1721–o1722.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKucukbay, H., Durmaz, R., Orhan, E. & Gunal, S. (2003). Farmaco, 58, 431–437.  CAS Google Scholar
First citationMaldonado-Rogado, M. A., Viñuelas-Zahínos, E., Luna-Giles, F. & Bernalte-García, A. (2007). Polyhedron, 26, 3112–3120.  Web of Science CSD CrossRef CAS Google Scholar
First citationPodunavac-Kuzmanovic, S. & Cvetkovic, D. (2010). Rev. Roum. Chim. 55, 363–367.  CAS Google Scholar
First citationPodunavac-Kuzmanovic, S. O., Leovac, L. M., Perisic-Janjic, N. U., Rogan, J. & Balaz, J. (1999). J. Serb. Chem. Soc. 64, 381–388.  CAS Google Scholar
First citationPodunavac-Kuzmanovic, S. O. & Markov, S. L. (2006). Centr. Eur. J. Occupat. Environ. Med. 12, 61–66.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, Y.-P. & Ye, B.-H. (2004). Acta Cryst. E60, m1927–m1929.  CSD CrossRef IUCr Journals Google Scholar
First citationXue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641–2649.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1182-m1183
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds