organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Bis[4-(4-meth­­oxy­phen­­oxy)phen­yl]-1-methyl-1H-pyrrole-2,5-dione

aCollege of Science, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
*Correspondence e-mail: duzt@nwsuaf.edu.cn

(Received 6 July 2011; accepted 11 August 2011; online 17 August 2011)

The title compound, C31H25NO6, has a structure related to other 3,4-diaryl-substituted maleic anhydride derivatives which have been shown to be useful as photochromic materials. The dihedral angles between the maleimide ring system and the benzene rings bonded to it are 44.48 (3) and 17.89 (3)°, while the angles between each of the latter rings and the corresponding ether bridging connected meth­oxy­benzene rings are 78.61 (8) and 72.67 (7)°. In the crystal, the molecules are linked by C—H⋯O inter­actions.

Related literature

For background to the use of 3,4-diaryl-substituted maleic anhydride derivatives, see: Yeh et al. (2003[Yeh, H.-C., Wu, W.-C. & Chen, C.-T. (2003). Chem. Commun. pp. 404-405.]); Franc et al. (2007[Franc, G., Mazères, S., Turrin, C.-O., Vendier, L., Duhayon, C., Caminade, A.-M. & Majoral, J.-P. (2007). J. Org. Chem. 72, 8707-8715.]).

[Scheme 1]

Experimental

Crystal data
  • C31H25NO6

  • Mr = 507.52

  • Triclinic, [P \overline 1]

  • a = 8.751 (4) Å

  • b = 10.681 (5) Å

  • c = 13.630 (7) Å

  • α = 97.956 (5)°

  • β = 91.951 (4)°

  • γ = 93.615 (5)°

  • V = 1258.1 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.26 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.978

  • 6956 measured reflections

  • 4439 independent reflections

  • 2861 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.132

  • S = 1.04

  • 4439 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4i 0.93 2.43 3.294 (3) 155
C18—H18B⋯O3ii 0.96 2.37 3.325 (3) 171
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+3, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3,4-Diaryl substituted maleic anhydride is a conjugated unit which has interesting optical and electronic properties. A number of 3,4-Diaryl substituted maleic anhydride derivatives have been designed and synthesized to be used as photochromic materials (Franc et al., 2007, Yeh et al., 2003). In the course of exploring new potential photochromic compounds, we obtained the title compound. The synthesis was accomplished through a key palladium catalysed C—O bond formation.

The molecule holds two long-chain branches with methyl group at the end to enhance its solubility. The dihedral angles between the the maleimide five-membered ring and the benzene rings (C8-C13) and ( C18-C23 ) directly bonded to it are of 17.89 (3)° and 44.48 (3)° respectively. On the other hand, the dihedral angles between each of the latter rings and the corresponding ether bridging connected methoxybenzene ring, (C2-C7 ) and (C25-C30) respectively, are of 78.61 (8) and 72.67 (7) °. The crystal packing is stabilized by C—H ···O interactions.

Related literature top

For background to the use of 3,4-diaryl-substituted maleic anhydride derivatives, see: Yeh et al. (2003); Franc et al., (2007).

Experimental top

According to the works of Yeh (Yeh et al. 2003), 3,4-bis(4-bromophenyl)-1-methyl-1H-pyrrole-2,5-dione (0.41 g, 1 mmol), 4-methoxyphenol (0.372 g, 3 mmol), Pd(PPh3)4 (0.115 g, 0.1 mmol), t-BuONa (0.3 g, 3 mmol), P(t-Bu)3.HBF4 (58 mg, 0.2 mmol) were refluxed in anhydrous THF (40 ml), under argon, for 6 h. Afterwards, the reaction mixture was extracted with dichloro methane (40 ml×3). The organic layers were combined, washed with brine and the solvent evaporated. The residue was purified through column chromotography to give the title compound. The product was dissolved in methanol and red block crystals were formed by slow evaporation at room temperature over one week.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(Caromatic) and with Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
3,4-Bis[4-(4-methoxyphenoxy)phenyl]-1-methyl-1H-pyrrole-2,5-dione top
Crystal data top
C31H25NO6Z = 2
Mr = 507.52F(000) = 532
Triclinic, P1Dx = 1.340 Mg m3
Hall symbol: -P 1Melting point: 373 K
a = 8.751 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.681 (5) ÅCell parameters from 1817 reflections
c = 13.630 (7) Åθ = 2.3–22.8°
α = 97.956 (5)°µ = 0.09 mm1
β = 91.951 (4)°T = 296 K
γ = 93.615 (5)°Block, red
V = 1258.1 (11) Å30.32 × 0.26 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
4439 independent reflections
Radiation source: fine-focus sealed tube2861 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 810
Tmin = 0.971, Tmax = 0.978k = 1212
6956 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.0849P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4439 reflectionsΔρmax = 0.17 e Å3
347 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (2)
Crystal data top
C31H25NO6γ = 93.615 (5)°
Mr = 507.52V = 1258.1 (11) Å3
Triclinic, P1Z = 2
a = 8.751 (4) ÅMo Kα radiation
b = 10.681 (5) ŵ = 0.09 mm1
c = 13.630 (7) ÅT = 296 K
α = 97.956 (5)°0.32 × 0.26 × 0.24 mm
β = 91.951 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
4439 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2861 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.978Rint = 0.028
6956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
4439 reflectionsΔρmin = 0.19 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O31.34578 (18)0.43301 (16)0.57789 (11)0.0535 (5)
O20.71603 (19)0.58407 (17)0.79815 (11)0.0609 (5)
C110.9988 (2)0.3937 (2)0.59643 (14)0.0372 (5)
N11.3183 (2)0.27986 (17)0.44303 (13)0.0438 (5)
O41.21810 (18)0.11724 (15)0.32755 (11)0.0519 (4)
C190.9188 (2)0.1458 (2)0.42139 (14)0.0382 (5)
C151.2649 (3)0.3562 (2)0.52269 (16)0.0403 (5)
O50.54088 (19)0.10824 (17)0.34147 (11)0.0638 (5)
C161.2023 (3)0.1979 (2)0.39736 (16)0.0410 (6)
C141.0950 (2)0.3234 (2)0.52514 (14)0.0372 (5)
C80.8148 (3)0.5244 (2)0.73415 (16)0.0446 (6)
C220.6666 (3)0.0239 (2)0.36263 (16)0.0443 (6)
C200.8297 (3)0.0946 (2)0.49091 (15)0.0402 (5)
H200.85560.11680.55810.048*
C210.7048 (3)0.0122 (2)0.46208 (16)0.0432 (6)
H210.64570.01950.50960.052*
C100.8407 (3)0.3901 (2)0.58153 (16)0.0431 (6)
H100.79530.34360.52410.052*
C171.0589 (2)0.2265 (2)0.45106 (14)0.0372 (5)
O10.9801 (2)0.87749 (17)1.13293 (12)0.0677 (5)
C121.0617 (3)0.4688 (2)0.68122 (16)0.0488 (6)
H121.16750.47510.69260.059*
C20.9115 (3)0.7981 (2)1.05445 (16)0.0497 (6)
C240.8780 (3)0.1087 (2)0.32176 (15)0.0490 (6)
H240.93610.14100.27390.059*
C90.7493 (3)0.4533 (2)0.64913 (16)0.0459 (6)
H90.64360.44820.63760.055*
C50.7808 (3)0.6555 (2)0.88531 (16)0.0504 (6)
C130.9718 (3)0.5342 (2)0.74917 (17)0.0521 (6)
H131.01710.58480.80490.063*
C230.7526 (3)0.0248 (2)0.29221 (16)0.0525 (7)
H230.72660.00150.22520.063*
C250.5045 (3)0.1585 (3)0.24244 (17)0.0515 (6)
C60.8242 (3)0.5976 (2)0.96397 (18)0.0576 (7)
H60.80920.51010.96040.069*
C280.4252 (3)0.2663 (3)0.05195 (19)0.0608 (7)
C181.4766 (3)0.2811 (3)0.41449 (19)0.0626 (7)
H18A1.53410.23400.45620.094*
H18B1.51960.36700.42170.094*
H18C1.48080.24320.34660.094*
C300.5342 (3)0.2811 (2)0.21135 (19)0.0594 (7)
H300.58140.32830.25470.071*
O60.3898 (3)0.3287 (2)0.04174 (14)0.0908 (7)
C70.8906 (3)0.6690 (2)1.04909 (17)0.0562 (7)
H70.92090.62941.10250.067*
C30.8626 (3)0.8553 (3)0.97553 (17)0.0613 (7)
H30.87330.94310.97960.074*
C40.7982 (3)0.7842 (3)0.89093 (18)0.0595 (7)
H40.76650.82360.83770.071*
C290.4940 (3)0.3346 (3)0.1158 (2)0.0663 (8)
H290.51400.41830.09450.080*
C260.4343 (3)0.0889 (3)0.1802 (2)0.0709 (8)
H260.41310.00580.20250.085*
C270.3944 (3)0.1425 (3)0.0832 (2)0.0769 (9)
H270.34730.09540.03980.092*
C310.3351 (5)0.2593 (4)0.1141 (2)0.1234 (15)
H31A0.24100.22410.09370.185*
H31B0.31720.31410.17590.185*
H31C0.40960.19190.12200.185*
C11.0342 (4)0.8222 (3)1.21523 (18)0.0813 (10)
H1A0.94990.77901.24270.122*
H1B1.08090.88731.26470.122*
H1C1.10840.76281.19390.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0445 (10)0.0525 (11)0.0574 (10)0.0065 (8)0.0083 (8)0.0066 (8)
O20.0527 (11)0.0727 (13)0.0510 (10)0.0111 (9)0.0025 (8)0.0160 (9)
C110.0393 (13)0.0336 (12)0.0375 (12)0.0001 (10)0.0038 (10)0.0028 (10)
N10.0360 (11)0.0419 (12)0.0510 (11)0.0021 (9)0.0010 (9)0.0016 (9)
O40.0580 (11)0.0497 (11)0.0443 (9)0.0024 (8)0.0017 (8)0.0061 (8)
C190.0442 (13)0.0342 (13)0.0342 (12)0.0009 (10)0.0060 (10)0.0008 (10)
C150.0398 (13)0.0348 (13)0.0447 (13)0.0017 (11)0.0079 (11)0.0034 (11)
O50.0578 (11)0.0715 (13)0.0529 (10)0.0240 (10)0.0025 (9)0.0109 (9)
C160.0473 (14)0.0367 (13)0.0387 (12)0.0028 (11)0.0050 (11)0.0059 (11)
C140.0403 (13)0.0369 (13)0.0347 (11)0.0019 (10)0.0061 (10)0.0076 (10)
C80.0501 (15)0.0417 (14)0.0405 (13)0.0072 (11)0.0004 (11)0.0003 (11)
C220.0417 (14)0.0430 (14)0.0449 (13)0.0003 (11)0.0017 (11)0.0031 (11)
C200.0471 (14)0.0391 (13)0.0329 (11)0.0051 (11)0.0050 (10)0.0010 (10)
C210.0476 (14)0.0407 (14)0.0411 (13)0.0009 (11)0.0012 (11)0.0065 (10)
C100.0457 (14)0.0403 (14)0.0401 (12)0.0031 (11)0.0086 (11)0.0030 (10)
C170.0409 (13)0.0381 (13)0.0319 (11)0.0028 (10)0.0044 (10)0.0037 (10)
O10.1001 (15)0.0534 (11)0.0455 (10)0.0008 (10)0.0102 (10)0.0008 (9)
C120.0394 (14)0.0576 (16)0.0457 (13)0.0011 (12)0.0057 (11)0.0030 (12)
C20.0640 (17)0.0467 (16)0.0369 (13)0.0044 (12)0.0025 (12)0.0002 (11)
C240.0485 (15)0.0596 (16)0.0363 (13)0.0085 (12)0.0009 (11)0.0040 (11)
C90.0407 (14)0.0481 (15)0.0464 (13)0.0070 (11)0.0078 (11)0.0016 (11)
C50.0515 (15)0.0553 (17)0.0415 (14)0.0076 (12)0.0015 (11)0.0045 (12)
C130.0504 (16)0.0555 (16)0.0443 (13)0.0020 (12)0.0068 (12)0.0100 (12)
C230.0538 (16)0.0639 (17)0.0340 (12)0.0079 (13)0.0030 (11)0.0075 (12)
C250.0441 (15)0.0543 (17)0.0497 (14)0.0118 (12)0.0005 (12)0.0083 (13)
C60.0731 (18)0.0424 (15)0.0551 (15)0.0045 (13)0.0021 (13)0.0013 (13)
C280.0639 (18)0.0569 (19)0.0544 (16)0.0125 (14)0.0061 (14)0.0074 (14)
C180.0391 (15)0.0632 (18)0.0825 (19)0.0018 (13)0.0045 (13)0.0001 (15)
C300.0657 (18)0.0500 (17)0.0594 (16)0.0001 (14)0.0067 (13)0.0012 (13)
O60.1134 (18)0.0910 (16)0.0576 (12)0.0200 (13)0.0130 (12)0.0100 (11)
C70.0745 (18)0.0495 (17)0.0461 (14)0.0068 (13)0.0010 (13)0.0110 (12)
C30.087 (2)0.0448 (16)0.0504 (15)0.0057 (14)0.0025 (14)0.0031 (12)
C40.0746 (19)0.0600 (19)0.0451 (14)0.0110 (14)0.0028 (13)0.0094 (13)
C290.079 (2)0.0475 (17)0.0668 (18)0.0008 (15)0.0003 (15)0.0087 (14)
C260.070 (2)0.0564 (18)0.079 (2)0.0076 (15)0.0145 (16)0.0128 (16)
C270.075 (2)0.076 (2)0.076 (2)0.0034 (17)0.0265 (16)0.0060 (17)
C310.146 (4)0.146 (4)0.072 (2)0.032 (3)0.039 (2)0.024 (2)
C10.119 (3)0.072 (2)0.0490 (16)0.0006 (18)0.0213 (17)0.0008 (15)
Geometric parameters (Å, º) top
O3—C151.208 (2)C24—H240.9300
O2—C81.372 (3)C9—H90.9300
O2—C51.401 (3)C5—C41.365 (4)
C11—C121.388 (3)C5—C61.365 (3)
C11—C101.389 (3)C13—H130.9300
C11—C141.467 (3)C23—H230.9300
N1—C161.371 (3)C25—C261.358 (4)
N1—C151.378 (3)C25—C301.363 (4)
N1—C181.451 (3)C6—C71.385 (3)
O4—C161.209 (2)C6—H60.9300
C19—C241.389 (3)C28—C291.359 (4)
C19—C201.394 (3)C28—O61.372 (3)
C19—C171.465 (3)C28—C271.378 (4)
C15—C141.508 (3)C18—H18A0.9600
O5—C221.374 (3)C18—H18B0.9600
O5—C251.400 (3)C18—H18C0.9600
C16—C171.501 (3)C30—C291.373 (3)
C14—C171.356 (3)C30—H300.9300
C8—C131.378 (3)O6—C311.402 (4)
C8—C91.380 (3)C7—H70.9300
C22—C231.377 (3)C3—C41.372 (3)
C22—C211.380 (3)C3—H30.9300
C20—C211.370 (3)C4—H40.9300
C20—H200.9300C29—H290.9300
C21—H210.9300C26—C271.390 (3)
C10—C91.375 (3)C26—H260.9300
C10—H100.9300C27—H270.9300
O1—C21.366 (3)C31—H31A0.9600
O1—C11.419 (3)C31—H31B0.9600
C12—C131.380 (3)C31—H31C0.9600
C12—H120.9300C1—H1A0.9600
C2—C71.371 (3)C1—H1B0.9600
C2—C31.378 (3)C1—H1C0.9600
C24—C231.384 (3)
C8—O2—C5117.01 (18)C8—C13—H13120.1
C12—C11—C10116.8 (2)C12—C13—H13120.1
C12—C11—C14121.5 (2)C22—C23—C24119.6 (2)
C10—C11—C14121.65 (19)C22—C23—H23120.2
C16—N1—C15110.42 (19)C24—C23—H23120.2
C16—N1—C18124.55 (19)C26—C25—C30120.8 (2)
C15—N1—C18124.95 (19)C26—C25—O5120.8 (2)
C24—C19—C20117.7 (2)C30—C25—O5118.4 (2)
C24—C19—C17120.5 (2)C5—C6—C7120.1 (2)
C20—C19—C17121.60 (18)C5—C6—H6120.0
O3—C15—N1123.5 (2)C7—C6—H6120.0
O3—C15—C14129.2 (2)C29—C28—O6115.8 (3)
N1—C15—C14107.27 (18)C29—C28—C27120.0 (2)
C22—O5—C25118.76 (18)O6—C28—C27124.2 (3)
O4—C16—N1124.5 (2)N1—C18—H18A109.5
O4—C16—C17128.1 (2)N1—C18—H18B109.5
N1—C16—C17107.38 (19)H18A—C18—H18B109.5
C17—C14—C11131.1 (2)N1—C18—H18C109.5
C17—C14—C15107.03 (19)H18A—C18—H18C109.5
C11—C14—C15121.86 (19)H18B—C18—H18C109.5
O2—C8—C13124.0 (2)C25—C30—C29119.7 (3)
O2—C8—C9116.4 (2)C25—C30—H30120.2
C13—C8—C9119.6 (2)C29—C30—H30120.2
O5—C22—C23124.4 (2)C28—O6—C31118.4 (3)
O5—C22—C21115.7 (2)C2—C7—C6119.9 (2)
C23—C22—C21119.9 (2)C2—C7—H7120.1
C21—C20—C19121.22 (19)C6—C7—H7120.1
C21—C20—H20119.4C4—C3—C2120.7 (2)
C19—C20—H20119.4C4—C3—H3119.6
C20—C21—C22120.2 (2)C2—C3—H3119.6
C20—C21—H21119.9C5—C4—C3119.7 (2)
C22—C21—H21119.9C5—C4—H4120.2
C9—C10—C11122.0 (2)C3—C4—H4120.2
C9—C10—H10119.0C28—C29—C30120.6 (3)
C11—C10—H10119.0C28—C29—H29119.7
C14—C17—C19133.4 (2)C30—C29—H29119.7
C14—C17—C16107.81 (18)C25—C26—C27119.7 (3)
C19—C17—C16118.61 (18)C25—C26—H26120.1
C2—O1—C1117.5 (2)C27—C26—H26120.1
C13—C12—C11121.9 (2)C28—C27—C26119.3 (3)
C13—C12—H12119.1C28—C27—H27120.3
C11—C12—H12119.1C26—C27—H27120.3
O1—C2—C7125.0 (2)O6—C31—H31A109.5
O1—C2—C3115.7 (2)O6—C31—H31B109.5
C7—C2—C3119.3 (2)H31A—C31—H31B109.5
C23—C24—C19121.3 (2)O6—C31—H31C109.5
C23—C24—H24119.3H31A—C31—H31C109.5
C19—C24—H24119.3H31B—C31—H31C109.5
C10—C9—C8119.9 (2)O1—C1—H1A109.5
C10—C9—H9120.1O1—C1—H1B109.5
C8—C9—H9120.1H1A—C1—H1B109.5
C4—C5—C6120.4 (2)O1—C1—H1C109.5
C4—C5—O2119.0 (2)H1A—C1—H1C109.5
C6—C5—O2120.6 (2)H1B—C1—H1C109.5
C8—C13—C12119.8 (2)
C16—N1—C15—O3176.8 (2)C14—C11—C12—C13179.3 (2)
C18—N1—C15—O30.1 (3)C1—O1—C2—C70.1 (4)
C16—N1—C15—C142.9 (2)C1—O1—C2—C3179.1 (2)
C18—N1—C15—C14179.8 (2)C20—C19—C24—C230.6 (3)
C15—N1—C16—O4177.3 (2)C17—C19—C24—C23175.0 (2)
C18—N1—C16—O40.4 (3)C11—C10—C9—C80.9 (3)
C15—N1—C16—C171.7 (2)O2—C8—C9—C10179.7 (2)
C18—N1—C16—C17178.6 (2)C13—C8—C9—C101.8 (3)
C12—C11—C14—C17164.1 (2)C8—O2—C5—C4101.6 (3)
C10—C11—C14—C1717.0 (3)C8—O2—C5—C679.2 (3)
C12—C11—C14—C1518.0 (3)O2—C8—C13—C12178.9 (2)
C10—C11—C14—C15160.9 (2)C9—C8—C13—C122.7 (4)
O3—C15—C14—C17176.6 (2)C11—C12—C13—C80.9 (4)
N1—C15—C14—C173.1 (2)O5—C22—C23—C24179.5 (2)
O3—C15—C14—C115.1 (3)C21—C22—C23—C240.7 (4)
N1—C15—C14—C11175.27 (18)C19—C24—C23—C220.4 (4)
C5—O2—C8—C132.2 (3)C22—O5—C25—C2677.4 (3)
C5—O2—C8—C9179.4 (2)C22—O5—C25—C30105.8 (3)
C25—O5—C22—C236.4 (4)C4—C5—C6—C72.0 (4)
C25—O5—C22—C21173.8 (2)O2—C5—C6—C7178.9 (2)
C24—C19—C20—C211.0 (3)C26—C25—C30—C290.6 (4)
C17—C19—C20—C21175.4 (2)O5—C25—C30—C29177.4 (2)
C19—C20—C21—C221.3 (3)C29—C28—O6—C31172.7 (3)
O5—C22—C21—C20179.1 (2)C27—C28—O6—C317.8 (4)
C23—C22—C21—C201.2 (4)O1—C2—C7—C6177.7 (2)
C12—C11—C10—C92.6 (3)C3—C2—C7—C61.5 (4)
C14—C11—C10—C9178.4 (2)C5—C6—C7—C20.5 (4)
C11—C14—C17—C198.7 (4)O1—C2—C3—C4177.1 (2)
C15—C14—C17—C19173.2 (2)C7—C2—C3—C42.2 (4)
C11—C14—C17—C16176.1 (2)C6—C5—C4—C31.3 (4)
C15—C14—C17—C162.0 (2)O2—C5—C4—C3179.5 (2)
C24—C19—C17—C14142.0 (2)C2—C3—C4—C50.7 (4)
C20—C19—C17—C1443.8 (3)O6—C28—C29—C30180.0 (2)
C24—C19—C17—C1643.2 (3)C27—C28—C29—C300.4 (4)
C20—C19—C17—C16131.0 (2)C25—C30—C29—C280.1 (4)
O4—C16—C17—C14179.3 (2)C30—C25—C26—C271.0 (4)
N1—C16—C17—C140.3 (2)O5—C25—C26—C27177.7 (2)
O4—C16—C17—C193.2 (3)C29—C28—C27—C260.0 (4)
N1—C16—C17—C19175.74 (18)O6—C28—C27—C26179.5 (3)
C10—C11—C12—C131.7 (3)C25—C26—C27—C280.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.932.433.294 (3)155
C18—H18B···O3ii0.962.373.325 (3)171
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC31H25NO6
Mr507.52
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.751 (4), 10.681 (5), 13.630 (7)
α, β, γ (°)97.956 (5), 91.951 (4), 93.615 (5)
V3)1258.1 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.26 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
6956, 4439, 2861
Rint0.028
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.132, 1.04
No. of reflections4439
No. of parameters347
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.932.433.294 (3)155.0
C18—H18B···O3ii0.962.373.325 (3)171.1
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3, y+1, z+1.
 

Acknowledgements

Financial support from the Fundamental Research Funds for the Central Universities in NWSUAF (grant No. QN2009048) as well as from the National Natural Science Foundation of China (grant No. 20802058) is greatly appreciated.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFranc, G., Mazères, S., Turrin, C.-O., Vendier, L., Duhayon, C., Caminade, A.-M. & Majoral, J.-P. (2007). J. Org. Chem. 72, 8707–8715.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeh, H.-C., Wu, W.-C. & Chen, C.-T. (2003). Chem. Commun. pp. 404–405.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds