organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{1-[2-(2-Chloro­phen­yl)hydrazinyl­­idene]-2,2,2-tri­fluoro­eth­yl}-7-di­ethyl­amino-2H-chromen-2-one

aKey Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
*Correspondence e-mail: hongqili@dhu.edu.cn

(Received 18 July 2011; accepted 7 August 2011; online 17 August 2011)

The title compound, C21H19ClF3N3O2, has a structure related to other coumarin derivatives that have been used as fluorescent probes of metal ions. The dihedral angle between the coumarin ring system and the chlorobenzene ring is 42.99 (9)°. Intra­molecular hydrogen bonding occurs via N—H⋯O and N—H⋯Cl inter­actions, generating S(7) and S(5) rings, respectively. The crystal packing is stabilized by weak C—H⋯O hydrogen bonds.

Related literature

For applications of coumarins and coumarin derivatives, see: Trenor et al. (2004[Trenor, S. R., Shultz, A. R., Love, B. J. & Long, T. E. (2004). Chem. Rev. 104, 3059-3077.]); Starcevic et al. (2011[Starcevic, S., Brozic, P., Turk, S., Cesar, J., Lanisnik Rizner, T. & Gobec, S. (2011). J. Med. Chem. 54, 248-261.]); Danko et al. (2011[Danko, M., Szabo, E. & Hrdlovic, P. (2011). Dyes Pigments, 90, 129-138.]). For the synthesis of the title compound and related structures, see: Li et al. (2011[Li, H., Cai, L., Li, J., Hu, Y., Zhou, P. & Zhang, J. (2011). Dyes Pigments, 91, 309-316.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19ClF3N3O2

  • Mr = 437.84

  • Orthorhombic, P 21 21 21

  • a = 7.940 (6) Å

  • b = 12.602 (9) Å

  • c = 20.233 (15) Å

  • V = 2025 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.958

  • 10369 measured reflections

  • 3576 independent reflections

  • 3162 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.03

  • 3576 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1511 Friedel pairs

  • Flack parameter: −0.09 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl1 0.86 2.57 2.960 (2) 109
N3—H3A⋯O2 0.86 2.22 2.761 (3) 121
C14—H14⋯O2i 0.93 2.55 3.316 (3) 140
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Because the structure of benzopyrone has many advantages including high fluorescence quantum yield, large Stokes shift, excellent light stability, and less toxicity coumairns have been widely used in the fields of biology, medicine (Starcevic et al., 2011), perfumes, cosmetics (Trenor et al., 2004), and fluorescent dyes (Danko et al., 2011). We have synthesized a series of novel coumarin derivatives and found that one of them 3-(2-benzoylhydrazonotrifluoroethyl)-7- (N,N-diethylamino)coumarin can be used as fluorescent probes of Cu(II) and Ni(II) (Li et al., 2011). Herein we report the single-crystal structure of 3-(2-Chlorophenylhydrazonotrifluoroethyl)-7-(N,N- diethylamino)coumarin, which may be a good candidate for fluorescent probe of metal ions.

Related literature top

For applications of coumarins and coumarin derivatives, see: Trenor et al. (2004); Starcevic et al. (2011); Danko et al. (2011). For the synthesis of the title compound and related structures, see: Li et al. (2011).

Experimental top

The title compound was prepared as reported in the literature (Li et al., 2011). Red orange single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from a 1:1 petroleum ether and ethyl acetate mixture.

Refinement top

All H atoms were placed at calculated positions and refined using a riding model approximation, with C—H = 0.93–0.97 Å and with Uiso(H)=1.2 (1.5 for methyl groups) times Ueq(C). A distance of 0.86 Å was assumed for the N3—H3A bond.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title compound with displacement ellipsoids at the 30% probability level. H atoms are omitted for clarity.
3-{1-[2-(2-Chlorophenyl)hydrazinylidene]-2,2,2-trifluoroethyl}- 7-diethylamino-2H-chromen-2-one top
Crystal data top
C21H19ClF3N3O2Dx = 1.436 Mg m3
Mr = 437.84Melting point = 423–425 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 7.940 (6) ÅCell parameters from 3770 reflections
b = 12.602 (9) Åθ = 2.6–24.7°
c = 20.233 (15) ŵ = 0.24 mm1
V = 2025 (3) Å3T = 296 K
Z = 4Block, orange
F(000) = 9040.20 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3576 independent reflections
Radiation source: fine-focus sealed tube3162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.954, Tmax = 0.958k = 159
10369 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.1045P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3576 reflectionsΔρmax = 0.15 e Å3
273 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 1511 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (6)
Crystal data top
C21H19ClF3N3O2V = 2025 (3) Å3
Mr = 437.84Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.940 (6) ŵ = 0.24 mm1
b = 12.602 (9) ÅT = 296 K
c = 20.233 (15) Å0.20 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3576 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3162 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.958Rint = 0.023
10369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.15 e Å3
S = 1.03Δρmin = 0.21 e Å3
3576 reflectionsAbsolute structure: Flack (1983), 1511 Friedel pairs
273 parametersAbsolute structure parameter: 0.09 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0571 (3)0.51038 (15)0.15673 (9)0.0426 (5)
C20.0012 (3)0.46256 (15)0.09683 (10)0.0479 (5)
H20.02920.39130.09700.058*
C30.0088 (3)0.51828 (14)0.03965 (10)0.0450 (5)
H30.04470.48420.00140.054*
C40.0343 (2)0.62689 (14)0.03692 (9)0.0382 (4)
C50.0249 (2)0.69109 (14)0.01980 (10)0.0391 (4)
H50.00820.66040.05950.047*
C60.0629 (2)0.79729 (14)0.01872 (9)0.0358 (4)
C70.1134 (3)0.84426 (14)0.04343 (9)0.0392 (4)
C80.0900 (2)0.67227 (13)0.09569 (9)0.0366 (4)
C90.1056 (3)0.61729 (14)0.15382 (9)0.0415 (5)
H90.14810.65080.19120.050*
C100.0636 (2)0.86150 (14)0.08005 (8)0.0363 (4)
C110.1033 (2)1.12141 (14)0.06355 (9)0.0382 (4)
C120.1722 (3)1.18859 (16)0.01670 (10)0.0471 (5)
C130.2242 (3)1.29033 (17)0.03257 (12)0.0564 (6)
H130.27011.33410.00030.068*
C140.2075 (3)1.32630 (17)0.09657 (12)0.0613 (6)
H140.24301.39420.10800.074*
C150.1377 (3)1.26061 (16)0.14320 (11)0.0559 (6)
H150.12421.28510.18620.067*
C160.0874 (3)1.15921 (15)0.12760 (10)0.0456 (5)
H160.04241.11570.16030.055*
C170.1226 (3)0.80735 (15)0.14206 (10)0.0434 (5)
C180.0107 (3)0.34867 (17)0.21991 (12)0.0607 (6)
H18A0.01710.30800.18070.073*
H18B0.03740.31240.25780.073*
C190.1987 (3)0.3531 (2)0.22744 (16)0.0921 (9)
H19A0.24650.39070.19070.138*
H19B0.24310.28230.22870.138*
H19C0.22660.38920.26780.138*
C200.1199 (3)0.50530 (18)0.27618 (10)0.0596 (6)
H20A0.07630.57720.27780.071*
H20B0.07380.46670.31350.071*
C210.3098 (3)0.50846 (19)0.28210 (12)0.0698 (7)
H21A0.35580.54890.24620.105*
H21B0.34050.54110.32330.105*
H21C0.35350.43750.28070.105*
Cl10.19498 (10)1.14505 (5)0.06447 (3)0.0753 (2)
F10.24651 (16)0.73715 (9)0.13101 (6)0.0567 (3)
F20.00093 (17)0.75115 (10)0.17132 (6)0.0632 (4)
F30.17985 (19)0.87363 (10)0.18810 (5)0.0661 (4)
N10.0641 (2)0.45457 (13)0.21455 (9)0.0514 (4)
N20.0139 (2)0.95674 (12)0.09268 (8)0.0397 (4)
N30.0552 (2)1.01831 (12)0.04584 (8)0.0437 (4)
H3A0.06940.99520.00620.052*
O10.12920 (18)0.77888 (9)0.09745 (6)0.0415 (3)
O20.1471 (2)0.93702 (10)0.05297 (6)0.0522 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0369 (11)0.0411 (11)0.0499 (11)0.0028 (9)0.0021 (9)0.0060 (9)
C20.0502 (13)0.0323 (10)0.0613 (12)0.0059 (10)0.0028 (11)0.0016 (9)
C30.0496 (12)0.0335 (10)0.0520 (11)0.0050 (9)0.0082 (10)0.0049 (9)
C40.0382 (11)0.0322 (9)0.0441 (10)0.0007 (8)0.0012 (8)0.0024 (8)
C50.0382 (11)0.0361 (10)0.0430 (10)0.0023 (8)0.0020 (9)0.0069 (8)
C60.0337 (10)0.0334 (9)0.0404 (10)0.0007 (8)0.0015 (8)0.0041 (8)
C70.0395 (11)0.0338 (10)0.0441 (10)0.0006 (9)0.0034 (9)0.0006 (8)
C80.0356 (11)0.0283 (9)0.0458 (11)0.0003 (8)0.0020 (9)0.0039 (8)
C90.0448 (12)0.0373 (10)0.0423 (11)0.0002 (9)0.0035 (9)0.0008 (8)
C100.0359 (11)0.0332 (10)0.0398 (10)0.0001 (8)0.0001 (8)0.0045 (8)
C110.0341 (11)0.0338 (9)0.0467 (10)0.0001 (8)0.0010 (9)0.0045 (9)
C120.0439 (12)0.0480 (12)0.0493 (11)0.0006 (9)0.0033 (10)0.0109 (9)
C130.0489 (14)0.0448 (12)0.0755 (15)0.0057 (11)0.0002 (12)0.0199 (11)
C140.0652 (17)0.0379 (11)0.0809 (16)0.0099 (11)0.0106 (14)0.0033 (12)
C150.0653 (15)0.0442 (12)0.0584 (12)0.0021 (11)0.0072 (12)0.0072 (11)
C160.0494 (12)0.0402 (11)0.0470 (11)0.0022 (9)0.0002 (10)0.0045 (9)
C170.0439 (12)0.0416 (10)0.0448 (11)0.0006 (10)0.0007 (10)0.0035 (9)
C180.0596 (15)0.0501 (13)0.0723 (14)0.0051 (12)0.0076 (13)0.0251 (12)
C190.0581 (18)0.098 (2)0.120 (2)0.0182 (16)0.0011 (17)0.0512 (19)
C200.0794 (18)0.0557 (13)0.0437 (12)0.0008 (13)0.0060 (11)0.0080 (10)
C210.0807 (19)0.0722 (16)0.0566 (14)0.0012 (15)0.0098 (13)0.0013 (12)
Cl10.0938 (5)0.0819 (4)0.0501 (3)0.0075 (4)0.0206 (3)0.0080 (3)
F10.0522 (7)0.0562 (7)0.0616 (7)0.0130 (6)0.0040 (6)0.0129 (6)
F20.0581 (8)0.0710 (8)0.0604 (7)0.0048 (7)0.0106 (6)0.0272 (6)
F30.0926 (11)0.0582 (8)0.0474 (7)0.0008 (7)0.0190 (7)0.0007 (6)
N10.0567 (12)0.0434 (9)0.0542 (10)0.0047 (9)0.0003 (9)0.0121 (8)
N20.0408 (10)0.0356 (9)0.0429 (8)0.0006 (7)0.0006 (7)0.0048 (7)
N30.0537 (11)0.0375 (8)0.0398 (9)0.0064 (8)0.0056 (7)0.0017 (7)
O10.0534 (9)0.0311 (6)0.0401 (7)0.0056 (6)0.0076 (6)0.0014 (6)
O20.0747 (11)0.0300 (7)0.0519 (8)0.0090 (7)0.0138 (8)0.0026 (6)
Geometric parameters (Å, º) top
C1—N11.366 (3)C13—H130.9300
C1—C91.402 (3)C14—C151.372 (3)
C1—C21.424 (3)C14—H140.9300
C2—C31.356 (3)C15—C161.376 (3)
C2—H20.9300C15—H150.9300
C3—C41.412 (3)C16—H160.9300
C3—H30.9300C17—F31.331 (2)
C4—C81.392 (3)C17—F11.342 (2)
C4—C51.406 (3)C17—F21.347 (2)
C5—C61.372 (3)C18—N11.465 (3)
C5—H50.9300C18—C191.501 (4)
C6—C71.447 (3)C18—H18A0.9700
C6—C101.481 (3)C18—H18B0.9700
C7—O21.215 (2)C19—H19A0.9600
C7—O11.374 (2)C19—H19B0.9600
C8—C91.371 (3)C19—H19C0.9600
C8—O11.380 (2)C20—N11.470 (3)
C9—H90.9300C20—C211.513 (4)
C10—N21.289 (2)C20—H20A0.9700
C10—C171.503 (3)C20—H20B0.9700
C11—C121.384 (3)C21—H21A0.9600
C11—C161.387 (3)C21—H21B0.9600
C11—N31.401 (2)C21—H21C0.9600
C12—C131.385 (3)N2—N31.342 (2)
C12—Cl11.741 (2)N3—H3A0.8600
C13—C141.378 (3)
N1—C1—C9121.30 (18)C14—C15—H15119.3
N1—C1—C2121.56 (18)C16—C15—H15119.3
C9—C1—C2117.14 (17)C15—C16—C11120.48 (19)
C3—C2—C1121.68 (18)C15—C16—H16119.8
C3—C2—H2119.2C11—C16—H16119.8
C1—C2—H2119.2F3—C17—F1106.26 (17)
C2—C3—C4121.42 (17)F3—C17—F2105.71 (17)
C2—C3—H3119.3F1—C17—F2105.10 (15)
C4—C3—H3119.3F3—C17—C10113.93 (16)
C8—C4—C5118.53 (16)F1—C17—C10112.88 (16)
C8—C4—C3116.23 (16)F2—C17—C10112.26 (17)
C5—C4—C3125.24 (17)N1—C18—C19112.1 (2)
C6—C5—C4122.46 (18)N1—C18—H18A109.2
C6—C5—H5118.8C19—C18—H18A109.2
C4—C5—H5118.8N1—C18—H18B109.2
C5—C6—C7118.29 (18)C19—C18—H18B109.2
C5—C6—C10121.36 (17)H18A—C18—H18B107.9
C7—C6—C10120.22 (16)C18—C19—H19A109.5
O2—C7—O1115.49 (16)C18—C19—H19B109.5
O2—C7—C6126.37 (17)H19A—C19—H19B109.5
O1—C7—C6118.12 (15)C18—C19—H19C109.5
C9—C8—O1116.72 (16)H19A—C19—H19C109.5
C9—C8—C4123.65 (17)H19B—C19—H19C109.5
O1—C8—C4119.61 (16)N1—C20—C21112.3 (2)
C8—C9—C1119.79 (17)N1—C20—H20A109.1
C8—C9—H9120.1C21—C20—H20A109.1
C1—C9—H9120.1N1—C20—H20B109.1
N2—C10—C6132.33 (16)C21—C20—H20B109.1
N2—C10—C17110.65 (16)H20A—C20—H20B107.9
C6—C10—C17116.90 (16)C20—C21—H21A109.5
C12—C11—C16117.78 (18)C20—C21—H21B109.5
C12—C11—N3120.01 (18)H21A—C21—H21B109.5
C16—C11—N3122.20 (17)C20—C21—H21C109.5
C11—C12—C13121.7 (2)H21A—C21—H21C109.5
C11—C12—Cl1119.64 (16)H21B—C21—H21C109.5
C13—C12—Cl1118.65 (17)C1—N1—C18121.08 (18)
C14—C13—C12119.6 (2)C1—N1—C20120.98 (17)
C14—C13—H13120.2C18—N1—C20117.11 (18)
C12—C13—H13120.2C10—N2—N3121.57 (16)
C15—C14—C13119.1 (2)N2—N3—C11117.85 (16)
C15—C14—H14120.4N2—N3—H3A121.1
C13—C14—H14120.4C11—N3—H3A121.1
C14—C15—C16121.3 (2)C7—O1—C8122.86 (14)
N1—C1—C2—C3178.8 (2)Cl1—C12—C13—C14179.90 (18)
C9—C1—C2—C31.5 (3)C12—C13—C14—C150.7 (4)
C1—C2—C3—C40.7 (3)C13—C14—C15—C161.3 (4)
C2—C3—C4—C81.1 (3)C14—C15—C16—C111.2 (3)
C2—C3—C4—C5178.8 (2)C12—C11—C16—C150.5 (3)
C8—C4—C5—C62.4 (3)N3—C11—C16—C15179.3 (2)
C3—C4—C5—C6177.6 (2)N2—C10—C17—F327.1 (2)
C4—C5—C6—C70.3 (3)C6—C10—C17—F3156.38 (17)
C4—C5—C6—C10175.63 (17)N2—C10—C17—F1148.43 (17)
C5—C6—C7—O2178.2 (2)C6—C10—C17—F135.1 (2)
C10—C6—C7—O25.8 (3)N2—C10—C17—F293.0 (2)
C5—C6—C7—O13.3 (3)C6—C10—C17—F283.5 (2)
C10—C6—C7—O1172.71 (16)C9—C1—N1—C18170.4 (2)
C5—C4—C8—C9179.41 (19)C2—C1—N1—C189.9 (3)
C3—C4—C8—C90.6 (3)C9—C1—N1—C201.1 (3)
C5—C4—C8—O12.0 (3)C2—C1—N1—C20179.2 (2)
C3—C4—C8—O1177.93 (18)C19—C18—N1—C177.9 (3)
O1—C8—C9—C1175.76 (18)C19—C18—N1—C2091.8 (3)
C4—C8—C9—C12.8 (3)C21—C20—N1—C182.7 (3)
N1—C1—C9—C8177.09 (18)C21—C20—N1—C18107.6 (2)
C2—C1—C9—C83.2 (3)C6—C10—N2—N30.4 (3)
C5—C6—C10—N2140.5 (2)C17—C10—N2—N3175.39 (17)
C7—C6—C10—N243.6 (3)C10—N2—N3—C11178.98 (17)
C5—C6—C10—C1735.1 (3)C12—C11—N3—N2178.80 (17)
C7—C6—C10—C17140.80 (19)C16—C11—N3—N22.4 (3)
C16—C11—C12—C130.1 (3)O2—C7—O1—C8177.57 (17)
N3—C11—C12—C13178.75 (19)C6—C7—O1—C83.7 (3)
C16—C11—C12—Cl1179.98 (15)C9—C8—O1—C7177.61 (18)
N3—C11—C12—Cl11.2 (3)C4—C8—O1—C71.1 (3)
C11—C12—C13—C140.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl10.862.572.960 (2)109
N3—H3A···O20.862.222.761 (3)121
C14—H14···O2i0.932.553.316 (3)140
Symmetry code: (i) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC21H19ClF3N3O2
Mr437.84
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.940 (6), 12.602 (9), 20.233 (15)
V3)2025 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.954, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
10369, 3576, 3162
Rint0.023
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.03
No. of reflections3576
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.21
Absolute structureFlack (1983), 1511 Friedel pairs
Absolute structure parameter0.09 (6)

Computer programs: APEX2 (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl10.862.572.960 (2)108.7
N3—H3A···O20.862.222.761 (3)120.8
C14—H14···O2i0.932.553.316 (3)139.5
Symmetry code: (i) x+1/2, y+5/2, z.
 

Acknowledgements

Financial support by the Fundamental Research Funds for the Central Universities was acknowledged.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanko, M., Szabo, E. & Hrdlovic, P. (2011). Dyes Pigments, 90, 129–138.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, H., Cai, L., Li, J., Hu, Y., Zhou, P. & Zhang, J. (2011). Dyes Pigments, 91, 309–316.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarcevic, S., Brozic, P., Turk, S., Cesar, J., Lanisnik Rizner, T. & Gobec, S. (2011). J. Med. Chem. 54, 248–261.  Google Scholar
First citationTrenor, S. R., Shultz, A. R., Love, B. J. & Long, T. E. (2004). Chem. Rev. 104, 3059–3077.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds