organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2505-o2506

2-[(Naphthalen-1-yl­methyl­­idene)amino]-5-methyl­phenol

aDepartment of Oral Biology and Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA, bTexas Tech University Health Science Center, Paul L. Foster School of Medicine, 5001 El Paso Drive, El Paso, TX 79905, USA, cDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA, and dDepartment of Chemistry, Whittier College, 13406 Philadelphia Street, Whittier, CA 90601, USA
*Correspondence e-mail: risovits@whittier.edu

(Received 1 August 2011; accepted 22 August 2011; online 27 August 2011)

The title compound, C18H15NO, is a Schiff base prepared from an acid-catalyzed condensation reaction between 1-naphthaldehyde and 6-amino-m-cresol. Intra­molecular hydrogen bonding occurs via an O—H⋯N inter­action, generating an S(5) ring motif. Neighboring phenol groups participate in inter­molecular hydrogen bonding through an O—H⋯O inter­action, forming chains. The O atom of the phenol group also participates in an intermolecular C—H⋯O interaction with an H atom of one of the naphthalene rings. The C—N=C—C torsion angle between the phenol and naphthalene rings is −179.8 (2)°. Crystal packing involves stacks with the mol­ecules inter­acting through the π-systems of the C=N with both the phenol system and one of the naphthalene rings.

Related literature

For related structures, see: De et al. (2008[De, R. L., Mandal, M., Roy, L. & Mukherjee, J. (2008). Indian J. Chem. Sect. A, 47A, 207-213.]); Villalpando et al. (2010[Villalpando, A., Fronczek, F. R. & Isovitsch, R. (2010). Acta Cryst. E66, o1353.]); Yildz et al. (2005[Yildz, M., Ünver, H., Dügler, B., Erdener, D., Ocak, N., Erdönmez, A. & Durlu, T. N. (2005). J. Mol. Struct. 738, 253-260.]). For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to the synthesis of Schiff bases, see: Borisova et al. (2007[Borisova, N. E., Reshetova, M. D. & Ustynyu, Y. A. (2007). Chem. Rev. 107, 46-79.]). For background to the use of Schiff bases in solar energy collection, see: Mak et al. (2009[Mak, C. S. K., Wong, H. L., Leung, Q. Y., Tam, W. Y., Chan, W. K. & Djurisic, A. B. (2009). J. Organomet. Chem. 694, 2770-2776.]). For background to the inter­molecular inter­actions of π-systems, see: Jennings et al. (2006[Jennings, W. B., Farrell, B. M. & Malone, J. F. (2006). J. Org. Chem. 71, 2277-2282.]); Zhang et al. (2006[Zhang, G., Yang, G. & Ma, J. S. (2006). J. Chem. Crystallogr. 36, 631-636.]). For a description of hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15NO

  • Mr = 261.31

  • Orthorhombic, P 21 21 21

  • a = 4.8246 (10) Å

  • b = 9.766 (2) Å

  • c = 28.024 (7) Å

  • V = 1320.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 90 K

  • 0.25 × 0.17 × 0.10 mm

Data collection
  • Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler) diffractometer

  • 14676 measured reflections

  • 1552 independent reflections

  • 1169 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.090

  • S = 1.05

  • 1552 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O1i 0.87 (3) 2.17 (3) 2.916 (2) 143 (2)
O1—H1O⋯N1 0.87 (3) 2.24 (3) 2.701 (3) 113 (2)
C2—H2⋯O1i 0.95 2.53 3.382 (3) 150
C18—H18CCgii 0.98 2.57 3.504 (3) 160
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z.

Data collection: COLLECT (Nonius 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases are traditionally prepared via an acid-catalyzed condensation reaction between an aniline derivative and a ketone or aldehyde (Borisova et al., 2007). Our research examines the photophysics of polycyclic aromatic hydrocarbon Schiff bases and their metal complexes toward the goal of applying them to solar energy collection (Mak et al., 2009).

The structure of the title compound is shown in Figure 1. The atoms of the central double bond (N1—C11) have a bond length and bond angles that indicate their sp2 hybrid character (Allen et al., 1987). For example, N1—C11 has a length of 1.273 (3) Å. Angles about the N1—C11 double bond, C11—N1—C12 and N1—C11—C1, are 121.1 (2) and 122.5 (2)° respectively. The molecule deviates sligthly from planarity with C12—N1—C11—C1 torsion angle of -179.8 (2)° Other observed bond angles and lengths correspond well with those of similar phenolic Schiff bases. (De et al. , 2008; Villalpando et al., 2010).

Intramolecular hydrogen bonding was observed in the title compound in an O—H···N (O1H—N1) interaction with a H···N distance of approximately 2.2 Å and a O···N distance of 2.701 (2) Å, generating S(5) ring motifs. Neighboring OH (O1H) groups participated in intermolecular hydrogen bonding through an O—H···O (at x - 1/2, 1/2 - y, 1 - z) interaction with an H···O distance of approximately 2.2 Å and an O···O distance of 2.916 (2) Å, with an O—H···O bond angle of 143 (2)°. This type of intra- and intermolecular hydrogen bonding has been observed in other Schiff bases (Yildz et al., 2005; Villalpando et al., 2010).

Crystals of the title compound were composed of stacks of the molecule engaged in various intermolecular π-interactions. A π-π interaction occurred through the central double bond (N1—C11) and one of the naphthalene rings (C1—C2—C3—C4—C10—C9) with a N···Cg (at x + 1, y, z) distance of 3.336 (2) Å. Another π-π interaction occurred through the central double bond (N1—C11) and the phenol ring (C12—C17) with a N···Cg (at x - 1, y, z) distance of 3.491 (2) Å. A C—H···π interaction was observed between the methyl hydrogen atoms (C18—H) and the phenol ring (C12—C17) with a H···Cg (at x + 1, y, z) distance of approximately 2.6 Å and a C18···Cg distance of 3.504 (2) Å, with a C18—H···Cg angle of 160°.

Stacks of the molecule interacted in two ways. The first being the intermolecular O—H···O hydrogen bonding described above. The second being a C—H···O (C2H—O1) interaction with a H···O (at x - 1/2, 1/2 - y, 1 - z) distance of approximately 2.5 Å and a C···O distance of 3.382 (3) Å with a C—H···O bond angle of 150°. These types of interactions have been seen in other aromatic systems (Jennings et al., 2006; Zhang et al., 2006).

Related literature top

For related structures, see: De et al. (2008); Villalpando et al. (2010); Yildz et al. (2005). For bond-length data, see Allen et al. (1987). For background to the synthesis of Schiff bases, see: Borisova et al. (2007). For background to the use of Schiff bases in solar energy collection, see: Mak et al. (2009). For background to the intermolecular interactions of π-systems, see: Jennings et al. (2006); Zhang et al. (2006). For a description of hydrogen-bonding motifs, see:Bernstein et al. (1995).

Experimental top

Synthetic procedures were carried out using standard techniques. Solvents and reagents were purchased from Sigma-Aldrich or Acros Organics and used as received. The melting point was determined in an open capillary and is uncorrected. The 1H-NMR spectrum was recorded on a Jeol ECX 300 MHz s pectrometer using TMS as the internal standard. The IR spectrum was recorded as a KBr disk on a JASCO 460 F T—IR.

In a 25 ml roundbottom flask, 1-napthaldehyde (8.7 ml, 0.64 mmol) was added to 6-amino-m-cresol (0.087 g, 0.70 mmol) along with four drops of concentrated acetic acid and 10 ml me thanol. The solution was refluxed for 2 h. When the reaction time was complete, the reaction volume was reduced by half and allowed to cool slowly. The resultant dark orange crystals were vacuum filtered and air dried. 0.102 g of product were obtained, which is a 61% yield.

MP: 111–113°C. IR (KBr): 3053, 1696, 1510 cm-1. 1H NMR (300 MHz, CDCl3) 9.38 (s, 1 H), 8.85 (d, 1 H), 8.17 (d, 1 H), 7.97 (m, 2 H), 7.61 (m, 3 H), 7.29 (m, 2 H), 6.89 (d, 1 H), 6.77 (m, 1 H), 2.37 (s, 3 H) p.p.m.. EI—GC—MS: m/z= 261.1. TLC (silica, CH2Cl2): Rf= 0.77.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95–0.98 Å, and thereafter refined as riding. A torsional parameter was refined for the Me group. The hydroxy H atom coordinates were refined. Isotropic displacement parameters for H were assigned as Uiso=1.2Ueq, (1.5 for methyl and OH). Friedel pairs were averaged.

Computing details top

Data collection: COLLECT (Nonius 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title compound with displacement ellipsoids at the 50% probability level. H atoms are shown with arbitrary radius.
2-[(Naphthalen-1-ylmethylidene)amino]-5-methylphenol top
Crystal data top
C18H15NOF(000) = 552
Mr = 261.31Dx = 1.314 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1569 reflections
a = 4.8246 (10) Åθ = 2.5–26.0°
b = 9.766 (2) ŵ = 0.08 mm1
c = 28.024 (7) ÅT = 90 K
V = 1320.4 (5) Å3Fragment, orange
Z = 40.25 × 0.17 × 0.10 mm
Data collection top
Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler)
diffractometer
1169 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 26.1°, θmin = 2.9°
ω and ϕ scansh = 55
14676 measured reflectionsk = 1112
1552 independent reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.1692P]
where P = (Fo2 + 2Fc2)/3
1552 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H15NOV = 1320.4 (5) Å3
Mr = 261.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8246 (10) ŵ = 0.08 mm1
b = 9.766 (2) ÅT = 90 K
c = 28.024 (7) Å0.25 × 0.17 × 0.10 mm
Data collection top
Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler)
diffractometer
1169 reflections with I > 2σ(I)
14676 measured reflectionsRint = 0.034
1552 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
1552 reflectionsΔρmin = 0.17 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7221 (4)0.32980 (18)0.49100 (6)0.0319 (5)
H1O0.572 (6)0.287 (3)0.4823 (10)0.048*
N10.4847 (4)0.3060 (2)0.40411 (7)0.0233 (5)
C10.1310 (5)0.1903 (2)0.35845 (9)0.0242 (6)
C20.0777 (5)0.0959 (2)0.39380 (9)0.0268 (6)
H20.18080.09940.42260.032*
C30.1273 (6)0.0059 (2)0.38802 (10)0.0292 (7)
H30.16120.06940.41300.035*
C40.2771 (6)0.0136 (3)0.34679 (10)0.0293 (7)
H40.41240.08350.34310.035*
C50.3912 (6)0.0766 (3)0.26682 (9)0.0300 (7)
H50.52870.00780.26310.036*
C60.3497 (6)0.1687 (3)0.23107 (9)0.0308 (6)
H60.45870.16440.20290.037*
C70.1459 (6)0.2700 (2)0.23600 (9)0.0291 (7)
H70.11500.33300.21070.035*
C80.0095 (5)0.2794 (2)0.27681 (9)0.0269 (6)
H80.14350.35020.27970.032*
C90.0265 (5)0.1851 (2)0.31488 (9)0.0237 (6)
C100.2324 (5)0.0814 (2)0.30962 (9)0.0241 (6)
C110.3451 (6)0.2966 (3)0.36571 (9)0.0270 (6)
H110.37980.36020.34080.032*
C120.6877 (5)0.4091 (2)0.40997 (8)0.0209 (6)
C130.8054 (5)0.4165 (2)0.45550 (9)0.0229 (6)
C141.0077 (5)0.5127 (2)0.46633 (9)0.0250 (6)
H141.08520.51490.49750.030*
C151.0982 (5)0.6057 (2)0.43233 (9)0.0242 (6)
C160.9835 (5)0.5979 (3)0.38650 (9)0.0254 (6)
H161.04290.66040.36260.030*
C170.7852 (5)0.5008 (2)0.37545 (9)0.0256 (6)
H170.71380.49630.34390.031*
C181.3138 (5)0.7117 (2)0.44451 (9)0.0314 (7)
H18A1.27840.74770.47660.047*
H18B1.30510.78670.42130.047*
H18C1.49830.66980.44360.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0329 (11)0.0365 (11)0.0263 (10)0.0067 (10)0.0023 (9)0.0079 (9)
N10.0195 (11)0.0259 (11)0.0246 (12)0.0010 (11)0.0005 (10)0.0013 (10)
C10.0213 (14)0.0214 (13)0.0300 (14)0.0024 (13)0.0029 (13)0.0045 (12)
C20.0269 (15)0.0248 (13)0.0288 (15)0.0030 (13)0.0005 (12)0.0026 (12)
C30.0310 (16)0.0219 (13)0.0348 (17)0.0017 (14)0.0077 (15)0.0024 (13)
C40.0268 (16)0.0214 (13)0.0397 (17)0.0012 (13)0.0065 (14)0.0023 (13)
C50.0240 (15)0.0280 (13)0.0379 (17)0.0013 (13)0.0028 (13)0.0108 (13)
C60.0310 (16)0.0328 (14)0.0286 (15)0.0021 (15)0.0005 (14)0.0073 (13)
C70.0311 (16)0.0298 (14)0.0263 (16)0.0010 (14)0.0040 (13)0.0025 (12)
C80.0253 (15)0.0243 (13)0.0310 (15)0.0009 (12)0.0031 (14)0.0051 (13)
C90.0226 (14)0.0217 (13)0.0269 (15)0.0030 (13)0.0035 (12)0.0056 (12)
C100.0224 (15)0.0189 (13)0.0308 (16)0.0038 (12)0.0049 (12)0.0082 (12)
C110.0266 (15)0.0265 (14)0.0279 (15)0.0035 (14)0.0032 (13)0.0011 (12)
C120.0186 (13)0.0196 (12)0.0245 (14)0.0049 (13)0.0027 (11)0.0015 (11)
C130.0253 (14)0.0225 (12)0.0210 (13)0.0052 (13)0.0018 (12)0.0020 (12)
C140.0261 (14)0.0266 (13)0.0222 (14)0.0051 (13)0.0048 (13)0.0030 (12)
C150.0204 (14)0.0199 (12)0.0323 (15)0.0044 (13)0.0019 (12)0.0049 (12)
C160.0270 (15)0.0247 (13)0.0245 (14)0.0028 (13)0.0026 (12)0.0029 (13)
C170.0297 (16)0.0267 (13)0.0204 (14)0.0032 (14)0.0018 (12)0.0006 (12)
C180.0263 (15)0.0271 (13)0.0409 (17)0.0013 (14)0.0003 (14)0.0062 (13)
Geometric parameters (Å, º) top
O1—C131.367 (3)C7—H70.9500
O1—H1O0.87 (3)C8—C91.420 (3)
N1—C111.273 (3)C8—H80.9500
N1—C121.414 (3)C9—C101.427 (3)
C1—C21.377 (3)C11—H110.9500
C1—C91.439 (3)C12—C131.398 (3)
C1—C111.479 (3)C12—C171.400 (3)
C2—C31.412 (3)C13—C141.388 (3)
C2—H20.9500C14—C151.387 (3)
C3—C41.365 (4)C14—H140.9500
C3—H30.9500C15—C161.401 (3)
C4—C101.411 (3)C15—C181.507 (3)
C4—H40.9500C16—C171.382 (4)
C5—C61.361 (3)C16—H160.9500
C5—C101.424 (3)C17—H170.9500
C5—H50.9500C18—H18A0.9800
C6—C71.402 (3)C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C7—C81.370 (3)
C13—O1—H1O109.9 (18)C4—C10—C9119.8 (2)
C11—N1—C12121.1 (2)C5—C10—C9119.0 (2)
C2—C1—C9119.2 (2)N1—C11—C1122.5 (2)
C2—C1—C11120.1 (2)N1—C11—H11118.8
C9—C1—C11120.7 (2)C1—C11—H11118.8
C1—C2—C3121.3 (2)C13—C12—C17117.5 (2)
C1—C2—H2119.3C13—C12—N1115.1 (2)
C3—C2—H2119.3C17—C12—N1127.4 (2)
C4—C3—C2120.5 (2)O1—C13—C14117.8 (2)
C4—C3—H3119.8O1—C13—C12120.9 (2)
C2—C3—H3119.8C14—C13—C12121.3 (2)
C3—C4—C10120.5 (2)C15—C14—C13120.9 (2)
C3—C4—H4119.7C15—C14—H14119.5
C10—C4—H4119.7C13—C14—H14119.5
C6—C5—C10121.3 (3)C14—C15—C16118.0 (2)
C6—C5—H5119.4C14—C15—C18120.8 (2)
C10—C5—H5119.4C16—C15—C18121.2 (2)
C5—C6—C7119.8 (3)C17—C16—C15121.1 (2)
C5—C6—H6120.1C17—C16—H16119.5
C7—C6—H6120.1C15—C16—H16119.5
C8—C7—C6120.9 (3)C16—C17—C12121.1 (2)
C8—C7—H7119.6C16—C17—H17119.4
C6—C7—H7119.6C12—C17—H17119.4
C7—C8—C9121.1 (2)C15—C18—H18A109.5
C7—C8—H8119.4C15—C18—H18B109.5
C9—C8—H8119.4H18A—C18—H18B109.5
C8—C9—C10117.9 (2)C15—C18—H18C109.5
C8—C9—C1123.4 (2)H18A—C18—H18C109.5
C10—C9—C1118.7 (2)H18B—C18—H18C109.5
C4—C10—C5121.2 (2)
C9—C1—C2—C30.3 (4)C1—C9—C10—C5179.3 (2)
C11—C1—C2—C3179.4 (2)C12—N1—C11—C1179.8 (2)
C1—C2—C3—C40.4 (4)C2—C1—C11—N10.5 (4)
C2—C3—C4—C101.0 (4)C9—C1—C11—N1178.6 (2)
C10—C5—C6—C70.5 (4)C11—N1—C12—C13173.8 (2)
C5—C6—C7—C81.3 (4)C11—N1—C12—C177.6 (4)
C6—C7—C8—C91.5 (4)C17—C12—C13—O1179.6 (2)
C7—C8—C9—C100.9 (3)N1—C12—C13—O10.9 (3)
C7—C8—C9—C1180.0 (2)C17—C12—C13—C141.2 (4)
C2—C1—C9—C8178.7 (2)N1—C12—C13—C14179.9 (2)
C11—C1—C9—C80.4 (4)O1—C13—C14—C15178.7 (2)
C2—C1—C9—C100.4 (3)C12—C13—C14—C150.5 (4)
C11—C1—C9—C10179.5 (2)C13—C14—C15—C161.2 (3)
C3—C4—C10—C5178.6 (2)C13—C14—C15—C18178.8 (2)
C3—C4—C10—C90.9 (4)C14—C15—C16—C170.2 (4)
C6—C5—C10—C4179.5 (2)C18—C15—C16—C17179.8 (2)
C6—C5—C10—C90.0 (4)C15—C16—C17—C121.5 (4)
C8—C9—C10—C4179.4 (2)C13—C12—C17—C162.1 (4)
C1—C9—C10—C40.2 (3)N1—C12—C17—C16179.3 (2)
C8—C9—C10—C50.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1i0.87 (3)2.17 (3)2.916 (2)143 (2)
O1—H1O···N10.87 (3)2.24 (3)2.701 (3)113 (2)
C2—H2···O1i0.952.533.382 (3)150
C18—H18C···Cgii0.982.573.504 (3)160
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H15NO
Mr261.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)4.8246 (10), 9.766 (2), 28.024 (7)
V3)1320.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.17 × 0.10
Data collection
DiffractometerNonius KappaCCD (with an Oxford Cryosystems Cryostream cooler)
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14676, 1552, 1169
Rint0.034
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.090, 1.05
No. of reflections1552
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: COLLECT (Nonius 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1i0.87 (3)2.17 (3)2.916 (2)143 (2)
O1—H1O···N10.87 (3)2.24 (3)2.701 (3)113 (2)
C2—H2···O1i0.952.533.382 (3)150
C18—H18C···Cgii0.982.573.504 (3)160
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y, z.
 

Acknowledgements

Whittier College is acknowledged for the funds that supported this research. The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorisova, N. E., Reshetova, M. D. & Ustynyu, Y. A. (2007). Chem. Rev. 107, 46–79.  CrossRef CAS Google Scholar
First citationDe, R. L., Mandal, M., Roy, L. & Mukherjee, J. (2008). Indian J. Chem. Sect. A, 47A, 207–213.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJennings, W. B., Farrell, B. M. & Malone, J. F. (2006). J. Org. Chem. 71, 2277–2282.  CrossRef CAS Google Scholar
First citationMak, C. S. K., Wong, H. L., Leung, Q. Y., Tam, W. Y., Chan, W. K. & Djurisic, A. B. (2009). J. Organomet. Chem. 694, 2770–2776.  CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVillalpando, A., Fronczek, F. R. & Isovitsch, R. (2010). Acta Cryst. E66, o1353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYildz, M., Ünver, H., Dügler, B., Erdener, D., Ocak, N., Erdönmez, A. & Durlu, T. N. (2005). J. Mol. Struct. 738, 253–260.  Google Scholar
First citationZhang, G., Yang, G. & Ma, J. S. (2006). J. Chem. Crystallogr. 36, 631–636.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2505-o2506
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds