organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2229-o2230

3,4,5-Trihy­dr­oxy­benzohydrazidium perchlorate–3,4,5-trihy­dr­oxy­benzohydrazide–water (1/1/1)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 13 July 2011; accepted 29 July 2011; online 2 August 2011)

The crystal studied of the title compound, C7H9N2O4+·ClO4·C7H8N2O4·H2O, was found to be a racemic twin with a 0.72 (18):0.28 (18) domain ratio. The hydrazidium group is close to planar, with an r.m.s deviation of 0.105 Å; the hydrazide group deviates more from planarity, with an r.m.s deviation of 0.174 Å. In the crystal, the hydrazidium cation, hydrazide mol­ecule, perchlorate anions and water mol­ecules are linked through O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional supra­molecular network. In addition, the benzene rings of the hydrazidium and hydrazide units are connected via ππ inter­actions into infinite chains along the c axis; the centroid–centroid distances are 3.486 (3) and 3.559 (3) Å.

Related literature

For the crystal structure of trimeth­oxy­benzohydrazidium chloride, see: Saeed et al. (2008[Saeed, A., Mumtaz, A., Rafique, H., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o2336.]) and of 3,4,5–trimeth­oxy­benzohydrazide hemihydrate, see: Zareef et al. (2006[Zareef, M., Iqbal, R., Qadeer, G., Arfan, M. & Lu, X.-M. (2006). Acta Cryst. E62, o3259-o3261.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9N2O4+·ClO4·C7H8N2O4·H2O

  • Mr = 486.78

  • Orthorhombic, P n a 21

  • a = 20.1213 (7) Å

  • b = 12.9178 (4) Å

  • c = 7.0122 (2) Å

  • V = 1822.63 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.15 × 0.04 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.991

  • 14383 measured reflections

  • 3393 independent reflections

  • 2653 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.109

  • S = 1.03

  • 3393 reflections

  • 335 parameters

  • 22 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1545 Friedel pairs

  • Flack parameter: 0.28 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O12i 0.88 (2) 1.95 (3) 2.769 (5) 155 (4)
N1—H1B⋯O11ii 0.89 (2) 1.99 (3) 2.835 (5) 159 (4)
N2—H2N⋯O13iii 0.86 (2) 1.92 (2) 2.783 (4) 175 (4)
O2—H2O⋯O10iii 0.83 (2) 1.96 (2) 2.782 (4) 173 (5)
N3—H3A⋯O3iv 0.89 (2) 2.10 (2) 2.958 (5) 161 (4)
N3—H3B⋯O1 0.91 (2) 1.90 (2) 2.788 (5) 163 (4)
N3—H3C⋯O9ii 0.92 (2) 1.95 (2) 2.833 (5) 160 (4)
O3—H3O⋯O4 0.82 (2) 2.39 (5) 2.732 (4) 106 (4)
O3—H3O⋯O10v 0.82 (2) 1.96 (3) 2.720 (4) 153 (4)
N4—H4N⋯O2iv 0.87 (2) 2.01 (3) 2.811 (5) 154 (4)
O4—H4O⋯O9 0.84 (2) 2.02 (2) 2.854 (4) 171 (5)
O6—H6O⋯O12vi 0.82 (2) 1.81 (3) 2.598 (4) 160 (5)
O7—H7O⋯O6 0.84 (2) 2.15 (4) 2.667 (4) 119 (4)
O7—H7O⋯O4vi 0.84 (2) 2.31 (3) 3.085 (4) 154 (4)
O8—H8O⋯O11 0.83 (2) 1.99 (2) 2.794 (4) 164 (5)
O8—H8O⋯O13 0.83 (2) 2.34 (4) 2.892 (4) 125 (4)
O9—H9A⋯O12 0.85 (2) 2.14 (3) 2.875 (4) 145 (5)
O9—H9A⋯O1ii 0.85 (2) 2.51 (5) 3.036 (4) 121 (4)
O9—H9B⋯O5 0.83 (2) 2.03 (3) 2.794 (4) 152 (5)
C3—H3⋯O13iii 0.95 2.39 3.079 (5) 129
C7—H7⋯O9 0.95 2.57 3.291 (5) 133
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was obtained unexpectedly during an attempt to prepare a nickel(II) complex of 3,4,5–trihydroxybenzohydrazide. The structure contains a hydrazidium cation and a neutral hydrazide molecule. The cationic hydrazidium moiety is almost planar, within which the aromatic ring, C9—C14, and the N3/N4/C8/O5 plane make a dihedral angle of 12.5 (2)° which is smaller than the corresponding value [30.52 (3)°] in 3,4,5–trimethoxybenzohydrazidium chloride (Saeed et al., 2008). The dihedral angle between the aromatic ring of the neutral hydrazide, C2—C7, and the N1/N2/C1/O1 plane is 19.0 (3)° which is larger than what was reported for 3,4,5–trimethoxybenzohydrazide hemihydrate [9.27 (10)°, Zareef et al., 2006].

The crystal structure contains perchlorate anions and water molecules which are bonded to the hydrazidium and hydrazide moieties via O—H···O, N—H···O and C—H···O interactions (Table 1) to form a three–dimensional supramolecualr network. The crystal packing (Fig. 2) is consolidated by ππ interactions between the benzene rings of the hydrazidium and hydrazide moieties, with a Cg1···Cg2i and a Cg1···Cg2ii distances of 3.486 (3) and 3.559 (3) Å, respectively (Cg1 and Cg2 are the centroids of the C9–C15 benzene ring and the C2–C7 benzene ring, respectively).

Related literature top

For the crystal structure of trimethoxybenzohydrazidium chloride, see: Saeed et al. (2008) and of 3,4,5–trimethoxybenzohydrazide hemihydrate, see: Zareef et al. (2006).

Experimental top

A solution of nickel(II) perchlorate monohydrate (0.585 g, 1.6 mole) in ethanol (50 ml) was added slowly to an ethanolic solution of gallic hydrazide (0.60 g, 3.3 mmol) in the same solvent. A few drops of triethylamine was added and the mixture was refluxed for 5 h. The precipitate was filtered and recrystallized from DMSO to give the colorless crystals of the title compound.

Refinement top

The C–bound H atoms were placed at calculated positions and were treated as riding on their parent C atoms with C—H = 0.95 Å. The N– and O–bound H atoms were located in a difference Fourier map, and refined with distance restraints of O—H = 0.84 (2) Å, N2—H = 0.88 (2) Å, N1—H and N3—H = 0.91 (2) Å. For all H atoms, Uiso(H) was set to 1.2(1.5 for hydroxyl)Ueq(carrier atom). The displacement ellipsoids of C6 were restrained using command ISOR (0.01). The structure was a racemic twin and the twin parameter refined to 0.28 (11). An absolute structure was established using anomalous dispersion effects; 1545 Friedel pairs were not merged. The most disagreeable reflections with delta(F2)/e.s.d. > 10 were omitted (3 reflections).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with thermal ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the π..π interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y + 1, z - 1/2; (ii) - x + 1, - y + 1, z +1/2.]
(3,4,5-Trihydroxybenzamido)ammonium perchlorate–3,4,5-trihydroxybenzohydrazide–water (1/1/1) top
Crystal data top
C7H9N2O4+·ClO4·C7H8N2O4·H2OF(000) = 1008
Mr = 486.78Dx = 1.774 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1227 reflections
a = 20.1213 (7) Åθ = 3.2–27.0°
b = 12.9178 (4) ŵ = 0.30 mm1
c = 7.0122 (2) ÅT = 100 K
V = 1822.63 (10) Å3Needle, colorless
Z = 40.15 × 0.04 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
3393 independent reflections
Radiation source: fine-focus sealed tube2653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.957, Tmax = 0.991k = 1515
14383 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3393 reflectionsΔρmax = 0.39 e Å3
335 parametersΔρmin = 0.53 e Å3
22 restraintsAbsolute structure: Flack (1983), 1545 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.28 (11)
Crystal data top
C7H9N2O4+·ClO4·C7H8N2O4·H2OV = 1822.63 (10) Å3
Mr = 486.78Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.1213 (7) ŵ = 0.30 mm1
b = 12.9178 (4) ÅT = 100 K
c = 7.0122 (2) Å0.15 × 0.04 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
3393 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2653 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.991Rint = 0.092
14383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109Δρmax = 0.39 e Å3
S = 1.03Δρmin = 0.53 e Å3
3393 reflectionsAbsolute structure: Flack (1983), 1545 Friedel pairs
335 parametersAbsolute structure parameter: 0.28 (11)
22 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47204 (14)0.7004 (2)0.1226 (4)0.0100 (7)
O20.74400 (13)0.8918 (2)0.1487 (5)0.0141 (7)
H2O0.722 (2)0.945 (2)0.133 (8)0.021*
O30.78618 (15)0.7058 (2)0.2858 (4)0.0107 (7)
H3O0.795 (2)0.652 (2)0.343 (6)0.016*
O40.70017 (14)0.5426 (2)0.3081 (4)0.0121 (7)
H4O0.6714 (18)0.496 (3)0.301 (7)0.018*
N10.42795 (17)0.8931 (3)0.1273 (5)0.0095 (8)
H1A0.4015 (19)0.856 (3)0.054 (5)0.011*
H1B0.416 (2)0.880 (3)0.247 (3)0.011*
N20.49692 (17)0.8702 (3)0.1213 (6)0.0119 (9)
H2N0.5225 (18)0.921 (2)0.155 (7)0.014*
C10.5142 (2)0.7687 (3)0.1322 (6)0.0104 (9)
C20.58680 (19)0.7498 (3)0.1540 (7)0.0075 (8)
C30.6324 (2)0.8282 (3)0.1261 (6)0.0107 (9)
H30.61820.89290.07600.013*
C40.6987 (2)0.8133 (3)0.1707 (6)0.0089 (9)
C50.7199 (2)0.7175 (3)0.2372 (6)0.0097 (9)
C60.6750 (2)0.6371 (3)0.2535 (6)0.0097 (9)
C70.6085 (2)0.6524 (3)0.2159 (6)0.0101 (9)
H70.57760.59740.23170.012*
O50.46214 (14)0.4747 (2)0.3255 (4)0.0143 (7)
O60.23020 (14)0.1848 (2)0.2092 (4)0.0150 (8)
H6O0.2019 (19)0.218 (3)0.268 (6)0.022*
O70.32391 (15)0.0490 (2)0.1104 (5)0.0153 (7)
H7O0.2861 (14)0.045 (4)0.162 (7)0.023*
O80.44941 (15)0.1051 (2)0.0634 (5)0.0140 (7)
H8O0.4886 (12)0.125 (3)0.071 (7)0.021*
N30.3796 (2)0.6259 (3)0.3853 (5)0.0119 (8)
H3A0.3444 (16)0.666 (3)0.360 (6)0.014*
H3B0.4158 (16)0.643 (4)0.314 (6)0.014*
H3C0.394 (2)0.631 (4)0.509 (3)0.014*
N40.35607 (18)0.5261 (3)0.3343 (5)0.0119 (8)
H4N0.3207 (15)0.531 (4)0.264 (6)0.014*
C80.4038 (2)0.4525 (3)0.2963 (6)0.0111 (10)
C90.3795 (2)0.3506 (3)0.2357 (6)0.0114 (9)
C100.3123 (2)0.3228 (3)0.2482 (6)0.0095 (9)
H100.28000.37170.28830.011*
C110.2938 (2)0.2221 (3)0.2007 (6)0.0104 (10)
C120.3409 (2)0.1510 (3)0.1452 (7)0.0110 (9)
C130.4064 (2)0.1793 (3)0.1252 (6)0.0119 (9)
C140.4260 (2)0.2797 (3)0.1712 (6)0.0122 (10)
H140.47130.29940.15830.015*
O90.59168 (16)0.4012 (2)0.2777 (5)0.0151 (8)
H9A0.596 (3)0.344 (2)0.334 (7)0.023*
H9B0.5591 (17)0.432 (3)0.325 (7)0.023*
Cl10.61543 (5)0.11830 (8)0.15644 (16)0.0126 (2)
O100.67545 (14)0.0734 (2)0.0667 (4)0.0114 (7)
O110.57866 (15)0.1783 (2)0.0090 (4)0.0131 (7)
O120.63558 (14)0.1903 (2)0.3124 (4)0.0103 (7)
O130.57257 (14)0.0391 (2)0.2378 (4)0.0116 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0097 (15)0.0054 (14)0.0148 (16)0.0020 (12)0.0002 (14)0.0012 (13)
O20.0099 (15)0.0100 (14)0.0225 (16)0.0009 (13)0.0038 (17)0.0047 (16)
O30.0085 (16)0.0089 (15)0.0147 (17)0.0007 (13)0.0049 (14)0.0025 (13)
O40.0091 (16)0.0054 (15)0.0220 (16)0.0008 (12)0.0041 (14)0.0013 (14)
N10.0069 (17)0.0144 (18)0.007 (2)0.0003 (15)0.0011 (16)0.0039 (17)
N20.0061 (18)0.0097 (18)0.020 (2)0.0008 (15)0.0016 (17)0.0005 (17)
C10.017 (2)0.009 (2)0.005 (2)0.0016 (18)0.003 (2)0.0009 (19)
C20.0069 (19)0.0091 (19)0.0063 (18)0.0001 (16)0.001 (2)0.004 (2)
C30.016 (2)0.010 (2)0.007 (2)0.0042 (17)0.002 (2)0.0006 (19)
C40.007 (2)0.008 (2)0.011 (2)0.0006 (17)0.002 (2)0.0016 (19)
C50.008 (2)0.014 (2)0.007 (2)0.0008 (18)0.0025 (19)0.0014 (19)
C60.018 (2)0.0026 (19)0.008 (2)0.0024 (18)0.0033 (19)0.0021 (17)
C70.016 (2)0.0049 (18)0.009 (2)0.0022 (18)0.0016 (19)0.0014 (17)
O50.0089 (17)0.0131 (15)0.0209 (18)0.0001 (13)0.0026 (14)0.0016 (14)
O60.0079 (17)0.0131 (16)0.024 (2)0.0022 (13)0.0060 (14)0.0018 (14)
O70.0101 (16)0.0121 (15)0.024 (2)0.0006 (13)0.0031 (15)0.0022 (14)
O80.0095 (16)0.0114 (16)0.0211 (17)0.0021 (13)0.0007 (14)0.0036 (14)
N30.011 (2)0.011 (2)0.014 (2)0.0029 (18)0.0010 (18)0.0016 (18)
N40.0106 (19)0.0060 (17)0.019 (2)0.0033 (16)0.0024 (17)0.0059 (17)
C80.012 (2)0.018 (2)0.003 (2)0.0012 (19)0.0009 (18)0.0013 (19)
C90.017 (3)0.0084 (19)0.0084 (19)0.0011 (19)0.003 (2)0.0002 (17)
C100.014 (2)0.005 (2)0.009 (2)0.0044 (18)0.003 (2)0.0011 (18)
C110.009 (2)0.016 (2)0.006 (2)0.0005 (19)0.0024 (17)0.0025 (18)
C120.014 (2)0.0065 (19)0.013 (2)0.0022 (17)0.005 (2)0.001 (2)
C130.013 (2)0.012 (2)0.011 (2)0.0060 (18)0.0003 (19)0.005 (2)
C140.013 (2)0.016 (2)0.008 (2)0.0017 (18)0.000 (2)0.001 (2)
O90.0136 (18)0.0108 (17)0.0209 (19)0.0038 (14)0.0024 (15)0.0002 (14)
Cl10.0136 (5)0.0122 (5)0.0120 (5)0.0006 (5)0.0010 (5)0.0001 (5)
O100.0094 (16)0.0089 (15)0.0158 (15)0.0011 (13)0.0038 (14)0.0029 (13)
O110.0144 (17)0.0134 (16)0.0114 (15)0.0056 (14)0.0025 (14)0.0017 (13)
O120.0122 (16)0.0094 (15)0.0095 (15)0.0040 (13)0.0011 (13)0.0020 (13)
O130.0110 (16)0.0074 (14)0.0164 (16)0.0070 (13)0.0039 (14)0.0035 (13)
Geometric parameters (Å, º) top
O1—C11.227 (5)O7—H7O0.843 (19)
O2—C41.372 (5)O8—C131.362 (5)
O2—H2O0.826 (19)O8—H8O0.830 (19)
O3—C51.384 (5)N3—N41.420 (5)
O3—H3O0.82 (2)N3—H3A0.892 (19)
O4—C61.376 (5)N3—H3B0.911 (19)
O4—H4O0.839 (19)N3—H3C0.919 (19)
N1—N21.420 (5)N4—C81.377 (6)
N1—H1A0.880 (19)N4—H4N0.867 (19)
N1—H1B0.891 (19)C8—C91.467 (6)
N2—C11.358 (5)C9—C141.385 (6)
N2—H2N0.863 (19)C9—C101.402 (6)
C1—C21.488 (6)C10—C111.393 (6)
C2—C31.381 (6)C10—H100.9500
C2—C71.401 (6)C11—C121.376 (6)
C3—C41.384 (6)C12—C131.375 (6)
C3—H30.9500C13—C141.393 (6)
C4—C51.389 (6)C14—H140.9500
C5—C61.382 (6)O9—H9A0.85 (2)
C6—C71.379 (6)O9—H9B0.83 (2)
C7—H70.9500Cl1—O131.455 (3)
O5—C81.226 (5)Cl1—O101.480 (3)
O6—C111.368 (5)Cl1—O111.489 (3)
O6—H6O0.82 (2)Cl1—O121.492 (3)
O7—C121.382 (5)
C4—O2—H2O105 (3)H3A—N3—H3B113 (4)
C5—O3—H3O115 (3)N4—N3—H3C114 (3)
C6—O4—H4O112 (3)H3A—N3—H3C113 (4)
N2—N1—H1A117 (3)H3B—N3—H3C104 (4)
N2—N1—H1B104 (3)C8—N4—N3116.3 (4)
H1A—N1—H1B107 (4)C8—N4—H4N121 (3)
C1—N2—N1116.8 (3)N3—N4—H4N110 (3)
C1—N2—H2N124 (3)O5—C8—N4118.3 (4)
N1—N2—H2N115 (3)O5—C8—C9125.2 (4)
O1—C1—N2120.9 (4)N4—C8—C9116.3 (4)
O1—C1—C2124.5 (3)C14—C9—C10120.1 (4)
N2—C1—C2114.6 (4)C14—C9—C8117.6 (4)
C3—C2—C7119.8 (4)C10—C9—C8122.2 (4)
C3—C2—C1121.2 (4)C11—C10—C9118.9 (4)
C7—C2—C1119.0 (4)C11—C10—H10120.6
C2—C3—C4120.4 (4)C9—C10—H10120.6
C2—C3—H3119.8O6—C11—C12114.9 (4)
C4—C3—H3119.8O6—C11—C10124.6 (4)
O2—C4—C3120.8 (4)C12—C11—C10120.4 (4)
O2—C4—C5119.5 (4)C13—C12—C11120.7 (4)
C3—C4—C5119.8 (4)C13—C12—O7118.2 (4)
C6—C5—O3121.8 (4)C11—C12—O7121.1 (4)
C6—C5—C4119.8 (4)O8—C13—C12117.0 (4)
O3—C5—C4118.4 (4)O8—C13—C14123.2 (4)
O4—C6—C7122.5 (4)C12—C13—C14119.7 (4)
O4—C6—C5116.7 (4)C9—C14—C13120.0 (4)
C7—C6—C5120.8 (4)C9—C14—H14120.0
C6—C7—C2119.3 (4)C13—C14—H14120.0
C6—C7—H7120.3H9A—O9—H9B108 (5)
C2—C7—H7120.3O13—Cl1—O10112.02 (17)
C11—O6—H6O119 (3)O13—Cl1—O11110.14 (18)
C12—O7—H7O102 (3)O10—Cl1—O11108.30 (18)
C13—O8—H8O111 (3)O13—Cl1—O12108.18 (18)
N4—N3—H3A102 (3)O10—Cl1—O12109.52 (18)
N4—N3—H3B110 (3)O11—Cl1—O12108.63 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O12i0.88 (2)1.95 (3)2.769 (5)155 (4)
N1—H1B···O11ii0.89 (2)1.99 (3)2.835 (5)159 (4)
N2—H2N···O13iii0.86 (2)1.92 (2)2.783 (4)175 (4)
O2—H2O···O10iii0.83 (2)1.96 (2)2.782 (4)173 (5)
N3—H3A···O3iv0.89 (2)2.10 (2)2.958 (5)161 (4)
N3—H3B···O10.91 (2)1.90 (2)2.788 (5)163 (4)
N3—H3C···O9ii0.92 (2)1.95 (2)2.833 (5)160 (4)
O3—H3O···O40.82 (2)2.39 (5)2.732 (4)106 (4)
O3—H3O···O10v0.82 (2)1.96 (3)2.720 (4)153 (4)
N4—H4N···O2iv0.87 (2)2.01 (3)2.811 (5)154 (4)
O4—H4O···O90.84 (2)2.02 (2)2.854 (4)171 (5)
O6—H6O···O12vi0.82 (2)1.81 (3)2.598 (4)160 (5)
O7—H7O···O60.84 (2)2.15 (4)2.667 (4)119 (4)
O7—H7O···O4vi0.84 (2)2.31 (3)3.085 (4)154 (4)
O8—H8O···O110.83 (2)1.99 (2)2.794 (4)164 (5)
O8—H8O···O130.83 (2)2.34 (4)2.892 (4)125 (4)
O9—H9A···O120.85 (2)2.14 (3)2.875 (4)145 (5)
O9—H9A···O1ii0.85 (2)2.51 (5)3.036 (4)121 (4)
O9—H9B···O50.83 (2)2.03 (3)2.794 (4)152 (5)
C3—H3···O13iii0.952.393.079 (5)129
C7—H7···O90.952.573.291 (5)133
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+1, z+1/2; (iii) x, y+1, z; (iv) x1/2, y+3/2, z; (v) x+3/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC7H9N2O4+·ClO4·C7H8N2O4·H2O
Mr486.78
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)20.1213 (7), 12.9178 (4), 7.0122 (2)
V3)1822.63 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.15 × 0.04 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.957, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
14383, 3393, 2653
Rint0.092
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.109, 1.03
No. of reflections3393
No. of parameters335
No. of restraints22
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.53
Absolute structureFlack (1983), 1545 Friedel pairs
Absolute structure parameter0.28 (11)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O12i0.880 (19)1.95 (3)2.769 (5)155 (4)
N1—H1B···O11ii0.891 (19)1.99 (3)2.835 (5)159 (4)
N2—H2N···O13iii0.863 (19)1.92 (2)2.783 (4)175 (4)
O2—H2O···O10iii0.826 (19)1.96 (2)2.782 (4)173 (5)
N3—H3A···O3iv0.892 (19)2.10 (2)2.958 (5)161 (4)
N3—H3B···O10.911 (19)1.90 (2)2.788 (5)163 (4)
N3—H3C···O9ii0.919 (19)1.95 (2)2.833 (5)160 (4)
O3—H3O···O40.82 (2)2.39 (5)2.732 (4)106 (4)
O3—H3O···O10v0.82 (2)1.96 (3)2.720 (4)153 (4)
N4—H4N···O2iv0.867 (19)2.01 (3)2.811 (5)154 (4)
O4—H4O···O90.839 (19)2.02 (2)2.854 (4)171 (5)
O6—H6O···O12vi0.82 (2)1.81 (3)2.598 (4)160 (5)
O7—H7O···O60.843 (19)2.15 (4)2.667 (4)119 (4)
O7—H7O···O4vi0.843 (19)2.31 (3)3.085 (4)154 (4)
O8—H8O···O110.830 (19)1.99 (2)2.794 (4)164 (5)
O8—H8O···O130.830 (19)2.34 (4)2.892 (4)125 (4)
O9—H9A···O120.85 (2)2.14 (3)2.875 (4)145 (5)
O9—H9A···O1ii0.85 (2)2.51 (5)3.036 (4)121 (4)
O9—H9B···O50.83 (2)2.03 (3)2.794 (4)152 (5)
C3—H3···O13iii0.952.393.079 (5)129.4
C7—H7···O90.952.573.291 (5)132.8
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+1, z+1/2; (iii) x, y+1, z; (iv) x1/2, y+3/2, z; (v) x+3/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant FP004/2010B).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSaeed, A., Mumtaz, A., Rafique, H., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o2336.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZareef, M., Iqbal, R., Qadeer, G., Arfan, M. & Lu, X.-M. (2006). Acta Cryst. E62, o3259–o3261.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2229-o2230
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds