organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phen­yl)quinazolin-4(3H)-one

aDepartment of Chemistry, CNK Reddy College of Pharmacy, Sastra University, Thanjavur 613 402, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, cMother Theresa Postgraduate & Health Science, Puducherry 605 006, India, and dSastra University, Thanjavur 613 402, India
*Correspondence e-mail: dvelmurugan@unom.co.in

(Received 18 July 2011; accepted 1 August 2011; online 11 August 2011)

In the title compound, C14H9ClN2O, the quinazoline unit is essentially planar, with a mean deviation from the least-squares plane defined by the ten constituent ring atoms of 0.027 (2) Å. The dihedral angle between the mean plane of the quinazoline ring system and the 4-chloro­phenyl ring is 44.63 (5)°. In the crystal, mol­ecules are linked by inter­molecular C—H⋯N and C—H⋯O hydrogen bonds, forming infinite chains of alternating R22(6) dimers and R22(14) ring motifs.

Related literature

For the synthesis of the title compound, see: Priya et al. (2011[Priya, M. G. R., Zulykama, Y., Girija, K., Murugesh, S. & Perumal, P. T. (2011). Indian J. Chem. Sect. B, 50, 98-102.]). For related structures, see: Li & Feng (2009[Li, M.-J. & Feng, C.-J. (2009). Acta Cryst. E65, o2145.]); Li et al. (2010[Li, D.-L., Wu, Y., Wang, Q., He, G. & Yu, L.-T. (2010). Acta Cryst. E66, o447.]). For the biological activity of quinazoline derivatives, see: Wolfe et al. (1990[Wolfe, J. F., Rathman, T. L., Sleevi, M. C., Campbell, J. S. A. & Greenwood, T. D. (1990). J. Med. Chem. 33, 161-166.]); Tereshima et al. (1995[Tereshima, K., Shimamura, H., Kawase, A., Tanaka, Y., Tanimura, T., Ishizuka, Y. & Sato, M. (1995). Chem. Pharm. Bull. 45, 2021-2023.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Declera, E. (1999). Pharmaceutica Acta Helv., 74, 11-17.]). For graph-set notation see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9ClN2O

  • Mr = 256.68

  • Monoclinic, P 21 /n

  • a = 16.9531 (8) Å

  • b = 3.9290 (3) Å

  • c = 17.2740 (8) Å

  • β = 91.626 (3)°

  • V = 1150.14 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.926, Tmax = 0.938

  • 11055 measured reflections

  • 2920 independent reflections

  • 1870 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.133

  • S = 1.01

  • 2920 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N1i 0.93 2.47 3.281 (2) 145
C13—H13⋯O1ii 0.93 2.37 3.145 (2) 140
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4(3H)-Quinazolinones are an important class of fused heterocycles with a wide range of biological activities such as anti–cancer (Wolfe et al.,1990), anti-inflammatory (Tereshima et al.,1995), anti–HIV (Pandeya et al., 1999). In addition to that, the quinazolinones exibit anti–bacterial and anti–bacterial and anti-fungal activities (Priya et al., 2011).

In title molecule (Fig. 1), the quinazoline unit is essentially planar, with a mean deviation of 0.027 (2) Å from the least–squares plane defined by the ten constituent atoms. The dihedral angle formed by the 4-chlorophenyl ring and the mean plane of the quinazoline fragment is 44.63 (5)°. In the crystal packing (Fig. 2), molecules are linked by intermolecular C—H···N and C—H···O hydrogen bonds (Table 1). These hydrogen bonds are forming infinite chains of alternating R22(6) dimer and R22(14) ring motifs (Bernstein et al., 1995) as shown in Fig. 2.

Related literature top

For the synthesis of the title compound, see: Priya et al. (2011). For related structures, see: Li & Feng (2009); Li et al. (2010). For the biological activity of quinazoline derivatives, see: Wolfe et al. (1990); Tereshima et al. (1995); Pandeya et al. (1999). For graph-set notation see: Bernstein et al. (1995).

Experimental top

To an ice–cold solution of POCl3 in DMF was added anthranilic acid (0.01458 mole) and stirred for 5–10 min until TLC indicated the disappearance of anthranilic acid. The reaction-mixture was treated with the respective primary aromatic amine (0.01458 mol) and supported on anhydrous sodium sulfate (five times the weight of anthranilic acid) and exposed to microwave (BPL company) irradiation (600 W) for 2–4 min with 30 sec pulse. The reaction-mixture was quenched with water (50 ml) and extracted with ethyl acetate (2x50 ml). The organic layer was dried over anhydrous sodium sulfate, concentrated and purified by silica gel column chromatography (60–20 mesh) using hexane/EtOAc (7.5:2.5) as eluent to yield the pure product. Single crystals suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding model with fixed isotropic displacement parameter: Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···N and C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y + 2, - z + 1; (ii) - x - 3/2, y + 1/2, - z + 1/2; (iii) - x + 3/2, y - 1/2, - z + 1/2.]
3-(4-Chlorophenyl)quinazolin-4(3H)-one top
Crystal data top
C14H9ClN2OF(000) = 528
Mr = 256.68Dx = 1.482 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1025 reflections
a = 16.9531 (8) Åθ = 1.7–28.5°
b = 3.9290 (3) ŵ = 0.32 mm1
c = 17.2740 (8) ÅT = 293 K
β = 91.626 (3)°Block, colourless
V = 1150.14 (12) Å30.24 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2920 independent reflections
Radiation source: fine-focus sealed tube1870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω and ϕ scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2221
Tmin = 0.926, Tmax = 0.938k = 55
11055 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.133H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.0848P]
where P = (Fo2 + 2Fc2)/3
2920 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H9ClN2OV = 1150.14 (12) Å3
Mr = 256.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.9531 (8) ŵ = 0.32 mm1
b = 3.9290 (3) ÅT = 293 K
c = 17.2740 (8) Å0.24 × 0.22 × 0.20 mm
β = 91.626 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2920 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1870 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.938Rint = 0.042
11055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
2920 reflectionsΔρmin = 0.22 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.91232 (3)0.26102 (17)0.49055 (3)0.0650 (2)
O10.61097 (8)0.3729 (5)0.25686 (8)0.0644 (5)
C10.46221 (11)0.6243 (6)0.19774 (10)0.0517 (5)
H10.49330.51490.16190.062*
C20.38879 (13)0.7399 (6)0.17572 (11)0.0578 (5)
H20.37040.71180.12490.069*
C30.34179 (12)0.8996 (6)0.22962 (12)0.0575 (5)
H30.29160.97520.21480.069*
C40.36884 (11)0.9464 (6)0.30462 (11)0.0525 (5)
H40.33701.05380.34020.063*
C50.44358 (10)0.8339 (5)0.32744 (9)0.0419 (4)
C60.49087 (10)0.6695 (5)0.27370 (9)0.0426 (4)
C70.54095 (11)0.7942 (5)0.42122 (9)0.0445 (4)
H70.55900.83530.47170.053*
C80.56863 (10)0.5452 (5)0.29697 (9)0.0448 (4)
C90.67020 (10)0.5459 (5)0.40206 (8)0.0405 (4)
C100.68006 (10)0.3971 (5)0.47428 (9)0.0455 (4)
H100.63630.35210.50390.055*
C110.75439 (11)0.3154 (5)0.50233 (10)0.0486 (5)
H110.76130.21970.55130.058*
C120.81859 (10)0.3767 (5)0.45721 (10)0.0452 (4)
C130.80960 (10)0.5292 (6)0.38568 (9)0.0480 (5)
H130.85350.57250.35620.058*
C140.73563 (10)0.6173 (5)0.35806 (9)0.0452 (4)
H140.72930.72400.31020.054*
N10.47068 (8)0.8923 (5)0.40344 (8)0.0477 (4)
N20.59244 (8)0.6340 (4)0.37290 (7)0.0407 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0495 (3)0.0838 (5)0.0615 (3)0.0035 (3)0.0001 (2)0.0062 (3)
O10.0570 (8)0.0892 (13)0.0473 (7)0.0129 (8)0.0066 (6)0.0291 (7)
C10.0586 (11)0.0583 (14)0.0383 (9)0.0053 (10)0.0062 (8)0.0070 (8)
C20.0656 (12)0.0634 (15)0.0440 (10)0.0081 (10)0.0057 (9)0.0006 (9)
C30.0517 (11)0.0605 (15)0.0602 (11)0.0006 (10)0.0027 (9)0.0063 (10)
C40.0504 (10)0.0526 (14)0.0550 (10)0.0007 (9)0.0110 (8)0.0012 (9)
C50.0440 (9)0.0444 (12)0.0377 (8)0.0070 (7)0.0090 (7)0.0022 (7)
C60.0484 (9)0.0436 (12)0.0362 (8)0.0077 (8)0.0083 (7)0.0036 (7)
C70.0466 (9)0.0546 (13)0.0329 (8)0.0053 (8)0.0117 (7)0.0093 (7)
C80.0485 (10)0.0515 (13)0.0349 (8)0.0036 (8)0.0095 (7)0.0097 (8)
C90.0447 (9)0.0437 (12)0.0334 (8)0.0052 (8)0.0085 (6)0.0051 (7)
C100.0477 (10)0.0545 (13)0.0349 (8)0.0097 (8)0.0131 (7)0.0009 (8)
C110.0542 (11)0.0560 (14)0.0359 (8)0.0071 (9)0.0062 (7)0.0047 (8)
C120.0441 (9)0.0493 (12)0.0424 (9)0.0026 (8)0.0050 (7)0.0003 (8)
C130.0453 (10)0.0566 (14)0.0428 (9)0.0072 (9)0.0138 (7)0.0022 (8)
C140.0513 (10)0.0506 (12)0.0343 (8)0.0054 (8)0.0109 (7)0.0021 (8)
N10.0475 (8)0.0582 (11)0.0378 (7)0.0000 (7)0.0116 (6)0.0109 (7)
N20.0419 (7)0.0492 (10)0.0315 (6)0.0021 (6)0.0088 (5)0.0074 (6)
Geometric parameters (Å, º) top
Cl1—C121.7353 (18)C7—N21.377 (2)
O1—C81.217 (2)C7—H70.9300
C1—C21.369 (3)C8—N21.405 (2)
C1—C61.397 (2)C9—C101.384 (2)
C1—H10.9300C9—C141.391 (2)
C2—C31.392 (3)C9—N21.440 (2)
C2—H20.9300C10—C111.375 (3)
C3—C41.374 (3)C10—H100.9300
C3—H30.9300C11—C121.378 (2)
C4—C51.389 (3)C11—H110.9300
C4—H40.9300C12—C131.378 (3)
C5—N11.398 (2)C13—C141.373 (3)
C5—C61.401 (2)C13—H130.9300
C6—C81.452 (3)C14—H140.9300
C7—N11.281 (2)
C2—C1—C6120.52 (18)N2—C8—C6114.17 (14)
C2—C1—H1119.7C10—C9—C14120.00 (16)
C6—C1—H1119.7C10—C9—N2120.19 (14)
C1—C2—C3119.81 (18)C14—C9—N2119.79 (15)
C1—C2—H2120.1C11—C10—C9120.16 (15)
C3—C2—H2120.1C11—C10—H10119.9
C4—C3—C2120.59 (19)C9—C10—H10119.9
C4—C3—H3119.7C10—C11—C12119.38 (16)
C2—C3—H3119.7C10—C11—H11120.3
C3—C4—C5120.15 (18)C12—C11—H11120.3
C3—C4—H4119.9C13—C12—C11120.94 (16)
C5—C4—H4119.9C13—C12—Cl1119.24 (13)
C4—C5—N1119.17 (16)C11—C12—Cl1119.81 (14)
C4—C5—C6119.56 (16)C14—C13—C12119.86 (16)
N1—C5—C6121.26 (16)C14—C13—H13120.1
C1—C6—C5119.36 (17)C12—C13—H13120.1
C1—C6—C8120.40 (16)C13—C14—C9119.60 (16)
C5—C6—C8120.24 (15)C13—C14—H14120.2
N1—C7—N2126.39 (15)C9—C14—H14120.2
N1—C7—H7116.8C7—N1—C5117.04 (14)
N2—C7—H7116.8C7—N2—C8120.60 (14)
O1—C8—N2120.72 (16)C7—N2—C9119.18 (13)
O1—C8—C6125.10 (15)C8—N2—C9120.18 (13)
C6—C1—C2—C30.9 (3)C10—C11—C12—Cl1177.74 (16)
C1—C2—C3—C40.9 (3)C11—C12—C13—C141.0 (3)
C2—C3—C4—C50.1 (3)Cl1—C12—C13—C14178.99 (16)
C3—C4—C5—N1178.32 (19)C12—C13—C14—C91.1 (3)
C3—C4—C5—C60.6 (3)C10—C9—C14—C132.1 (3)
C2—C1—C6—C50.2 (3)N2—C9—C14—C13179.22 (18)
C2—C1—C6—C8179.71 (19)N2—C7—N1—C50.6 (3)
C4—C5—C6—C10.6 (3)C4—C5—N1—C7177.73 (19)
N1—C5—C6—C1178.32 (18)C6—C5—N1—C71.2 (3)
C4—C5—C6—C8178.96 (18)N1—C7—N2—C83.5 (3)
N1—C5—C6—C82.1 (3)N1—C7—N2—C9178.92 (19)
C1—C6—C8—O16.6 (3)O1—C8—N2—C7172.35 (19)
C5—C6—C8—O1172.9 (2)C6—C8—N2—C76.3 (3)
C1—C6—C8—N2174.76 (17)O1—C8—N2—C95.2 (3)
C5—C6—C8—N25.7 (3)C6—C8—N2—C9176.13 (16)
C14—C9—C10—C110.8 (3)C10—C9—N2—C744.8 (3)
N2—C9—C10—C11179.52 (18)C14—C9—N2—C7133.95 (19)
C9—C10—C11—C121.4 (3)C10—C9—N2—C8132.82 (19)
C10—C11—C12—C132.3 (3)C14—C9—N2—C848.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N1i0.932.473.281 (2)145
C13—H13···O1ii0.932.373.145 (2)140
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H9ClN2O
Mr256.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)16.9531 (8), 3.9290 (3), 17.2740 (8)
β (°) 91.626 (3)
V3)1150.14 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.926, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
11055, 2920, 1870
Rint0.042
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.133, 1.01
No. of reflections2920
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N1i0.932.473.281 (2)145
C13—H13···O1ii0.932.373.145 (2)140
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

TS and DV thank the TBI, X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and a DST inspire fellowship for financial support

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, M.-J. & Feng, C.-J. (2009). Acta Cryst. E65, o2145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, D.-L., Wu, Y., Wang, Q., He, G. & Yu, L.-T. (2010). Acta Cryst. E66, o447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Declera, E. (1999). Pharmaceutica Acta Helv., 74, 11–17.  CrossRef CAS Google Scholar
First citationPriya, M. G. R., Zulykama, Y., Girija, K., Murugesh, S. & Perumal, P. T. (2011). Indian J. Chem. Sect. B, 50, 98–102.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTereshima, K., Shimamura, H., Kawase, A., Tanaka, Y., Tanimura, T., Ishizuka, Y. & Sato, M. (1995). Chem. Pharm. Bull. 45, 2021–2023.  Google Scholar
First citationWolfe, J. F., Rathman, T. L., Sleevi, M. C., Campbell, J. S. A. & Greenwood, T. D. (1990). J. Med. Chem. 33, 161–166.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds