organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Methyl­phen­yl)[2-(thio­phen-2-ylcarbon­yl)phen­yl]methanone

aCAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 25, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 25, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 29 July 2011; accepted 10 August 2011; online 17 August 2011)

The crystal studied of the title compound, C19H14O2S, was an inversion twin with a 0.7 (1):0.3 (1) domain ratio. The central benzene ring makes dihedral angles of 63.31 (9) and 60.86 (9)°, respectively, with the 4-methyl­phenyl and thio­phene rings. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds and S⋯π [3.609 (3) Å] inter­actions.

Related literature

For the biological activity of thiophene derivatives, see: Bonini et al. (2005[Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580-6583.]); Brault et al. (2005[Brault, L., Migianu, E., Neguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757-760.]); Isloora et al. (2010[Isloora, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem. 45, 825-830.]); Xia et al. (2010[Xia, G.-M., Ji, M.-W., Lu, P., Sun, G.-X. & Xu, W.-F. (2010). Acta Cryst. E66, o148.]). For related structures, see: Ranjith et al. (2011[Ranjith, S., Sakthi Murugesan, K., Subbiah Pandi, A., Dhayalan, V. & Mohana Krishnan, A. K. (2011). Acta Cryst. E67, o1688.]); Dufresne & Skene (2010[Dufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3027.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14O2S

  • Mr = 306.36

  • Orthorhombic, P 21 21 21

  • a = 6.8748 (2) Å

  • b = 13.3291 (4) Å

  • c = 16.8667 (5) Å

  • V = 1545.58 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.948, Tmax = 0.960

  • 14787 measured reflections

  • 3757 independent reflections

  • 3073 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.154

  • S = 1.04

  • 3757 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1564 Friedel pairs

  • Flack parameter: 0.31 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.93 2.51 3.386 (3) 158
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiophene derivatives exhibit anti–HIVPR inhibitors (Bonini et al., 2005) and anti–breast cancer(Brault et al., 2005) activities. In addition, some of the benzo[b]thiophene derivatives show significant antimicrobial and anti–inflammatory activities (Isloora et al., 2010). The thiophene derivates have been viewed as significant compounds for application in many fields (Xia et al., 2010). Against this background, we report herein the crystal structure of the title compound.

The title compound crystallizes as the non–centrosymmetric space group P212121 in spite of having no asymmetric C atoms. The crystal studied was an inversion twin with a 0.7 (1):0.3 (1) domain ratio.

In the title compound (Fig. 1), The bond lengths and angles agree with those observed in other thiophene derivative (Ranjith et al., 2011). The benzene ring makes the dihedral angles of 63.31 (9)° and 60.86 (9)°, respectively with the 4–methylphenyl and thiophene rings. The thiophene ring makes the dihedral angle of 75.04 (9)° with respect to 4–methylphenyl ring, it shows that both rings are almost perpendicular to each other. The molecular packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds; the first one between a benzene H atom and the O atom of the CO unit (Table 1, C8—H8···O1i), and the second one between a benzene H atom and the O atom of the CO unit (Table 1, C9—H9···O2ii). The molecular packing (Fig. 2) is further stabilized by a weak intermolecular S···π interaction the thiophene S atom and the 4–methylphenyl ring, with a S1···Cgiv [3.609 (3) Å] (Cg is the centroid of the C13–C18 phenyl ring).

Related literature top

For the biological activity of t hiophene derivatives, see: Bonini et al. (2005); Brault et al. (2005); Isloora et al. (2010); Xia et al. (2010). For a related structure, see: Ranjith et al. (2011). For related literature, see: Dufresne & Skene (2010).

Experimental top

The furan 1 g was dissolved in THF. The weighted lead tetracetone (1.52 g, 1520 m mol) was added to the furan. Then it was refluxed at 343 K for 0.5 h. The reaction mixture was checked for TLC. Then the usual workup was done with brine solution and CHCl3 follwed by column chromatography (10% AcOEt/hexane) lead to the solution of the pure compound. Single crystals suitable for X–ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of showing the atom–numbering scheme and intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the C—H···O and S···π interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x, y + 1/2 , - z + 1/2; (ii) - x + 1 , y + 1/2, - z + 1/2; (iii) - x , y -1/2, - z + 1/2; (iv) - x + 1, y - 1/2, - z + 1/2. ]
(4-Methylphenyl)[2-(thiophen-2-ylcarbonyl)phenyl]methanone top
Crystal data top
C19H14O2SF(000) = 640
Mr = 306.36Dx = 1.317 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3758 reflections
a = 6.8748 (2) Åθ = 2.0–28.2°
b = 13.3291 (4) ŵ = 0.21 mm1
c = 16.8667 (5) ÅT = 293 K
V = 1545.58 (8) Å3Block, white crystalline
Z = 40.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3757 independent reflections
Radiation source: fine-focus sealed tube3073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 28.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.948, Tmax = 0.960k = 1717
14787 measured reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0975P)2 + 0.2738P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3757 reflectionsΔρmax = 0.84 e Å3
195 parametersΔρmin = 0.38 e Å3
0 restraintsAbsolute structure: Flack (1983), 1564 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.31 (11)
Crystal data top
C19H14O2SV = 1545.58 (8) Å3
Mr = 306.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.8748 (2) ŵ = 0.21 mm1
b = 13.3291 (4) ÅT = 293 K
c = 16.8667 (5) Å0.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3757 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3073 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.960Rint = 0.027
14787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.154Δρmax = 0.84 e Å3
S = 1.04Δρmin = 0.38 e Å3
3757 reflectionsAbsolute structure: Flack (1983), 1564 Friedel pairs
195 parametersAbsolute structure parameter: 0.31 (11)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1784 (5)0.1736 (3)0.51343 (18)0.0572 (8)
H10.16930.12320.55140.069*
C20.1844 (4)0.2720 (2)0.53175 (14)0.0457 (4)
H20.17900.29490.58380.055*
C30.2000 (4)0.3398 (2)0.46487 (14)0.0457 (4)
H30.20650.40950.46650.055*
C40.2035 (4)0.27597 (17)0.39395 (13)0.0364 (5)
C50.2388 (3)0.30681 (16)0.31244 (13)0.0336 (5)
C60.2404 (4)0.41697 (16)0.29365 (12)0.0335 (5)
C70.0825 (4)0.4758 (2)0.31315 (15)0.0438 (6)
H70.02010.44870.34200.053*
C80.0768 (5)0.5760 (2)0.28959 (17)0.0536 (7)
H80.02960.61570.30270.064*
C90.2277 (5)0.61580 (19)0.24717 (16)0.0544 (7)
H90.22350.68280.23180.065*
C100.3856 (5)0.55782 (18)0.22697 (15)0.0462 (6)
H100.48720.58590.19810.055*
C110.3943 (4)0.45704 (16)0.24953 (13)0.0347 (5)
C120.5750 (4)0.39723 (16)0.23542 (13)0.0353 (5)
C130.6576 (4)0.39061 (17)0.15393 (14)0.0370 (5)
C140.5507 (4)0.41308 (19)0.08690 (16)0.0439 (6)
H140.42230.43400.09200.053*
C150.6323 (5)0.4049 (2)0.01220 (15)0.0525 (7)
H150.55730.41910.03230.063*
C160.8252 (5)0.3755 (2)0.00285 (15)0.0519 (7)
C170.9301 (5)0.3518 (2)0.06999 (17)0.0543 (7)
H171.05860.33110.06500.065*
C180.8480 (4)0.3583 (2)0.14457 (16)0.0463 (6)
H180.92110.34090.18890.056*
C190.9150 (7)0.3703 (3)0.07938 (19)0.0795 (11)
H19A0.85440.31740.10910.119*
H19B1.05190.35720.07480.119*
H19C0.89550.43310.10620.119*
O10.2661 (3)0.24586 (12)0.25971 (10)0.0490 (5)
O20.6549 (3)0.35775 (15)0.29111 (10)0.0483 (5)
S10.18865 (12)0.15059 (5)0.41576 (4)0.0541 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0465 (16)0.0748 (19)0.0504 (16)0.0050 (15)0.0071 (13)0.0224 (14)
C20.0344 (9)0.0752 (12)0.0275 (7)0.0050 (9)0.0001 (7)0.0048 (8)
C30.0344 (9)0.0752 (12)0.0275 (7)0.0050 (9)0.0001 (7)0.0048 (8)
C40.0339 (12)0.0403 (11)0.0351 (11)0.0001 (10)0.0018 (10)0.0025 (9)
C50.0315 (12)0.0366 (10)0.0327 (11)0.0048 (9)0.0016 (9)0.0011 (8)
C60.0402 (13)0.0333 (10)0.0271 (10)0.0022 (9)0.0007 (9)0.0001 (8)
C70.0419 (15)0.0500 (13)0.0394 (13)0.0057 (12)0.0032 (11)0.0017 (11)
C80.0650 (19)0.0483 (14)0.0476 (14)0.0202 (14)0.0050 (14)0.0002 (12)
C90.084 (2)0.0355 (11)0.0438 (14)0.0101 (13)0.0057 (15)0.0066 (10)
C100.0640 (18)0.0370 (11)0.0378 (12)0.0016 (12)0.0100 (12)0.0066 (10)
C110.0431 (13)0.0346 (10)0.0265 (10)0.0024 (9)0.0003 (9)0.0005 (8)
C120.0379 (12)0.0375 (11)0.0304 (11)0.0072 (9)0.0002 (9)0.0015 (9)
C130.0448 (14)0.0351 (10)0.0311 (11)0.0057 (10)0.0025 (10)0.0011 (9)
C140.0475 (15)0.0488 (13)0.0352 (12)0.0052 (11)0.0001 (11)0.0020 (11)
C150.066 (2)0.0595 (16)0.0317 (13)0.0077 (14)0.0008 (12)0.0007 (11)
C160.073 (2)0.0504 (14)0.0327 (12)0.0000 (15)0.0097 (13)0.0047 (10)
C170.0479 (15)0.0639 (17)0.0512 (16)0.0054 (14)0.0120 (13)0.0039 (14)
C180.0435 (15)0.0566 (14)0.0386 (13)0.0029 (13)0.0020 (11)0.0016 (11)
C190.107 (3)0.091 (2)0.0410 (16)0.014 (2)0.0258 (18)0.0050 (16)
O10.0730 (14)0.0372 (8)0.0369 (8)0.0093 (8)0.0091 (9)0.0068 (7)
O20.0488 (11)0.0629 (11)0.0333 (9)0.0044 (9)0.0005 (8)0.0104 (8)
S10.0591 (4)0.0503 (4)0.0529 (4)0.0018 (3)0.0079 (3)0.0118 (3)
Geometric parameters (Å, º) top
C1—C21.348 (5)C10—C111.397 (3)
C1—S11.677 (3)C10—H100.9300
C1—H10.9300C11—C121.495 (3)
C2—C31.449 (4)C12—O21.209 (3)
C2—H20.9300C12—C131.490 (3)
C3—C41.468 (3)C13—C141.381 (4)
C3—H30.9300C13—C181.387 (4)
C4—C51.455 (3)C14—C151.383 (4)
C4—S11.714 (2)C14—H140.9300
C5—O11.219 (3)C15—C161.392 (5)
C5—C61.502 (3)C15—H150.9300
C6—C71.379 (3)C16—C171.379 (4)
C6—C111.399 (3)C16—C191.520 (4)
C7—C81.393 (4)C17—C181.381 (4)
C7—H70.9300C17—H170.9300
C8—C91.367 (4)C18—H180.9300
C8—H80.9300C19—H19A0.9600
C9—C101.375 (4)C19—H19B0.9600
C9—H90.9300C19—H19C0.9600
C2—C1—S1113.7 (2)C10—C11—C12120.3 (2)
C2—C1—H1123.2C6—C11—C12120.61 (19)
S1—C1—H1123.2O2—C12—C13121.2 (2)
C1—C2—C3115.5 (3)O2—C12—C11119.1 (2)
C1—C2—H2122.2C13—C12—C11119.7 (2)
C3—C2—H2122.2C14—C13—C18118.4 (2)
C2—C3—C4105.9 (2)C14—C13—C12122.7 (2)
C2—C3—H3127.0C18—C13—C12118.9 (2)
C4—C3—H3127.0C13—C14—C15120.9 (3)
C5—C4—C3127.5 (2)C13—C14—H14119.6
C5—C4—S1119.21 (17)C15—C14—H14119.6
C3—C4—S1112.90 (18)C14—C15—C16120.8 (3)
O1—C5—C4121.8 (2)C14—C15—H15119.6
O1—C5—C6119.7 (2)C16—C15—H15119.6
C4—C5—C6118.5 (2)C17—C16—C15118.0 (3)
C7—C6—C11120.3 (2)C17—C16—C19121.8 (3)
C7—C6—C5120.0 (2)C15—C16—C19120.2 (3)
C11—C6—C5119.4 (2)C16—C17—C18121.3 (3)
C6—C7—C8119.9 (3)C16—C17—H17119.3
C6—C7—H7120.0C18—C17—H17119.3
C8—C7—H7120.0C17—C18—C13120.6 (3)
C9—C8—C7120.0 (3)C17—C18—H18119.7
C9—C8—H8120.0C13—C18—H18119.7
C7—C8—H8120.0C16—C19—H19A109.5
C8—C9—C10120.7 (2)C16—C19—H19B109.5
C8—C9—H9119.7H19A—C19—H19B109.5
C10—C9—H9119.7C16—C19—H19C109.5
C9—C10—C11120.4 (3)H19A—C19—H19C109.5
C9—C10—H10119.8H19B—C19—H19C109.5
C11—C10—H10119.8C1—S1—C492.00 (14)
C10—C11—C6118.6 (2)
S1—C1—C2—C30.4 (4)C5—C6—C11—C1212.7 (3)
C1—C2—C3—C40.3 (3)C10—C11—C12—O2122.4 (3)
C2—C3—C4—C5172.8 (2)C6—C11—C12—O250.0 (3)
C2—C3—C4—S10.0 (3)C10—C11—C12—C1355.2 (3)
C3—C4—C5—O1169.2 (2)C6—C11—C12—C13132.4 (2)
S1—C4—C5—O13.1 (3)O2—C12—C13—C14164.1 (2)
C3—C4—C5—C611.0 (4)C11—C12—C13—C1418.3 (3)
S1—C4—C5—C6176.69 (18)O2—C12—C13—C1814.3 (3)
O1—C5—C6—C7124.5 (3)C11—C12—C13—C18163.3 (2)
C4—C5—C6—C755.3 (3)C18—C13—C14—C150.8 (4)
O1—C5—C6—C1149.3 (3)C12—C13—C14—C15179.3 (2)
C4—C5—C6—C11131.0 (2)C13—C14—C15—C161.2 (4)
C11—C6—C7—C80.7 (4)C14—C15—C16—C172.0 (4)
C5—C6—C7—C8174.4 (2)C14—C15—C16—C19177.8 (3)
C6—C7—C8—C90.0 (4)C15—C16—C17—C180.9 (5)
C7—C8—C9—C100.3 (5)C19—C16—C17—C18178.9 (3)
C8—C9—C10—C110.0 (4)C16—C17—C18—C131.1 (5)
C9—C10—C11—C60.7 (4)C14—C13—C18—C171.9 (4)
C9—C10—C11—C12173.2 (3)C12—C13—C18—C17179.6 (3)
C7—C6—C11—C101.0 (3)C2—C1—S1—C40.3 (3)
C5—C6—C11—C10174.8 (2)C5—C4—S1—C1173.2 (2)
C7—C6—C11—C12173.5 (2)C3—C4—S1—C10.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.513.386 (3)158
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H14O2S
Mr306.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.8748 (2), 13.3291 (4), 16.8667 (5)
V3)1545.58 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.948, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
14787, 3757, 3073
Rint0.027
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.154, 1.04
No. of reflections3757
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.38
Absolute structureFlack (1983), 1564 Friedel pairs
Absolute structure parameter0.31 (11)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.513.386 (3)157.7
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

VS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationBonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580–6583.  Web of Science CrossRef CAS Google Scholar
First citationBrault, L., Migianu, E., Neguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIsloora, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem. 45, 825–830.  Web of Science PubMed Google Scholar
First citationRanjith, S., Sakthi Murugesan, K., Subbiah Pandi, A., Dhayalan, V. & Mohana Krishnan, A. K. (2011). Acta Cryst. E67, o1688.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, G.-M., Ji, M.-W., Lu, P., Sun, G.-X. & Xu, W.-F. (2010). Acta Cryst. E66, o148.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds