organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(tert-But­­oxy­carbonyl­amino)­­oxy]acetic acid

aSchool of Pharmacy Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bDepartment of Quality Detection and Management, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: jyzhang2004@126.com

(Received 1 August 2011; accepted 8 August 2011; online 11 August 2011)

The title compound, C7H13NO5, was prepared by the condensation of O-(carb­oxy­meth­yl)hydroxyl­amine and (Boc)2O (Boc = but­oxy­carbon­yl).In the crystal, mol­ecules are linked by weak inter­molecular N—H⋯O hydrogen bonds.

Related literature

For applications and structural studies of N-Boc-O-(carb­oxy­meth­yl)hydroxyl­amine, see: Vandersse et al. (2003[Vandersse, R., Thevenet, L., Marraud, M., Boggetto, N., Reboud, M. & Corbier, C. (2003). J. Pept. Sci. 9, 282-299.]); Deroo et al., 2003[Deroo, S., Defrancq, E., Moucheron, C., Kirsch-De Mesmaeker, A. & Dumy, P. (2003). Tetrahedron Lett. 44, 8379-8382.].

[Scheme 1]

Experimental

Crystal data
  • C7H13NO5

  • Mr = 191.18

  • Monoclinic, P 21 /c

  • a = 5.9973 (5) Å

  • b = 10.1292 (13) Å

  • c = 15.6445 (17) Å

  • β = 90.570 (1)°

  • V = 950.32 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.43 × 0.33 × 0.31 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.966

  • 4733 measured reflections

  • 1670 independent reflections

  • 1073 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.210

  • S = 1.00

  • 1670 reflections

  • 126 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.92 (5) 2.50 (5) 3.413 (4) 174 (4)
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N–(tert–Butoxycarbonyl)–O– (carboxymethyl)hydroxylamine is an important building block having a broad spectrum of applications in the biochemical fields (Vandersse et al., 2003; Deroo et al., 2003). As a contribution in this filed, we report here the crystal structure of the title compound.

The molecular structure of title compound is shown in Fig. 1. The crystal packing (Fig. 2) is stabilized by weak intermolecular N—H···O hydrogen bonds between the amine H atom and the O atom of the hydroxy group (Table, N1—H1···O2i).

Related literature top

For applications and structural studies of N-Boc-O-(carboxymethyl)hydroxylamine, see: Vandersse et al. (2003); Deroo et al., 2003.

Experimental top

(Boc)2O (21.8 g, 0.10 mol) was added to a stirred solution of O–(carboxymethyl)hydroxylamine (9.1 g, 0.10 mol) in dioxane. The mixture was stirred at 303 K for 2 h. Then mixture was concentrated and purified by crystallization from MeOH. Single crystals suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in MeOH at room temperature.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms, with C—H = 0.93–0.96 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C) or 1.5U eq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N—H···O interactions (dotted lines) in the crystal structure of the title compound.
2-[(tert-Butoxycarbonylamino)oxy]acetic acid top
Crystal data top
C7H13NO5F(000) = 408
Mr = 191.18Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1234 reflections
a = 5.9973 (5) Åθ = 2.4–22.0°
b = 10.1292 (13) ŵ = 0.11 mm1
c = 15.6445 (17) ÅT = 298 K
β = 90.570 (1)°Block, colorless
V = 950.32 (18) Å30.43 × 0.33 × 0.31 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1670 independent reflections
Radiation source: fine-focus sealed tube1073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.953, Tmax = 0.966k = 912
4733 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: difference Fourier map
wR(F2) = 0.210H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.112P)2 + 0.8197P]
where P = (Fo2 + 2Fc2)/3
1670 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C7H13NO5V = 950.32 (18) Å3
Mr = 191.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9973 (5) ŵ = 0.11 mm1
b = 10.1292 (13) ÅT = 298 K
c = 15.6445 (17) Å0.43 × 0.33 × 0.31 mm
β = 90.570 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1670 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1073 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.966Rint = 0.062
4733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.210H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.48 e Å3
1670 reflectionsΔρmin = 0.44 e Å3
126 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6083 (5)0.1502 (3)0.0709 (2)0.0435 (8)
O10.8143 (4)0.3814 (3)0.00926 (18)0.0496 (8)
O21.1753 (4)0.3574 (3)0.02405 (19)0.0520 (8)
H21.22470.32450.06820.078*
O30.7431 (4)0.1152 (2)0.00116 (15)0.0437 (7)
O40.3937 (4)0.0832 (3)0.17426 (16)0.0444 (7)
O50.6762 (5)0.0506 (3)0.13138 (17)0.0521 (8)
C10.9751 (6)0.3117 (4)0.0088 (2)0.0370 (9)
C20.9609 (6)0.1647 (4)0.0151 (2)0.0416 (9)
H2A1.06010.12580.02650.050*
H2B1.01220.13750.07150.050*
C30.5677 (6)0.0477 (4)0.1261 (2)0.0374 (9)
C40.3312 (6)0.0044 (4)0.2499 (2)0.0376 (9)
C50.1486 (8)0.0912 (5)0.2878 (3)0.0669 (13)
H5A0.21110.17450.30470.100*
H5B0.08670.04810.33680.100*
H5C0.03340.10530.24580.100*
C60.2369 (8)0.1253 (5)0.2217 (3)0.0641 (13)
H6A0.11420.11050.18300.096*
H6B0.18580.17340.27060.096*
H6C0.35020.17540.19340.096*
C70.5264 (7)0.0085 (5)0.3105 (3)0.0609 (13)
H7A0.64140.05980.28410.091*
H7B0.47920.05150.36190.091*
H7C0.58320.07770.32420.091*
H10.488 (8)0.201 (5)0.055 (3)0.073 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0441 (19)0.0384 (18)0.0481 (18)0.0007 (15)0.0160 (15)0.0042 (15)
O10.0395 (15)0.0400 (16)0.0693 (18)0.0018 (12)0.0014 (13)0.0117 (14)
O20.0406 (16)0.0477 (17)0.0673 (19)0.0051 (13)0.0115 (13)0.0054 (14)
O30.0464 (15)0.0420 (16)0.0431 (15)0.0094 (12)0.0127 (12)0.0056 (12)
O40.0411 (15)0.0457 (16)0.0467 (15)0.0067 (12)0.0124 (12)0.0116 (12)
O50.0501 (16)0.0496 (17)0.0569 (17)0.0137 (14)0.0129 (13)0.0108 (14)
C10.039 (2)0.039 (2)0.0332 (18)0.0018 (17)0.0045 (15)0.0012 (15)
C20.039 (2)0.037 (2)0.049 (2)0.0025 (16)0.0072 (16)0.0003 (17)
C30.0346 (19)0.038 (2)0.040 (2)0.0018 (17)0.0060 (16)0.0007 (17)
C40.0320 (19)0.046 (2)0.0347 (19)0.0039 (16)0.0068 (15)0.0084 (15)
C50.059 (3)0.082 (4)0.059 (3)0.010 (3)0.019 (2)0.008 (2)
C60.068 (3)0.059 (3)0.065 (3)0.017 (2)0.006 (2)0.009 (2)
C70.047 (2)0.082 (4)0.053 (3)0.007 (2)0.002 (2)0.015 (2)
Geometric parameters (Å, º) top
N1—C31.374 (5)C4—C61.496 (6)
N1—O31.410 (4)C4—C71.505 (6)
N1—H10.92 (5)C4—C51.529 (6)
O1—C11.226 (4)C5—H5A0.9600
O2—C11.306 (4)C5—H5B0.9600
O2—H20.8200C5—H5C0.9600
O3—C21.414 (4)C6—H6A0.9600
O4—C31.342 (4)C6—H6B0.9600
O4—C41.479 (4)C6—H6C0.9600
O5—C31.192 (4)C7—H7A0.9600
C1—C21.496 (5)C7—H7B0.9600
C2—H2A0.9700C7—H7C0.9600
C2—H2B0.9700
C3—N1—O3113.8 (3)O4—C4—C5100.9 (3)
C3—N1—H1117 (3)C6—C4—C5110.4 (3)
O3—N1—H1113 (3)C7—C4—C5111.1 (4)
C1—O2—H2109.5C4—C5—H5A109.5
N1—O3—C2109.1 (3)C4—C5—H5B109.5
C3—O4—C4120.6 (3)H5A—C5—H5B109.5
O1—C1—O2123.9 (4)C4—C5—H5C109.5
O1—C1—C2122.9 (3)H5A—C5—H5C109.5
O2—C1—C2113.2 (3)H5B—C5—H5C109.5
O3—C2—C1113.3 (3)C4—C6—H6A109.5
O3—C2—H2A108.9C4—C6—H6B109.5
C1—C2—H2A108.9H6A—C6—H6B109.5
O3—C2—H2B108.9C4—C6—H6C109.5
C1—C2—H2B108.9H6A—C6—H6C109.5
H2A—C2—H2B107.7H6B—C6—H6C109.5
O5—C3—O4127.7 (3)C4—C7—H7A109.5
O5—C3—N1125.1 (3)C4—C7—H7B109.5
O4—C3—N1107.1 (3)H7A—C7—H7B109.5
O4—C4—C6109.7 (3)C4—C7—H7C109.5
O4—C4—C7110.4 (3)H7A—C7—H7C109.5
C6—C4—C7113.5 (4)H7B—C7—H7C109.5
C3—N1—O3—C2103.9 (3)O3—N1—C3—O519.7 (5)
N1—O3—C2—C170.1 (4)O3—N1—C3—O4163.5 (3)
O1—C1—C2—O32.1 (5)C3—O4—C4—C669.9 (4)
O2—C1—C2—O3178.3 (3)C3—O4—C4—C756.0 (4)
C4—O4—C3—O57.1 (6)C3—O4—C4—C5173.6 (3)
C4—O4—C3—N1169.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.92 (5)2.50 (5)3.413 (4)174 (4)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H13NO5
Mr191.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.9973 (5), 10.1292 (13), 15.6445 (17)
β (°) 90.570 (1)
V3)950.32 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.43 × 0.33 × 0.31
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.953, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
4733, 1670, 1073
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.210, 1.00
No. of reflections1670
No. of parameters126
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.44

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.92 (5)2.50 (5)3.413 (4)174 (4)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support from the Doctoral Foundation (BSJJ2009–07) of Henan University of Traditional Chinese Medicine.

References

First citationDeroo, S., Defrancq, E., Moucheron, C., Kirsch-De Mesmaeker, A. & Dumy, P. (2003). Tetrahedron Lett. 44, 8379–8382.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVandersse, R., Thevenet, L., Marraud, M., Boggetto, N., Reboud, M. & Corbier, C. (2003). J. Pept. Sci. 9, 282–299.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds