organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 3-oxo-2,3-di­hydro-1,2-benzo­thia­zole-2-carboxyl­ate

aInstitute of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China, bHainan Provincial Fine Chemical Engineering Center, Hainan University, Haikou 570228, People's Republic of China, cCollege of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571100, People's Republic of China, and dInstitute of Materials and Chemical Engineering, Hainan University, Haikou 570228, People's Republic of China
*Correspondence e-mail: linqianggroup@163.com

(Received 5 August 2011; accepted 20 August 2011; online 27 August 2011)

The title compound, C11H11NO3S, was synthesized by the reaction of benzo[d]isothia­zol-3(2H)-one with isopropanol in toluene. The benzoisothia­zolone ring system is essentially planar, with a mean deviation of 0.018 (2) Å from the least–squares plane defined by the nine constituent atoms. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background to the sythesis of benzoisothia­zolone derivatives, see: Davis (1972[Davis, M. (1972). Adv. Heterocycl. Chem. 14, 43-98.]); Elgazwy & Abdel-Sattar (2003[Elgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445-7463.]). For the biological activity of 1, 2–benzoisothia­zolone derivatives, see: Taubert et al. (2002[Taubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79-81.]). For structural studies of related alkyl 3-oxo-2,3-dihydro-1,2-benzothia­zole-2-carboxyl­ate derivatives, see: Wang et al. (2011a[Wang, X., Yang, J., You, C. & Lin, Q. (2011a). Acta Cryst. E67, o2237.],b[Wang, X., Yang, J., You, C. & Lin, Q. (2011b). Acta Cryst. E67, o2238.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO3S

  • Mr = 237.27

  • Orthorhombic, P 21 21 21

  • a = 4.6218 (19) Å

  • b = 11.621 (5) Å

  • c = 20.510 (9) Å

  • V = 1101.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 153 K

  • 0.68 × 0.12 × 0.07 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.830, Tmax = 0.980

  • 9436 measured reflections

  • 2897 independent reflections

  • 2245 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.078

  • S = 1.00

  • 2897 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack, (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1150 Friedel pairs

  • Flack parameter: −0.02 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.47 3.225 (3) 137
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,2-benzoisothiazol-3(2H)-ones are a class of compounds with a wide spectrum of biological activities (Davis, 1972; Elgazwy & Abdel-Sattar, 2003). 1, 2-Benzisothiazolone derivatives have been reported to possess high antibacterial and antifungal activity (Taubert et al., 2002). As a part of our ongoing study of the substituent effect on the solid state structures of alkyl 3-oxo-2,3-dihydro-1,2-benzothiazole-2-carboxylate analogues (Wang, et al., 2011a,b), we report herein the crystal structure of the title compound.

The title compound crystallizes as the non–centrosymmetric space group P 21 21 21 in spite of having no asymmetric C atoms. In the title molecule (Fig. 1), the benzoisothiazolone ring system is essentially planar, with a mean deviation of 0.018 (2) Å from the least–squares plane defined by the nine constituent atoms and the C8–C2–C9–C11 torsion angle is 156.63 (18)°. The crystal packing is stabilized by weak intermolecular C—H···O hydrogen bonds between a benzene H atom and the O atom of the carbonyl group (Table 1; C2—H2···O1i).

Related literature top

For background to the sythesis of benzoisothiazolone derivatives, see: Davis (1972); Elgazwy & Abdel-Sattar (2003). For the biological activity of 1, 2–benzoisothiazolone derivatives, see: Taubert et al. (2002). For structural studies of related alkyl 3-oxo-2,3-dihydro-1,2-benzothiazole-2-carboxylate derivatives, see: Wang et al. (2011a,b).

Experimental top

A solution (20 ml) containing benzo[d]isothiazol-3(2H)-one (1.51 g, 0.01 mol) was added dropwise to a solution of isopropanol (0.61 g, 0.01 mol) and bis(triehloromethyl)Carbonate in toluene (20 ml) under stirring on an ice-water bath. The reaction mixture was stirred at room temperature for 4.5 h to afford the title compound (1.72 g, yield 72.6%). Single crystals suitable for X-ray measurements were obtained by recrystallization of the title compound from cyclohexane at room temperature.

Refinement top

The H atoms were placed at calculated positions and refined in riding mode, with the carrier atom–H distances = 0.95 Å for aryl, 0.99Å for methylene, 0.98 Å for the methyl. The Uiso values were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq for the remaining H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Isopropyl 3-oxo-2,3-dihydro-1,2-benzothiazole-2-carboxylate top
Crystal data top
C11H11NO3SF(000) = 496
Mr = 237.27Dx = 1.431 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3268 reflections
a = 4.6218 (19) Åθ = 2.7–29.1°
b = 11.621 (5) ŵ = 0.28 mm1
c = 20.510 (9) ÅT = 153 K
V = 1101.6 (8) Å3Prism, colorless
Z = 40.68 × 0.12 × 0.07 mm
Data collection top
AFC10/Saturn724+
diffractometer
2897 independent reflections
Radiation source: Rotating Anode2245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 3.5°
phi and ω scansh = 66
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1415
Tmin = 0.830, Tmax = 0.980l = 2826
9436 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.116P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2897 reflectionsΔρmax = 0.26 e Å3
147 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack, (1983), 1150 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Crystal data top
C11H11NO3SV = 1101.6 (8) Å3
Mr = 237.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.6218 (19) ŵ = 0.28 mm1
b = 11.621 (5) ÅT = 153 K
c = 20.510 (9) Å0.68 × 0.12 × 0.07 mm
Data collection top
AFC10/Saturn724+
diffractometer
2897 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2245 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.980Rint = 0.045
9436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.26 e Å3
S = 1.00Δρmin = 0.22 e Å3
2897 reflectionsAbsolute structure: Flack, (1983), 1150 Friedel pairs
147 parametersAbsolute structure parameter: 0.02 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56113 (12)0.76406 (4)0.72970 (2)0.02649 (13)
O10.3920 (3)0.45795 (12)0.67074 (7)0.0339 (4)
O20.7876 (3)0.55858 (12)0.59264 (7)0.0289 (3)
O30.9282 (3)0.73722 (11)0.62359 (6)0.0303 (3)
N10.5743 (4)0.64449 (13)0.67914 (8)0.0231 (4)
C10.3073 (4)0.69457 (17)0.77902 (10)0.0258 (5)
C20.1822 (4)0.73839 (18)0.83559 (10)0.0285 (5)
H20.23270.81240.85160.034*
C30.0175 (5)0.67062 (18)0.86754 (11)0.0333 (6)
H30.10530.69860.90630.040*
C40.0940 (5)0.56146 (18)0.84420 (10)0.0319 (5)
H40.23600.51750.86660.038*
C50.0350 (5)0.51759 (17)0.78915 (10)0.0283 (5)
H50.01280.44280.77380.034*
C60.2375 (5)0.58518 (16)0.75632 (10)0.0236 (4)
C70.3987 (4)0.55027 (18)0.69814 (10)0.0246 (4)
C80.7810 (5)0.65258 (17)0.62952 (10)0.0248 (5)
C90.9960 (4)0.56000 (18)0.53842 (10)0.0293 (5)
H91.17900.59810.55290.035*
C100.8682 (6)0.62614 (19)0.48198 (11)0.0400 (6)
H10A0.68580.59020.46870.048*
H10B1.00410.62540.44530.048*
H10C0.83180.70580.49540.048*
C111.0554 (6)0.43512 (19)0.52321 (12)0.0432 (6)
H11A1.14490.39820.56110.052*
H11B1.18660.42990.48580.052*
H11C0.87310.39610.51280.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0236 (2)0.0281 (3)0.0277 (2)0.0018 (2)0.0024 (2)0.0002 (2)
O10.0339 (9)0.0294 (8)0.0386 (9)0.0041 (7)0.0053 (8)0.0039 (7)
O20.0272 (8)0.0338 (8)0.0256 (8)0.0021 (7)0.0072 (6)0.0037 (7)
O30.0312 (8)0.0314 (8)0.0284 (7)0.0096 (8)0.0033 (7)0.0001 (6)
N10.0192 (8)0.0240 (8)0.0261 (9)0.0014 (8)0.0021 (8)0.0011 (7)
C10.0184 (10)0.0304 (11)0.0286 (11)0.0032 (8)0.0010 (9)0.0056 (9)
C20.0284 (11)0.0292 (11)0.0277 (10)0.0002 (10)0.0001 (9)0.0004 (9)
C30.0330 (14)0.0401 (13)0.0267 (11)0.0055 (10)0.0060 (9)0.0043 (9)
C40.0271 (12)0.0346 (12)0.0341 (12)0.0014 (11)0.0050 (10)0.0105 (10)
C50.0234 (11)0.0239 (11)0.0376 (12)0.0004 (9)0.0024 (10)0.0040 (9)
C60.0181 (10)0.0255 (11)0.0273 (11)0.0031 (8)0.0042 (8)0.0048 (8)
C70.0172 (10)0.0290 (11)0.0275 (10)0.0003 (9)0.0023 (9)0.0047 (8)
C80.0218 (11)0.0313 (12)0.0215 (10)0.0023 (9)0.0029 (9)0.0028 (9)
C90.0262 (13)0.0373 (12)0.0244 (10)0.0021 (10)0.0055 (9)0.0009 (9)
C100.0405 (16)0.0507 (14)0.0289 (12)0.0036 (12)0.0017 (11)0.0002 (11)
C110.0464 (15)0.0454 (13)0.0377 (13)0.0011 (14)0.0115 (13)0.0039 (11)
Geometric parameters (Å, º) top
S1—N11.7349 (17)C4—C51.375 (3)
S1—C11.747 (2)C4—H40.9500
O1—C71.212 (2)C5—C61.395 (3)
O2—C81.329 (2)C5—H50.9500
O2—C91.472 (2)C6—C71.464 (3)
O3—C81.202 (2)C9—C111.509 (3)
N1—C81.399 (3)C9—C101.510 (3)
N1—C71.418 (3)C9—H91.0000
C1—C61.392 (3)C10—H10A0.9800
C1—C21.393 (3)C10—H10B0.9800
C2—C31.379 (3)C10—H10C0.9800
C2—H20.9500C11—H11A0.9800
C3—C41.401 (3)C11—H11B0.9800
C3—H30.9500C11—H11C0.9800
N1—S1—C189.97 (9)O1—C7—C6127.63 (19)
C8—O2—C9115.85 (16)N1—C7—C6107.53 (17)
C8—N1—C7130.00 (17)O3—C8—O2127.0 (2)
C8—N1—S1113.89 (13)O3—C8—N1121.00 (19)
C7—N1—S1115.74 (14)O2—C8—N1112.00 (17)
C6—C1—C2121.1 (2)O2—C9—C11105.33 (17)
C6—C1—S1112.58 (15)O2—C9—C10109.20 (17)
C2—C1—S1126.31 (17)C11—C9—C10113.71 (19)
C3—C2—C1117.7 (2)O2—C9—H9109.5
C3—C2—H2121.1C11—C9—H9109.5
C1—C2—H2121.1C10—C9—H9109.5
C2—C3—C4121.6 (2)C9—C10—H10A109.5
C2—C3—H3119.2C9—C10—H10B109.5
C4—C3—H3119.2H10A—C10—H10B109.5
C5—C4—C3120.5 (2)C9—C10—H10C109.5
C5—C4—H4119.8H10A—C10—H10C109.5
C3—C4—H4119.8H10B—C10—H10C109.5
C4—C5—C6118.6 (2)C9—C11—H11A109.5
C4—C5—H5120.7C9—C11—H11B109.5
C6—C5—H5120.7H11A—C11—H11B109.5
C1—C6—C5120.5 (2)C9—C11—H11C109.5
C1—C6—C7114.09 (18)H11A—C11—H11C109.5
C5—C6—C7125.36 (18)H11B—C11—H11C109.5
O1—C7—N1124.83 (19)
C1—S1—N1—C8175.20 (15)S1—N1—C7—O1175.99 (17)
C1—S1—N1—C71.47 (16)C8—N1—C7—C6175.40 (19)
N1—S1—C1—C60.54 (15)S1—N1—C7—C62.9 (2)
N1—S1—C1—C2178.93 (19)C1—C6—C7—O1175.6 (2)
C6—C1—C2—C31.3 (3)C5—C6—C7—O12.9 (3)
S1—C1—C2—C3179.25 (17)C1—C6—C7—N13.3 (2)
C1—C2—C3—C40.2 (3)C5—C6—C7—N1178.28 (19)
C2—C3—C4—C51.6 (3)C9—O2—C8—O30.8 (3)
C3—C4—C5—C61.6 (3)C9—O2—C8—N1179.12 (16)
C2—C1—C6—C51.4 (3)C7—N1—C8—O3173.8 (2)
S1—C1—C6—C5179.12 (16)S1—N1—C8—O31.2 (3)
C2—C1—C6—C7177.15 (18)C7—N1—C8—O26.3 (3)
S1—C1—C6—C72.3 (2)S1—N1—C8—O2178.90 (13)
C4—C5—C6—C10.1 (3)C8—O2—C9—C11156.63 (18)
C4—C5—C6—C7178.46 (19)C8—O2—C9—C1080.9 (2)
C8—N1—C7—O13.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.473.225 (3)137
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H11NO3S
Mr237.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)153
a, b, c (Å)4.6218 (19), 11.621 (5), 20.510 (9)
V3)1101.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.68 × 0.12 × 0.07
Data collection
DiffractometerAFC10/Saturn724+
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.830, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
9436, 2897, 2245
Rint0.045
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.078, 1.00
No. of reflections2897
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22
Absolute structureFlack, (1983), 1150 Friedel pairs
Absolute structure parameter0.02 (8)

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.473.225 (3)136.9
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20962007) and the Creative Talents Plan of Hainan University 211 Project.

References

First citationDavis, M. (1972). Adv. Heterocycl. Chem. 14, 43–98.  CrossRef CAS Google Scholar
First citationElgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445–7463.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79–81.  CrossRef CAS Google Scholar
First citationWang, X., Yang, J., You, C. & Lin, Q. (2011a). Acta Cryst. E67, o2237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X., Yang, J., You, C. & Lin, Q. (2011b). Acta Cryst. E67, o2238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds