organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­iodo-2,2′-[(3aR,7aR)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl)bis­­(methyl­ene)]diphenol

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 11 July 2011; accepted 25 July 2011; online 6 August 2011)

In the crystal structure of the title compound, C21H24I2N2O2, the two N atoms of the imidazolidine moiety are linked to the hy­droxy groups by intra­molecular O—H⋯N hydrogen-bonding inter­actions. The cyclo­hexane ring adopts a chair conformation and the heterocyclic ring to which it is fused has a twisted envelope conformation.

Related literature

For related structures, see: Rivera et al. (2010[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o2643.], 2011a[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011a). Acta Cryst. E67, o753.],b[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011b). Acta Cryst. E67, o1542.]); Merz (2006[Merz, K. (2006). Cryst. Growth Des. 6, 1615-1619.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24I2N2O2

  • Mr = 590.2

  • Monoclinic, C 2

  • a = 24.5822 (12) Å

  • b = 6.1121 (3) Å

  • c = 16.5557 (10) Å

  • β = 121.119 (6)°

  • V = 2129.5 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 23.34 mm−1

  • T = 120 K

  • 0.26 × 0.12 × 0.05 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini Ultra Cu) detector

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.074, Tmax = 0.424

  • 11449 measured reflections

  • 3650 independent reflections

  • 3397 reflections with I > 3σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.30

  • 3650 reflections

  • 250 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.87 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1566 Friedel pairs

  • Flack parameter: 0.079 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.84 (10) 1.90 (7) 2.672 (9) 152 (11)
O2—H2O⋯N2 0.84 (8) 1.91 (8) 2.686 (9) 154 (8)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

In our investigations we have obtained a new family of Mannich bases from the aminal cage (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo- [8.8.1.18,170.2,70.11,16]icosane and p-halophenols (p-XPhOH) where the p-substituent in the aromatic ring was Cl, Br or F (Rivera, et al. 2010, 2011a, 2011b). The X-ray diffraction analyses suggested an influence of resonance and inductive effects in the strength of hydrogen bonding interaction. To complete the halogen series, we report here the synthesis and crystal structure of the title compound (I). The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. Its X-ray structure confirms the presence of intramolecular hydrogen bonds between the phenolic hydroxyl groups and nitrogen atoms (Table 1) which are longer in comparison with related structures (Rivera, et al. 2010, 2011a). The observed N···O distances and the observed C–O bond lengths [1.363 (12) Å and 1.372 (10) Å] are longer in relation to the p-chloro and p-bromo related structures, but these values are in a good agreement with the p-fluoro derivative (Rivera et al. 2011b). These results indicate a decrease in hydrogen-bonding strength due to the presence of iodine atom, which is the less electronegative atom. The C—I bond lengths (I1—C13, 2.105 (10) Å; I2—C20, 2.108 (8) Å) are in good agreement with the value reported for iodophenols (2-iodophenol, 2.078 (9) Å; 3-iodophenol, 2.109 (5) Å; 4-iodophenol, 2.104 (5) Å; Merz, 2006). There are endocyclic angle distortions on the aromatic ring, which are associated with electron-withdrawing substituent and electron releasing substituent effect. The slightly enlarged C12—C13—C14 and C19—C20—C21 angles are a few degrees larger than 120°, showing an effect of the iodine group on benzene ring geometries. The endocyclic C10—C9—C14 and C17—C16—C21 angle values are few degrees less than 120° (where there are o-aminomethylene groups on C9 and C16). The cyclohexanediamine fragment adopts a chair conformation showing intraanular C—C—C bond angle values in the range of 107.9 (8) ° to 112.5 (6) ° which are close to normal tetrahedral bond angles. The nitrogen lone pairs are oriented in an anti-axial conformation; therefore the heterocyclic ring adopts a twisted envelope conformation.

Related literature top

For related structures, see: Rivera et al. (2010, 2011a,b); Merz (2006).

Experimental top

Physical Measurements

The melting point was determined with an Electrothermal apparatus. NMR spectra were performed in CDCl3 at room temperature on a Bruker AMX 400 Advance spectrometer.

Preparation of 4,4'-Diiodo-2,2'-{[(3aR,7aR)-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3- benzimidazole-1,3-diyl)] bis(methylene)]}diphenol) (I)

A solution of p-iodophenol (440 mg, 2.00 mmol) in dioxane (3 ml) was added dropwise to (2R,7R,11S,16S)-1,8,10,17-tetraazapenta- cyclo[8.8.1.18,17.02,7.011,16]icosane (276 mg, 1.00 mmol) in dioxane (3 ml) and water (4 ml). The mixture was refluxed for about 6 h. The solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 25%, m.p. = 477–479 K). The crude product (100 mg, 0.169 mmol) was dissolved in 5 ml of a 4:1 mixture of chloroform: methanol. Single crystals of the title compound (I) suitable for X-ray analysis were grown by slow evaporation of the solvent from a chloroform:methanol mixture at room temperature over a period of about 2 weeks. (yield 35%). 1H NMR (CDCl3, 400 MHz): δ 1.29 (4H, m), 1.85 (2H, m), 2.05 (2H, m), 2.32 (2H, m), 3.39 (2H, d, 2J = 14.0 Hz, ArCH2N), 3.50 (2H, s, NCH2N), 4.13 (2H, d, 2J = 14.0 Hz, ArCH2N), 6.59 (2H, d, 3J = 8.4 Hz), 7.23 (2H, s), 7.43 (2H, d, 3J = 8.4 Hz), 10.57 (2H, bs, ArOH). 13C NMR (CDCl3, 100 MHz): δ 23.9, 28.8, 55.6, 69.0, 75.7, 80.8, 118.6, 124.0, 136.5, 137.8, 157.3.

Refinement top

The hydrogen attached to C atoms were positioned geometrically and kept in ideal positions with C–H distance 0.96 Å during the refinement. The hydroxyl hydrogen atoms were found in difference Fourier maps and refined with a distance restraint d(O—H) = 0.84 (2) Å. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom. The absolute structure was determined on the basis of 1566 Friedel pairs.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-({3-[(2-hydroxy-5-iodophenyl)methyl]-octahydro-1H- 1,3-benzodiazol-1-yl}methyl)-4-iodophenol top
Crystal data top
C21H24I2N2O2F(000) = 1144
Mr = 590.2Dx = 1.840 Mg m3
Monoclinic, C2Cu Kα radiation, λ = 1.5418 Å
Hall symbol: C 2yCell parameters from 5885 reflections
a = 24.5822 (12) Åθ = 3.1–67.1°
b = 6.1121 (3) ŵ = 23.34 mm1
c = 16.5557 (10) ÅT = 120 K
β = 121.119 (6)°Prism, colourless
V = 2129.5 (2) Å30.26 × 0.12 × 0.05 mm
Z = 4
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
3650 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3397 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.062
Detector resolution: 10.3784 pixels mm-1θmax = 67.2°, θmin = 3.1°
Rotation method data acquisition using ω scansh = 2929
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
k = 77
Tmin = 0.074, Tmax = 0.424l = 1919
11449 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
wR(F2) = 0.106(Δ/σ)max = 0.038
S = 1.30Δρmax = 0.85 e Å3
3650 reflectionsΔρmin = 0.87 e Å3
250 parametersAbsolute structure: Flack (1983), 1566 Friedel pairs
2 restraintsAbsolute structure parameter: 0.079 (13)
91 constraints
Crystal data top
C21H24I2N2O2V = 2129.5 (2) Å3
Mr = 590.2Z = 4
Monoclinic, C2Cu Kα radiation
a = 24.5822 (12) ŵ = 23.34 mm1
b = 6.1121 (3) ÅT = 120 K
c = 16.5557 (10) Å0.26 × 0.12 × 0.05 mm
β = 121.119 (6)°
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
3650 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
3397 reflections with I > 3σ(I)
Tmin = 0.074, Tmax = 0.424Rint = 0.062
11449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106Δρmax = 0.85 e Å3
S = 1.30Δρmin = 0.87 e Å3
3650 reflectionsAbsolute structure: Flack (1983), 1566 Friedel pairs
250 parametersAbsolute structure parameter: 0.079 (13)
2 restraints
Special details top

Experimental. CrysAlis Pro (Agilent, 2010), Analytical numeric absorption correction using a multifaceted crystal model.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

The absolute structure was determined on the basis of 1566 Friedel pairs (Flack, 1983),

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.40926 (2)0.388850.03435 (3)0.0457 (2)
I20.54564 (3)0.34180 (15)0.67075 (4)0.0621 (3)
O10.2558 (2)0.8312 (10)0.1940 (3)0.040 (2)
O20.2940 (3)0.1604 (11)0.4035 (4)0.054 (3)
N10.2165 (3)0.4306 (11)0.2051 (4)0.034 (2)
N20.2436 (3)0.2401 (11)0.3459 (4)0.035 (3)
C10.2707 (3)0.3359 (13)0.2912 (4)0.034 (3)
C20.1598 (3)0.3332 (14)0.1992 (4)0.036 (3)
C30.1790 (3)0.3314 (15)0.3014 (5)0.038 (3)
C40.1317 (4)0.2045 (16)0.3154 (6)0.045 (4)
C50.0666 (4)0.314 (2)0.2559 (6)0.061 (5)
C60.0474 (3)0.335 (2)0.1518 (5)0.051 (4)
C70.0975 (4)0.4517 (15)0.1400 (5)0.042 (3)
C80.2198 (3)0.3905 (16)0.1187 (4)0.031 (3)
C90.2733 (3)0.5131 (13)0.1224 (5)0.034 (3)
C100.2890 (4)0.7266 (14)0.1603 (5)0.035 (3)
C110.3386 (3)0.8414 (15)0.1623 (4)0.037 (3)
C120.3732 (4)0.7461 (14)0.1254 (5)0.042 (3)
C130.3568 (4)0.5396 (14)0.0869 (5)0.037 (3)
C140.3084 (3)0.4225 (12)0.0860 (4)0.031 (3)
C150.2835 (4)0.2855 (14)0.4477 (5)0.038 (3)
C160.3459 (4)0.1688 (14)0.4877 (5)0.038 (3)
C170.3489 (4)0.0472 (14)0.4615 (5)0.042 (4)
C180.4071 (4)0.1506 (18)0.4971 (6)0.052 (4)
C190.4628 (5)0.0464 (14)0.5584 (6)0.046 (4)
C200.4608 (4)0.1693 (16)0.5825 (6)0.047 (4)
C210.4035 (4)0.2758 (15)0.5479 (5)0.041 (3)
H1a0.300180.4498070.3274860.041*
H1b0.2896980.2220210.2739890.041*
H20.1501560.1943680.1676350.0427*
H30.1790950.4700590.3287240.046*
H4a0.1442240.2088870.3807350.0534*
H4b0.1293690.0565840.2943650.0534*
H5a0.0677020.4568160.2810370.0736*
H5b0.0351320.230680.2601040.0736*
H6a0.0398280.1924230.1239060.0611*
H6b0.0078880.4129180.1175670.0611*
H7a0.0856230.4470240.0749010.0506*
H7b0.1017310.6000350.1615220.0506*
H8a0.225180.2368210.1130220.0373*
H8b0.1805620.4343850.063910.0373*
H110.3491330.9857490.1888850.0443*
H120.407710.8236320.1270370.05*
H140.2987250.2773910.0601120.0371*
H15a0.2907760.4401170.4573540.0451*
H15b0.262040.2360750.4790590.0451*
H180.4083290.2983270.4783830.0625*
H190.5027060.1217140.5843290.0552*
H210.4029930.4252370.5654160.0489*
H1O0.240 (4)0.728 (11)0.209 (7)0.0482*
H2O0.270 (4)0.059 (13)0.370 (7)0.0643*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0504 (2)0.0491 (3)0.0454 (2)0.0022 (2)0.0304 (2)0.0027 (2)
I20.0572 (3)0.0623 (5)0.0429 (3)0.0124 (3)0.0089 (2)0.0038 (3)
O10.054 (3)0.030 (3)0.042 (2)0.003 (2)0.028 (2)0.001 (2)
O20.090 (4)0.025 (4)0.047 (3)0.007 (3)0.036 (3)0.004 (3)
N10.045 (3)0.031 (4)0.029 (3)0.005 (2)0.021 (2)0.004 (2)
N20.048 (3)0.032 (4)0.026 (3)0.007 (3)0.020 (3)0.003 (2)
C10.045 (3)0.030 (4)0.031 (3)0.005 (3)0.022 (3)0.000 (3)
C20.045 (3)0.035 (5)0.033 (3)0.008 (3)0.025 (3)0.003 (3)
C30.050 (4)0.033 (5)0.034 (3)0.005 (3)0.024 (3)0.001 (3)
C40.058 (4)0.046 (5)0.039 (4)0.011 (4)0.031 (4)0.000 (4)
C50.057 (5)0.088 (9)0.047 (4)0.008 (5)0.033 (4)0.001 (5)
C60.042 (4)0.070 (7)0.044 (4)0.009 (4)0.025 (3)0.006 (5)
C70.051 (4)0.043 (5)0.034 (4)0.004 (3)0.022 (3)0.000 (3)
C80.039 (3)0.023 (4)0.026 (3)0.001 (3)0.013 (2)0.006 (3)
C90.043 (4)0.034 (5)0.022 (3)0.000 (3)0.015 (3)0.007 (3)
C100.041 (4)0.034 (5)0.028 (3)0.004 (3)0.016 (3)0.003 (3)
C110.047 (3)0.029 (5)0.029 (3)0.005 (3)0.016 (3)0.003 (3)
C120.046 (4)0.040 (5)0.034 (4)0.006 (3)0.017 (3)0.004 (3)
C130.043 (4)0.040 (5)0.033 (4)0.001 (3)0.022 (3)0.001 (3)
C140.046 (3)0.020 (4)0.023 (3)0.004 (3)0.015 (3)0.000 (3)
C150.059 (4)0.031 (5)0.029 (3)0.005 (3)0.028 (3)0.001 (3)
C160.062 (5)0.025 (4)0.028 (4)0.003 (3)0.024 (4)0.002 (3)
C170.075 (5)0.025 (5)0.033 (4)0.004 (4)0.034 (4)0.003 (3)
C180.092 (6)0.028 (6)0.048 (4)0.008 (5)0.044 (4)0.003 (4)
C190.078 (6)0.031 (5)0.041 (4)0.014 (4)0.039 (4)0.009 (3)
C200.060 (5)0.043 (5)0.034 (4)0.013 (4)0.023 (4)0.009 (4)
C210.063 (5)0.032 (5)0.027 (3)0.006 (3)0.023 (3)0.003 (3)
Geometric parameters (Å, º) top
I1—C132.105 (10)C6—H6b0.96
I2—C202.108 (8)C7—H7a0.96
O1—C101.363 (12)C7—H7b0.96
O1—H1O0.84 (10)C8—C91.488 (12)
O2—C171.372 (10)C8—H8a0.96
O2—H2O0.84 (8)C8—H8b0.96
N1—C11.476 (7)C9—C101.412 (11)
N1—C21.471 (11)C9—C141.396 (13)
N1—C81.494 (11)C10—C111.392 (13)
N2—C11.494 (12)C11—C121.405 (14)
N2—C31.473 (10)C11—H110.96
N2—C151.472 (9)C12—C131.377 (12)
C1—H1a0.96C12—H120.96
C1—H1b0.96C13—C141.383 (12)
C2—C31.503 (11)C14—H140.96
C2—C71.510 (10)C15—C161.501 (12)
C2—H20.96C15—H15a0.96
C3—C41.511 (14)C15—H15b0.96
C3—H30.96C16—C171.404 (12)
C4—C51.532 (12)C16—C211.402 (11)
C4—H4a0.96C17—C181.385 (14)
C4—H4b0.96C18—C191.370 (12)
C5—C61.539 (13)C18—H180.96
C5—H5a0.96C19—C201.385 (13)
C5—H5b0.96C19—H190.96
C6—C71.520 (15)C20—C211.380 (13)
C6—H6a0.96C21—H210.96
C10—O1—H1O104 (7)H7a—C7—H7b110.9091
C17—O2—H2O101 (6)N1—C8—C9111.3 (6)
C1—N1—C2104.8 (6)N1—C8—H8a109.4702
C1—N1—C8113.0 (6)N1—C8—H8b109.4715
C2—N1—C8112.9 (5)C9—C8—H8a109.4718
C1—N2—C3104.6 (6)C9—C8—H8b109.4709
C1—N2—C15112.3 (6)H8a—C8—H8b107.5975
C3—N2—C15114.1 (7)C8—C9—C10121.1 (9)
N1—C1—N2106.1 (6)C8—C9—C14120.8 (7)
N1—C1—H1a109.4714C10—C9—C14118.1 (8)
N1—C1—H1b109.4713O1—C10—C9122.1 (8)
N2—C1—H1a109.472O1—C10—C11117.2 (7)
N2—C1—H1b109.471C9—C10—C11120.7 (9)
H1a—C1—H1b112.6582C10—C11—C12120.0 (8)
N1—C2—C3101.2 (5)C10—C11—H11119.9796
N1—C2—C7117.1 (7)C12—C11—H11119.9777
N1—C2—H2110.6437C11—C12—C13118.9 (9)
C3—C2—C7110.9 (8)C11—C12—H12120.5572
C3—C2—H2116.8819C13—C12—H12120.5582
C7—C2—H2100.8307I1—C13—C12119.8 (7)
N2—C3—C2101.3 (7)I1—C13—C14118.5 (6)
N2—C3—C4116.5 (7)C12—C13—C14121.6 (9)
N2—C3—H3111.0115C9—C14—C13120.7 (7)
C2—C3—C4111.0 (6)C9—C14—H14119.6736
C2—C3—H3116.5093C13—C14—H14119.6733
C4—C3—H3101.3338N2—C15—C16109.9 (8)
C3—C4—C5107.9 (8)N2—C15—H15a109.4717
C3—C4—H4a109.4721N2—C15—H15b109.4717
C3—C4—H4b109.4725C16—C15—H15a109.4703
C5—C4—H4a109.4701C16—C15—H15b109.471
C5—C4—H4b109.47H15a—C15—H15b109.0826
H4a—C4—H4b111.0366C15—C16—C17121.1 (7)
C4—C5—C6111.8 (9)C15—C16—C21121.2 (8)
C4—C5—H5a109.4716C17—C16—C21117.6 (8)
C4—C5—H5b109.4713O2—C17—C16120.0 (8)
C6—C5—H5a109.4709O2—C17—C18119.6 (8)
C6—C5—H5b109.4715C16—C17—C18120.4 (8)
H5a—C5—H5b107.0854C17—C18—C19121.3 (10)
C5—C6—C7112.5 (6)C17—C18—H18119.3262
C5—C6—H6a109.4704C19—C18—H18119.324
C5—C6—H6b109.4702C18—C19—C20119.0 (9)
C7—C6—H6a109.4723C18—C19—H19120.5016
C7—C6—H6b109.4718C20—C19—H19120.5014
H6a—C6—H6b106.2371I2—C20—C19120.4 (7)
C2—C7—C6108.0 (7)I2—C20—C21118.9 (7)
C2—C7—H7a109.4703C19—C20—C21120.7 (8)
C2—C7—H7b109.4705C16—C21—C20120.9 (8)
C6—C7—H7a109.4719C16—C21—H21119.5344
C6—C7—H7b109.4721C20—C21—H21119.5335
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.84 (10)1.90 (7)2.672 (9)152 (11)
O2—H2O···N20.84 (8)1.91 (8)2.686 (9)154 (8)

Experimental details

Crystal data
Chemical formulaC21H24I2N2O2
Mr590.2
Crystal system, space groupMonoclinic, C2
Temperature (K)120
a, b, c (Å)24.5822 (12), 6.1121 (3), 16.5557 (10)
β (°) 121.119 (6)
V3)2129.5 (2)
Z4
Radiation typeCu Kα
µ (mm1)23.34
Crystal size (mm)0.26 × 0.12 × 0.05
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.074, 0.424
No. of measured, independent and
observed [I > 3σ(I)] reflections
11449, 3650, 3397
Rint0.062
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.30
No. of reflections3650
No. of parameters250
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.87
Absolute structureFlack (1983), 1566 Friedel pairs
Absolute structure parameter0.079 (13)

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.84 (10)1.90 (7)2.672 (9)152 (11)
O2—H2O···N20.84 (8)1.91 (8)2.686 (9)154 (8)
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as grant No. 204/11/0809 of the Czech Science Foundation.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMerz, K. (2006). Cryst. Growth Des. 6, 1615–1619.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o2643.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011a). Acta Cryst. E67, o753.  CrossRef IUCr Journals Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011b). Acta Cryst. E67, o1542.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds