organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(3-chloro­phen­yl)malonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 26 July 2011; accepted 3 August 2011; online 11 August 2011)

The asymmetric unit of the title compound, C15H12Cl2N2O2, contains two independent mol­ecules. In both independent mol­ecules, the N—H bond in one of the amide fragments is anti to the meta-chloro group of the adjacent benzene ring and that in the other amide group is syn to the other meta-chloro group. Furthermore, in both mol­ecules, each amide group is almost coplanar with the adjacent phenyl ring, making dihedral angles of 10.5 (2) and 8.7 (2)° in one molecule and 9.0 (2) and 9.6 (2)° in the other. The planes of the amide groups are inclined at dihedral angles of 83.4 (1) and 87.4 (1)° in the two mol­ecules. In the crystal, mol­ecules are linked into a chain by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004[Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141-1159.]); Gowda et al. (2010[Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o3037.]); Saraswathi et al. (2011[Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o966.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.]) and on N-chloro-aryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403-425.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Cl2N2O2

  • Mr = 323.17

  • Monoclinic, P 21 /c

  • a = 10.9209 (8) Å

  • b = 16.416 (1) Å

  • c = 17.490 (1) Å

  • β = 105.260 (6)°

  • V = 3025.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.48 × 0.28 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.819, Tmax = 0.903

  • 12003 measured reflections

  • 5164 independent reflections

  • 2767 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.114

  • S = 0.96

  • 5164 reflections

  • 391 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.84 (2) 2.11 (2) 2.950 (3) 176 (3)
N2—H2N⋯O4i 0.87 (2) 2.11 (2) 2.961 (3) 169 (3)
N3—H3N⋯O1ii 0.85 (2) 2.09 (2) 2.939 (3) 173 (2)
N4—H4N⋯O2 0.85 (2) 2.12 (2) 2.947 (3) 168 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are important constituents of many biologically significant compounds. As a part of studying the substituent effects on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004, Gowda et al., 2010, Saraswathi et al., 2011); N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-chloro-arylsulfonamides (Gowda & Kumar, 2003), in the present work, the structure of N,N-bis(3-chlorophenyl)-malonamide (I) has been determined (Fig.1). The asymmetric unit of (I) contains two independent molecules. The conformations of all the N—H, C=O and C—H bonds in the central amide and aliphatic segments are anti to their adjacent bonds. Further, in both of the independent molecules, the N—H bonds in the amide fragments are anti to the meta-chloro groups in one of the adjacent benzene rings and syn to the meta-chloro group in the other, in contrast to the syn conformations of the N—H bonds with respect to the meta-methyl groups in the adjacent benzene rings of N,N-bis(3-methylphenyl)-malonamide (II)(Gowda et al., 2010) and anti conformations of the N—H bonds with respect to the meta-chloro groups in N,N- bis(3-chlorophenyl)-succinamide (III) (Saraswathi et al., 2011).

In the geometry of the molecule, each amide group is almost coplanar with the adjacent phenyl rings, as indicated by the dihedral angles of 10.5 (2)°, 8.7 (2)° (molecule 1) and 9.0 (2)°, 9.6 (2)° (molecule 2), compared to the value of 9.2 (2)° in (II). The planes of amide groups are inclined at angles of 83.4 (1)° (molecule 1) and 87.4 (1)° (molecule 2), in contrast to the value of 68.5 (1)° in (II). The phenyl rings of the two molecules make a dihedral angle of 21.5 (1)°.

In the crystal, the molecules are linked into chains by intermolecular N–H···O hydrogen bonding as shown in Fig. 2 (Table 1) .

Related literature top

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Arjunan et al. (2004); Gowda et al. (2010); Saraswathi et al. (2011), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and on N-chloro-arylsulfonamides, see: Gowda & Kumar (2003).

Experimental top

Malonic acid (0.3 mol) in dichloromethane (30 ml) was treated with m-chloroaniline (0.6 mol) in dichloromethane (30 ml), dropwise with stirring. The resulting mixture was stirred for 3 hrs and kept aside for 12 hrs for the completion of reaction and evaporation of the solvent, dichloromethane. The product obtained was added to crushed ice to obtain the precipitate. The latter was thoroughly washed with water and then with saturated sodium bicarbonate solution and washed again with water. It was then given a wash with 2 N HCl. It was again washed with water, filtered, dried and recrystallized to the constant melting point from ethanol.

Prism like colorless single crystals of the title compound used in X-ray diffraction studies were obtained by a slow evaporation of its ehanolic solution at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and the methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of (I) with hydrogen bonding shown as dashed lines.
N,N'-Bis(3-chlorophenyl)malonamide top
Crystal data top
C15H12Cl2N2O2F(000) = 1328
Mr = 323.17Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2892 reflections
a = 10.9209 (8) Åθ = 2.7–27.8°
b = 16.416 (1) ŵ = 0.43 mm1
c = 17.490 (1) ÅT = 293 K
β = 105.260 (6)°Prism, colourless
V = 3025.0 (3) Å30.48 × 0.28 × 0.24 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5164 independent reflections
Radiation source: fine-focus sealed tube2767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Rotation method data acquisition using ω and ϕ scansθmax = 25.2°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1312
Tmin = 0.819, Tmax = 0.903k = 1918
12003 measured reflectionsl = 2015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0536P)2]
where P = (Fo2 + 2Fc2)/3
5164 reflections(Δ/σ)max < 0.001
391 parametersΔρmax = 0.25 e Å3
4 restraintsΔρmin = 0.29 e Å3
Crystal data top
C15H12Cl2N2O2V = 3025.0 (3) Å3
Mr = 323.17Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.9209 (8) ŵ = 0.43 mm1
b = 16.416 (1) ÅT = 293 K
c = 17.490 (1) Å0.48 × 0.28 × 0.24 mm
β = 105.260 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5164 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2767 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.903Rint = 0.027
12003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0474 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.25 e Å3
5164 reflectionsΔρmin = 0.29 e Å3
391 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.08136 (11)0.24962 (7)0.09253 (6)0.1097 (4)
Cl21.03780 (9)0.56633 (6)0.20849 (5)0.0876 (3)
O10.42401 (19)0.33751 (13)0.14639 (11)0.0623 (6)
O20.6972 (2)0.21642 (13)0.22591 (12)0.0640 (6)
N10.3525 (2)0.22476 (16)0.19545 (14)0.0479 (7)
H1N0.375 (3)0.1947 (15)0.2358 (12)0.058*
N20.7334 (2)0.35055 (16)0.25539 (13)0.0464 (6)
H2N0.702 (2)0.3931 (13)0.2729 (15)0.056*
C10.2485 (3)0.20088 (18)0.13298 (19)0.0495 (8)
C20.2199 (3)0.23552 (19)0.05850 (18)0.0541 (8)
H20.26920.27770.04720.065*
C30.1173 (3)0.2066 (2)0.0013 (2)0.0684 (10)
C40.0426 (3)0.1446 (3)0.0162 (3)0.0912 (13)
H40.02710.12610.02290.109*
C50.0740 (4)0.1104 (3)0.0908 (3)0.1005 (14)
H50.02570.06750.10180.121*
C60.1748 (3)0.1384 (2)0.1490 (2)0.0751 (10)
H60.19350.11540.19930.090*
C70.4340 (3)0.28635 (19)0.19877 (17)0.0454 (8)
C80.5425 (3)0.28865 (18)0.27290 (15)0.0506 (8)
H8A0.53450.24410.30770.061*
H8B0.54080.33940.30090.061*
C90.6661 (3)0.2813 (2)0.24981 (15)0.0459 (8)
C100.8452 (3)0.3654 (2)0.23050 (15)0.0439 (7)
C110.8857 (3)0.4459 (2)0.23304 (15)0.0504 (8)
H110.84180.48640.25210.060*
C120.9902 (3)0.4656 (2)0.20745 (16)0.0574 (9)
C131.0551 (3)0.4076 (3)0.1792 (2)0.0786 (11)
H131.12600.42120.16180.094*
C141.0143 (4)0.3290 (3)0.1768 (2)0.0896 (12)
H141.05840.28930.15700.108*
C150.9102 (3)0.3058 (2)0.20266 (19)0.0660 (9)
H150.88520.25150.20120.079*
Cl30.23604 (9)0.20233 (6)0.53548 (6)0.0919 (4)
Cl40.20833 (9)0.00640 (8)0.10657 (5)0.1024 (4)
O30.4176 (2)0.11744 (14)0.33566 (12)0.0667 (6)
O40.4030 (2)0.01860 (13)0.18439 (11)0.0593 (6)
N30.4492 (2)0.01203 (14)0.38243 (12)0.0413 (6)
H3N0.488 (2)0.0561 (13)0.3785 (14)0.050*
N40.5293 (2)0.08006 (14)0.15599 (13)0.0438 (6)
H4N0.586 (2)0.1142 (14)0.1768 (14)0.053*
C160.3616 (3)0.01776 (19)0.42933 (13)0.0394 (7)
C170.3449 (3)0.09478 (19)0.45764 (15)0.0465 (8)
H170.39160.13870.44700.056*
C180.2586 (3)0.1056 (2)0.50165 (16)0.0546 (8)
C190.1891 (3)0.0411 (2)0.51849 (17)0.0622 (10)
H190.13080.04890.54810.075*
C200.2076 (3)0.0342 (2)0.49082 (17)0.0622 (9)
H200.16120.07800.50220.075*
C210.2933 (3)0.04743 (19)0.44636 (15)0.0502 (8)
H210.30490.09940.42820.060*
C220.4710 (3)0.0515 (2)0.33970 (15)0.0460 (8)
C230.5658 (3)0.03563 (18)0.29160 (14)0.0490 (8)
H23A0.61150.01460.30870.059*
H23B0.62660.07990.29870.059*
C240.4916 (3)0.02930 (19)0.20509 (16)0.0448 (7)
C250.4727 (3)0.09431 (18)0.07396 (15)0.0429 (7)
C260.3772 (3)0.04626 (19)0.02923 (17)0.0506 (8)
H260.34710.00160.05150.061*
C270.3274 (3)0.0660 (2)0.04923 (18)0.0600 (9)
C280.3689 (3)0.1322 (3)0.08368 (19)0.0762 (11)
H280.33230.14510.13650.091*
C290.4653 (4)0.1787 (2)0.03847 (19)0.0762 (11)
H290.49490.22350.06090.091*
C300.5188 (3)0.15961 (19)0.04018 (17)0.0575 (9)
H300.58560.19060.07020.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1013 (8)0.1303 (10)0.0822 (7)0.0026 (7)0.0028 (6)0.0018 (6)
Cl20.0953 (7)0.0791 (8)0.0886 (7)0.0246 (6)0.0245 (5)0.0113 (5)
O10.0801 (16)0.0477 (15)0.0581 (13)0.0170 (12)0.0161 (11)0.0143 (11)
O20.0779 (16)0.0394 (15)0.0806 (15)0.0013 (12)0.0314 (12)0.0179 (12)
N10.0533 (17)0.0379 (19)0.0581 (17)0.0049 (14)0.0244 (14)0.0116 (13)
N20.0567 (17)0.0329 (19)0.0520 (15)0.0060 (14)0.0183 (12)0.0084 (12)
C10.0450 (19)0.033 (2)0.076 (2)0.0052 (16)0.0267 (17)0.0051 (17)
C20.049 (2)0.045 (2)0.072 (2)0.0011 (17)0.0235 (16)0.0012 (18)
C30.057 (2)0.059 (3)0.084 (3)0.006 (2)0.0103 (19)0.004 (2)
C40.053 (2)0.074 (3)0.134 (4)0.014 (2)0.002 (2)0.015 (3)
C50.070 (3)0.074 (3)0.155 (4)0.022 (2)0.025 (3)0.024 (3)
C60.059 (2)0.056 (3)0.111 (3)0.011 (2)0.024 (2)0.021 (2)
C70.055 (2)0.033 (2)0.0572 (19)0.0008 (17)0.0297 (16)0.0018 (16)
C80.070 (2)0.040 (2)0.0474 (17)0.0036 (17)0.0264 (15)0.0015 (15)
C90.059 (2)0.040 (2)0.0379 (16)0.0043 (19)0.0130 (14)0.0023 (15)
C100.0422 (18)0.046 (2)0.0416 (16)0.0050 (17)0.0085 (13)0.0045 (15)
C110.055 (2)0.049 (2)0.0460 (17)0.0058 (18)0.0122 (14)0.0066 (15)
C120.057 (2)0.063 (3)0.0501 (18)0.0036 (19)0.0098 (15)0.0052 (17)
C130.066 (3)0.086 (3)0.093 (3)0.003 (3)0.037 (2)0.001 (2)
C140.076 (3)0.082 (4)0.129 (3)0.019 (3)0.058 (2)0.013 (3)
C150.067 (2)0.046 (2)0.091 (2)0.0126 (19)0.0323 (19)0.0072 (19)
Cl30.0972 (8)0.0803 (8)0.1077 (7)0.0137 (6)0.0441 (6)0.0323 (6)
Cl40.0661 (6)0.1521 (11)0.0806 (6)0.0219 (6)0.0044 (5)0.0187 (6)
O30.0951 (17)0.0433 (16)0.0743 (14)0.0199 (13)0.0445 (12)0.0203 (11)
O40.0681 (15)0.0522 (16)0.0596 (13)0.0158 (13)0.0202 (11)0.0084 (11)
N30.0560 (16)0.0297 (17)0.0407 (12)0.0078 (13)0.0174 (11)0.0041 (12)
N40.0558 (17)0.0353 (18)0.0450 (15)0.0108 (12)0.0218 (12)0.0038 (12)
C160.0478 (18)0.041 (2)0.0290 (14)0.0003 (16)0.0085 (12)0.0003 (14)
C170.0533 (19)0.042 (2)0.0432 (16)0.0020 (16)0.0102 (14)0.0024 (15)
C180.056 (2)0.059 (3)0.0485 (17)0.0079 (18)0.0140 (15)0.0105 (16)
C190.057 (2)0.082 (3)0.0536 (19)0.006 (2)0.0251 (15)0.002 (2)
C200.067 (2)0.064 (3)0.063 (2)0.0073 (19)0.0289 (17)0.0031 (19)
C210.061 (2)0.043 (2)0.0477 (17)0.0008 (17)0.0171 (15)0.0021 (15)
C220.057 (2)0.040 (2)0.0411 (16)0.0048 (18)0.0137 (14)0.0046 (15)
C230.0547 (19)0.047 (2)0.0492 (17)0.0036 (16)0.0200 (14)0.0108 (15)
C240.0523 (19)0.038 (2)0.0508 (18)0.0014 (17)0.0262 (15)0.0021 (15)
C250.0553 (19)0.040 (2)0.0403 (17)0.0007 (16)0.0255 (14)0.0032 (15)
C260.055 (2)0.050 (2)0.0515 (19)0.0012 (17)0.0233 (15)0.0010 (16)
C270.0464 (19)0.082 (3)0.055 (2)0.0023 (18)0.0182 (16)0.0085 (19)
C280.079 (3)0.111 (4)0.0435 (19)0.002 (2)0.0246 (19)0.009 (2)
C290.097 (3)0.088 (3)0.052 (2)0.015 (2)0.0347 (19)0.011 (2)
C300.076 (2)0.054 (2)0.0502 (19)0.0157 (19)0.0300 (16)0.0015 (17)
Geometric parameters (Å, º) top
Cl1—C31.734 (3)Cl3—C181.734 (3)
Cl2—C121.731 (3)Cl4—C271.723 (3)
O1—C71.226 (3)O3—C221.223 (3)
O2—C91.224 (3)O4—C241.225 (3)
N1—C71.338 (3)N3—C221.340 (3)
N1—C11.409 (4)N3—C161.418 (3)
N1—H1N0.843 (16)N3—H3N0.853 (16)
N2—C91.343 (4)N4—C241.337 (3)
N2—C101.421 (4)N4—C251.424 (3)
N2—H2N0.867 (17)N4—H4N0.845 (16)
C1—C61.377 (4)C16—C211.381 (4)
C1—C21.380 (4)C16—C171.387 (3)
C2—C31.376 (4)C17—C181.376 (4)
C2—H20.9300C17—H170.9300
C3—C41.372 (5)C18—C191.379 (4)
C4—C51.378 (5)C19—C201.363 (4)
C4—H40.9300C19—H190.9300
C5—C61.367 (5)C20—C211.383 (4)
C5—H50.9300C20—H200.9300
C6—H60.9300C21—H210.9300
C7—C81.509 (4)C22—C231.518 (4)
C8—C91.513 (4)C23—C241.520 (4)
C8—H8A0.9700C23—H23A0.9700
C8—H8B0.9700C23—H23B0.9700
C10—C151.372 (4)C25—C261.376 (4)
C10—C111.391 (4)C25—C301.382 (3)
C11—C121.370 (4)C26—C271.375 (4)
C11—H110.9300C26—H260.9300
C12—C131.356 (4)C27—C281.376 (4)
C13—C141.362 (5)C28—C291.370 (4)
C13—H130.9300C28—H280.9300
C14—C151.383 (5)C29—C301.382 (4)
C14—H140.9300C29—H290.9300
C15—H150.9300C30—H300.9300
C7—N1—C1129.4 (3)C22—N3—C16128.3 (2)
C7—N1—H1N111 (2)C22—N3—H3N116.7 (18)
C1—N1—H1N119 (2)C16—N3—H3N114.8 (18)
C9—N2—C10128.4 (3)C24—N4—C25128.6 (2)
C9—N2—H2N116.6 (19)C24—N4—H4N116.9 (18)
C10—N2—H2N114.8 (19)C25—N4—H4N113.6 (18)
C6—C1—C2120.0 (3)C21—C16—C17120.0 (3)
C6—C1—N1116.4 (3)C21—C16—N3123.9 (3)
C2—C1—N1123.6 (3)C17—C16—N3116.0 (3)
C3—C2—C1118.9 (3)C18—C17—C16119.4 (3)
C3—C2—H2120.5C18—C17—H17120.3
C1—C2—H2120.5C16—C17—H17120.3
C4—C3—C2121.9 (3)C17—C18—C19121.1 (3)
C4—C3—Cl1119.0 (3)C17—C18—Cl3119.3 (3)
C2—C3—Cl1119.1 (3)C19—C18—Cl3119.6 (3)
C3—C4—C5118.0 (4)C20—C19—C18118.7 (3)
C3—C4—H4121.0C20—C19—H19120.6
C5—C4—H4121.0C18—C19—H19120.6
C6—C5—C4121.3 (4)C19—C20—C21121.8 (3)
C6—C5—H5119.4C19—C20—H20119.1
C4—C5—H5119.4C21—C20—H20119.1
C5—C6—C1119.9 (4)C20—C21—C16118.9 (3)
C5—C6—H6120.1C20—C21—H21120.5
C1—C6—H6120.1C16—C21—H21120.5
O1—C7—N1123.9 (3)O3—C22—N3124.7 (3)
O1—C7—C8121.3 (3)O3—C22—C23120.3 (3)
N1—C7—C8114.8 (3)N3—C22—C23115.0 (3)
C7—C8—C9108.8 (2)C22—C23—C24107.5 (2)
C7—C8—H8A109.9C22—C23—H23A110.2
C9—C8—H8A109.9C24—C23—H23A110.2
C7—C8—H8B109.9C22—C23—H23B110.2
C9—C8—H8B109.9C24—C23—H23B110.2
H8A—C8—H8B108.3H23A—C23—H23B108.5
O2—C9—N2124.4 (3)O4—C24—N4124.2 (3)
O2—C9—C8120.5 (3)O4—C24—C23120.7 (2)
N2—C9—C8115.0 (3)N4—C24—C23115.1 (3)
C15—C10—C11120.0 (3)C26—C25—C30120.6 (3)
C15—C10—N2123.6 (3)C26—C25—N4122.8 (3)
C11—C10—N2116.4 (3)C30—C25—N4116.6 (3)
C12—C11—C10119.9 (3)C25—C26—C27118.3 (3)
C12—C11—H11120.0C25—C26—H26120.9
C10—C11—H11120.0C27—C26—H26120.9
C13—C12—C11120.9 (3)C28—C27—C26122.3 (3)
C13—C12—Cl2119.3 (3)C28—C27—Cl4118.6 (3)
C11—C12—Cl2119.7 (3)C26—C27—Cl4119.1 (3)
C12—C13—C14118.6 (3)C29—C28—C27118.6 (3)
C12—C13—H13120.7C29—C28—H28120.7
C14—C13—H13120.7C27—C28—H28120.7
C13—C14—C15122.8 (4)C28—C29—C30120.5 (3)
C13—C14—H14118.6C28—C29—H29119.8
C15—C14—H14118.6C30—C29—H29119.8
C10—C15—C14117.8 (3)C25—C30—C29119.7 (3)
C10—C15—H15121.1C25—C30—H30120.1
C14—C15—H15121.1C29—C30—H30120.1
C7—N1—C1—C6174.9 (3)C22—N3—C16—C218.5 (4)
C7—N1—C1—C26.2 (5)C22—N3—C16—C17170.5 (3)
C6—C1—C2—C30.0 (4)C21—C16—C17—C181.0 (4)
N1—C1—C2—C3178.9 (3)N3—C16—C17—C18178.1 (2)
C1—C2—C3—C40.1 (5)C16—C17—C18—C190.4 (4)
C1—C2—C3—Cl1179.7 (2)C16—C17—C18—Cl3178.88 (19)
C2—C3—C4—C50.7 (6)C17—C18—C19—C200.2 (4)
Cl1—C3—C4—C5179.0 (3)Cl3—C18—C19—C20179.5 (2)
C3—C4—C5—C61.4 (6)C18—C19—C20—C210.2 (5)
C4—C5—C6—C11.3 (6)C19—C20—C21—C160.3 (4)
C2—C1—C6—C50.6 (5)C17—C16—C21—C200.9 (4)
N1—C1—C6—C5178.4 (3)N3—C16—C21—C20178.1 (3)
C1—N1—C7—O15.5 (5)C16—N3—C22—O31.3 (5)
C1—N1—C7—C8174.1 (3)C16—N3—C22—C23176.1 (2)
O1—C7—C8—C960.1 (4)O3—C22—C23—C2470.9 (3)
N1—C7—C8—C9119.5 (3)N3—C22—C23—C24106.7 (3)
C10—N2—C9—O25.1 (5)C25—N4—C24—O45.2 (5)
C10—N2—C9—C8172.8 (2)C25—N4—C24—C23173.6 (3)
C7—C8—C9—O271.9 (3)C22—C23—C24—O454.1 (4)
C7—C8—C9—N2106.1 (3)C22—C23—C24—N4124.7 (3)
C9—N2—C10—C156.8 (5)C24—N4—C25—C2610.5 (4)
C9—N2—C10—C11171.2 (3)C24—N4—C25—C30169.7 (3)
C15—C10—C11—C120.3 (4)C30—C25—C26—C271.3 (4)
N2—C10—C11—C12177.8 (2)N4—C25—C26—C27179.0 (3)
C10—C11—C12—C130.2 (4)C25—C26—C27—C280.8 (4)
C10—C11—C12—Cl2178.4 (2)C25—C26—C27—Cl4179.7 (2)
C11—C12—C13—C140.1 (5)C26—C27—C28—C291.6 (5)
Cl2—C12—C13—C14178.3 (3)Cl4—C27—C28—C29178.8 (3)
C12—C13—C14—C150.6 (6)C27—C28—C29—C300.4 (5)
C11—C10—C15—C140.9 (5)C26—C25—C30—C292.5 (4)
N2—C10—C15—C14177.0 (3)N4—C25—C30—C29177.8 (3)
C13—C14—C15—C101.1 (6)C28—C29—C30—C251.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.84 (2)2.11 (2)2.950 (3)176 (3)
N2—H2N···O4i0.87 (2)2.11 (2)2.961 (3)169 (3)
N3—H3N···O1ii0.85 (2)2.09 (2)2.939 (3)173 (2)
N4—H4N···O20.85 (2)2.12 (2)2.947 (3)168 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12Cl2N2O2
Mr323.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.9209 (8), 16.416 (1), 17.490 (1)
β (°) 105.260 (6)
V3)3025.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.48 × 0.28 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.819, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
12003, 5164, 2767
Rint0.027
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 0.96
No. of reflections5164
No. of parameters391
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.843 (16)2.108 (17)2.950 (3)176 (3)
N2—H2N···O4i0.867 (17)2.106 (18)2.961 (3)169 (3)
N3—H3N···O1ii0.853 (16)2.091 (17)2.939 (3)173 (2)
N4—H4N···O20.845 (16)2.115 (18)2.947 (3)168 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for award of an RFSMS research fellowship.

References

First citationArjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159.  CrossRef CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o3037.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaraswathi, B. S., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o966.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds