metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1238-m1239

Di­acetato-κO;κ2O,O′-aqua­(2,4,6-tri-2-pyridyl-1,3,5-triazine-κ3N2,N1,N6)manganese(II) monohydrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 31 July 2011; accepted 8 August 2011; online 17 August 2011)

The MnII ion in the title compound, [Mn(CH3CO2)2(C18H12N6)(H2O)]·H2O, is seven-coordinated in an approximately penta­gonal–bipyramidal geometry by three N atoms of the tridentate 2,4,6-tri-2-pyridyl-1,3,5-triazine ligand and four O atoms from two distinct anionic acetato ligands and a water mol­ecule. One acetate anion chelates the Mn atom via two O atoms occupying equatorial positions, and the other anion coordinates the Mn atom as a monodentate ligand via one O atom. The complex and solvent water mol­ecules are linked by inter- and intra­molecular O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the crystal structure of 2,4,6-tri-2-pyridyl-1,3,5-triazine (tptz), see: Drew et al. (1998[Drew, M. G. B., Hudson, M. J., Iveson, P. B., Russell, M. L. & Madic, C. (1998). Acta Cryst. C54, 985-987.]). For tptz complexes with a five-coordinate Mn(II) atom, see: Ha (2010[Ha, K. (2010). Acta Cryst. E66, m262.]), and with a seven-coordinate Mn(II) atom, see: Majumder et al. (2006[Majumder, A., Pilet, G., Rodriguez, M. T. G. & Mitra, S. (2006). Polyhedron, 25, 2550-2558.]); Zhang et al. (2008[Zhang, M., Fang, R. & Zhao, Q. (2008). J. Chem. Crystallogr. 38, 601-604.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m591-m592.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C2H3O2)2(C18H12N6)(H2O)]·H2O

  • Mr = 521.40

  • Monoclinic, P 21 /c

  • a = 10.341 (2) Å

  • b = 24.977 (5) Å

  • c = 9.8284 (19) Å

  • β = 118.073 (4)°

  • V = 2239.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 200 K

  • 0.32 × 0.24 × 0.17 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.863, Tmax = 1.000

  • 16577 measured reflections

  • 5548 independent reflections

  • 3076 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.153

  • S = 1.00

  • 5548 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O3 2.113 (2)
Mn1—O5 2.245 (2)
Mn1—O1 2.284 (2)
Mn1—O2 2.295 (2)
Mn1—N1 2.298 (3)
Mn1—N4 2.387 (3)
Mn1—N6 2.393 (3)
O3—Mn1—O5 169.93 (10)
O1—Mn1—O2 57.06 (8)
N1—Mn1—N4 68.35 (9)
N1—Mn1—N6 68.43 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯N5i 0.84 2.16 2.924 (3) 151
O5—H5B⋯O6ii 0.84 1.88 2.704 (3) 168
O6—H6A⋯O2 0.84 1.95 2.791 (3) 175
O6—H6B⋯O4iii 0.84 1.87 2.711 (4) 176
C3—H3⋯O5iv 0.95 2.46 3.399 (4) 170
C5—H5⋯O3i 0.95 2.59 3.338 (4) 136
C6—H6⋯O1 0.95 2.33 2.983 (4) 125
C18—H18⋯O2 0.95 2.55 3.198 (4) 125
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) -x+2, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The X-ray crystal structures of 2,4,6-tri-2-pyridyl-1,3,5-triazine (tptz) (Drew et al. 1998) and five- or seven-coordinated Mn(II)-tptz complexes, such as [MnCl2(tptz)] (Ha, 2010), [Mn(C2H3O2)(C2N3)(tptz)(H2O)].(H2O)2 (Majumder et al., 2006; Zhang et al., 2008) and [Mn(C2F3O2)(tptz)(H2O)2]C2F3O2 (Lo & Ng, 2009), have been investigated previously.

The title compound consists of the neutral Mn(II) complex [Mn(C2H3O2)2(tptz)(H2O)] and a solvent water molecule. In the reaction of Mn(CH3CO2)3.2H2O with tptz, it seems that the MnIII ion reduced to the MnII ion. In the complex, the MnII ion is seven-coordinated in an approximately pentagonal-bipyramidal geometry by three N atoms of the tridentate tptz ligand and four O atoms from two distinct anionic acetato ligands and a water molecule (Fig. 1). The coordination modes of the acetate anions are quite different: one anion chelates the Mn atom via two O atoms occupying equatorial positions, and the other anion coordinates the Mn atom as a monodentate ligand via one O atom and occupies the axial sites together with the water ligand. The Mn—O and Mn—N bond lengths are somewhat different, respectively (Table 1). The Mn1—N4/6(pyridyl) bonds are somewhat longer than the Mn1—N1(triazine) bond, and the Mn1—O1/2(equatorial) bonds are slightly longer than the Mn1—O3/5(axial) bonds. The O1—Mn1—O2 chelating angle is considerably smaller than the N1—Mn1—N4/6 chelating angles and the apical O3—Mn1—O5 bond is slightly bent with a bond angle of 169.93 (10)°. The carboxylate groups of the anionic ligands appear to be delocalized on the basis of the C—O bond lengths [C—O: 1.235 (4)–1.269 (4) Å]. In the crystal, the two pyridyl rings coordinated to the Mn atom are located approximately parallel to their carrier triazine ring, making dihedral angles of 1.9 (2)° and 2.8 (2)°. The dihedral angle between the uncoordinated pyridyl ring and triazine ring is 7.8 (2)°. The complex and solvent water molecules are linked by inter- and intramolecular O—H···O, O—H···N and C—H···O hydrogen bonds into a three-dimensional network (Fig. 2 and Table 2). The compounds stack in columns along the [101] direction and display numerous intermolecular π-π interactions between the six-membered rings, with a shortest centroid-centroid distance of 3.493 (2) Å.

Related literature top

For the crystal structure of 2,4,6-tri-2-pyridyl-1,3,5-triazine (tptz), see: Drew et al. (1998). For a five-coordinate Mn(II)–tptz complex, see: Ha (2010). For seven-coordinate Mn(II)–tptz complexes, see: Majumder et al. (2006); Zhang et al. (2008); Lo & Ng (2009).

Experimental top

To a solution of Mn(CH3CO2)3.2H2O (0.4022 g, 1.50 mmol) in MeOH (30 ml) was added 2,4,6-tri-2-pyridyl-1,3,5-triazine (0.1561 g, 0.50 mmol) and stirred for 3 h at room temperature. After removal of the formed dark brown precipitate by filtration, the solvent of the filtrate was evaporated, and the residue was washed with acetone and dried under vacuum, to give a yellow powder (0.3207 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3NO2/MeOH solution.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. The H atoms of the water ligand and solvent molecule were located from Fourier difference maps then allowed to ride on their parent O atoms in the final cycles of refinement with O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 40% probability level; H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Diacetato-κO;κ2O,O'-aqua(2,4,6-tri-2-pyridyl- 1,3,5-triazine-κ3N2,N1,N6)manganese(II) monohydrate top
Crystal data top
[Mn(C2H3O2)2(C18H12N6)(H2O)]·H2OF(000) = 1076
Mr = 521.40Dx = 1.546 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3469 reflections
a = 10.341 (2) Åθ = 2.2–27.2°
b = 24.977 (5) ŵ = 0.64 mm1
c = 9.8284 (19) ÅT = 200 K
β = 118.073 (4)°Block, yellow
V = 2239.9 (8) Å30.32 × 0.24 × 0.17 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
5548 independent reflections
Radiation source: fine-focus sealed tube3076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1113
Tmin = 0.863, Tmax = 1.000k = 2833
16577 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0615P)2]
where P = (Fo2 + 2Fc2)/3
5548 reflections(Δ/σ)max < 0.001
318 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Mn(C2H3O2)2(C18H12N6)(H2O)]·H2OV = 2239.9 (8) Å3
Mr = 521.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.341 (2) ŵ = 0.64 mm1
b = 24.977 (5) ÅT = 200 K
c = 9.8284 (19) Å0.32 × 0.24 × 0.17 mm
β = 118.073 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5548 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3076 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 1.000Rint = 0.068
16577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.00Δρmax = 0.49 e Å3
5548 reflectionsΔρmin = 0.49 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.66399 (5)0.120956 (18)0.21934 (6)0.02892 (17)
O10.8310 (3)0.12897 (9)0.1302 (3)0.0428 (6)
O20.7412 (3)0.04962 (9)0.1291 (3)0.0378 (6)
O30.8167 (3)0.11251 (10)0.4552 (3)0.0500 (7)
O40.9755 (3)0.09035 (13)0.6912 (3)0.0693 (9)
O50.4723 (2)0.13074 (8)0.0166 (2)0.0333 (6)
H5A0.42890.16030.03280.050*
H5B0.40830.10660.04730.050*
N10.5198 (3)0.16134 (10)0.3098 (3)0.0262 (6)
N20.4431 (3)0.23975 (10)0.3854 (3)0.0286 (6)
N30.3510 (3)0.15448 (10)0.4067 (3)0.0297 (6)
N40.6929 (3)0.21595 (10)0.2323 (3)0.0278 (6)
N50.2620 (3)0.28877 (11)0.4719 (3)0.0319 (7)
N60.5166 (3)0.05706 (10)0.2655 (3)0.0302 (6)
C10.5225 (3)0.21397 (12)0.3310 (3)0.0244 (7)
C20.6177 (3)0.24544 (12)0.2864 (3)0.0254 (7)
C30.6272 (4)0.30056 (12)0.2985 (4)0.0313 (8)
H30.57350.31990.33840.038*
C40.7163 (4)0.32668 (13)0.2514 (4)0.0343 (8)
H40.72550.36450.25900.041*
C50.7919 (4)0.29748 (13)0.1930 (4)0.0351 (8)
H50.85210.31490.15750.042*
C60.7786 (4)0.24225 (13)0.1872 (4)0.0313 (8)
H60.83280.22220.14930.038*
C70.3586 (3)0.20828 (12)0.4201 (3)0.0266 (7)
C80.2631 (4)0.23502 (13)0.4750 (4)0.0295 (7)
C90.1796 (4)0.20573 (15)0.5232 (5)0.0486 (10)
H90.18460.16770.52670.058*
C100.0883 (5)0.23274 (16)0.5664 (5)0.0549 (11)
H100.02920.21340.59970.066*
C110.0831 (4)0.28754 (15)0.5611 (4)0.0385 (9)
H110.02020.30690.58930.046*
C120.1723 (4)0.31367 (14)0.5133 (4)0.0354 (8)
H120.16950.35170.50990.042*
C130.4331 (3)0.13336 (12)0.3489 (4)0.0260 (7)
C140.4284 (3)0.07435 (12)0.3221 (3)0.0276 (7)
C150.3382 (4)0.04070 (13)0.3515 (4)0.0326 (8)
H150.27750.05440.39180.039*
C160.3381 (4)0.01338 (13)0.3210 (4)0.0389 (9)
H160.27700.03750.33940.047*
C170.4277 (4)0.03147 (14)0.2638 (4)0.0385 (9)
H170.43040.06840.24260.046*
C180.5144 (4)0.00486 (13)0.2373 (4)0.0353 (8)
H180.57560.00820.19670.042*
C190.8296 (4)0.07960 (14)0.1086 (4)0.0331 (8)
C200.9353 (4)0.05507 (15)0.0623 (5)0.0493 (10)
H20A1.02830.04780.15460.074*
H20B0.95220.07990.00500.074*
H20C0.89450.02150.00700.074*
C210.9334 (4)0.09139 (13)0.5510 (4)0.0360 (9)
C221.0344 (5)0.06987 (19)0.4916 (5)0.0757 (14)
H22A1.13310.06530.57800.114*
H22B1.03780.09510.41710.114*
H22C0.99760.03520.44130.114*
O60.7515 (3)0.06096 (9)0.0946 (3)0.0496 (7)
H6A0.75060.02750.10140.074*
H6B0.83470.07020.16380.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0317 (3)0.0250 (3)0.0342 (3)0.0026 (2)0.0189 (2)0.0010 (2)
O10.0490 (16)0.0322 (15)0.0636 (17)0.0011 (11)0.0400 (14)0.0048 (12)
O20.0395 (15)0.0305 (13)0.0502 (15)0.0025 (10)0.0267 (13)0.0055 (11)
O30.0467 (17)0.0581 (18)0.0335 (14)0.0199 (13)0.0092 (13)0.0027 (12)
O40.062 (2)0.093 (2)0.0409 (17)0.0372 (17)0.0136 (15)0.0048 (16)
O50.0358 (14)0.0282 (13)0.0376 (13)0.0012 (9)0.0187 (11)0.0010 (10)
N10.0268 (15)0.0249 (15)0.0291 (14)0.0013 (11)0.0150 (12)0.0001 (12)
N20.0290 (16)0.0272 (15)0.0324 (15)0.0013 (11)0.0167 (13)0.0025 (12)
N30.0333 (16)0.0270 (15)0.0330 (15)0.0004 (11)0.0191 (13)0.0013 (12)
N40.0294 (16)0.0237 (14)0.0335 (15)0.0017 (11)0.0174 (13)0.0004 (12)
N50.0347 (17)0.0301 (16)0.0369 (16)0.0007 (12)0.0219 (14)0.0036 (13)
N60.0358 (17)0.0252 (15)0.0318 (15)0.0014 (11)0.0178 (13)0.0011 (12)
C10.0235 (17)0.0256 (17)0.0263 (16)0.0031 (12)0.0136 (14)0.0018 (13)
C20.0246 (17)0.0237 (17)0.0288 (17)0.0001 (13)0.0134 (14)0.0015 (14)
C30.037 (2)0.0250 (18)0.0401 (19)0.0033 (14)0.0245 (17)0.0003 (15)
C40.038 (2)0.0248 (18)0.047 (2)0.0018 (14)0.0256 (18)0.0050 (16)
C50.038 (2)0.033 (2)0.046 (2)0.0044 (15)0.0284 (18)0.0015 (17)
C60.033 (2)0.0290 (19)0.043 (2)0.0001 (14)0.0272 (17)0.0014 (16)
C70.0256 (18)0.0288 (18)0.0273 (17)0.0017 (13)0.0140 (14)0.0012 (14)
C80.0295 (19)0.0311 (19)0.0331 (18)0.0030 (14)0.0190 (16)0.0054 (15)
C90.063 (3)0.032 (2)0.077 (3)0.0054 (18)0.055 (2)0.005 (2)
C100.059 (3)0.050 (3)0.083 (3)0.007 (2)0.055 (3)0.003 (2)
C110.030 (2)0.049 (2)0.043 (2)0.0001 (16)0.0234 (17)0.0061 (18)
C120.035 (2)0.037 (2)0.038 (2)0.0036 (15)0.0193 (17)0.0041 (16)
C130.0281 (18)0.0252 (17)0.0252 (16)0.0002 (13)0.0129 (14)0.0029 (13)
C140.0269 (18)0.0264 (18)0.0262 (17)0.0032 (13)0.0098 (14)0.0015 (14)
C150.033 (2)0.0308 (19)0.0366 (19)0.0023 (14)0.0190 (16)0.0015 (16)
C160.043 (2)0.031 (2)0.042 (2)0.0090 (16)0.0199 (19)0.0012 (16)
C170.049 (2)0.0262 (19)0.046 (2)0.0033 (16)0.0270 (19)0.0035 (17)
C180.045 (2)0.0263 (19)0.039 (2)0.0017 (15)0.0227 (18)0.0018 (15)
C190.032 (2)0.033 (2)0.0356 (19)0.0016 (15)0.0172 (16)0.0041 (16)
C200.047 (3)0.050 (2)0.062 (3)0.0093 (18)0.034 (2)0.007 (2)
C210.036 (2)0.030 (2)0.037 (2)0.0042 (15)0.0128 (18)0.0031 (16)
C220.066 (3)0.085 (4)0.077 (3)0.013 (3)0.034 (3)0.006 (3)
O60.0402 (16)0.0272 (14)0.0627 (17)0.0008 (10)0.0089 (13)0.0022 (12)
Geometric parameters (Å, º) top
Mn1—O32.113 (2)C5—C61.385 (4)
Mn1—O52.245 (2)C5—H50.9500
Mn1—O12.284 (2)C6—H60.9500
Mn1—O22.295 (2)C7—C81.487 (4)
Mn1—N12.298 (3)C8—C91.375 (5)
Mn1—N42.387 (3)C9—C101.380 (5)
Mn1—N62.393 (3)C9—H90.9500
Mn1—C192.635 (4)C10—C111.370 (5)
O1—C191.250 (4)C10—H100.9500
O2—C191.269 (4)C11—C121.380 (5)
O3—C211.246 (4)C11—H110.9500
O4—C211.235 (4)C12—H120.9500
O5—H5A0.8400C13—C141.494 (4)
O5—H5B0.8400C14—C151.383 (4)
N1—C131.328 (4)C15—C161.384 (4)
N1—C11.329 (4)C15—H150.9500
N2—C71.334 (4)C16—C171.366 (5)
N2—C11.337 (4)C16—H160.9500
N3—C131.332 (4)C17—C181.384 (5)
N3—C71.349 (4)C17—H170.9500
N4—C61.335 (4)C18—H180.9500
N4—C21.349 (4)C19—C201.498 (5)
N5—C121.330 (4)C20—H20A0.9800
N5—C81.343 (4)C20—H20B0.9800
N6—C181.331 (4)C20—H20C0.9800
N6—C141.344 (4)C21—C221.514 (5)
C1—C21.478 (4)C22—H22A0.9800
C2—C31.381 (4)C22—H22B0.9800
C3—C41.375 (4)C22—H22C0.9800
C3—H30.9500O6—H6A0.8400
C4—C51.377 (4)O6—H6B0.8400
C4—H40.9500
O3—Mn1—O5169.93 (10)N4—C6—C5123.1 (3)
O3—Mn1—O196.91 (11)N4—C6—H6118.5
O5—Mn1—O193.07 (9)C5—C6—H6118.5
O3—Mn1—O297.49 (9)N2—C7—N3125.2 (3)
O5—Mn1—O289.08 (8)N2—C7—C8117.0 (3)
O1—Mn1—O257.06 (8)N3—C7—C8117.7 (3)
O3—Mn1—N184.55 (9)N5—C8—C9122.7 (3)
O5—Mn1—N186.20 (8)N5—C8—C7116.2 (3)
O1—Mn1—N1148.84 (9)C9—C8—C7121.2 (3)
O2—Mn1—N1153.86 (9)C8—C9—C10118.5 (3)
O3—Mn1—N491.75 (9)C8—C9—H9120.7
O5—Mn1—N488.54 (8)C10—C9—H9120.7
O1—Mn1—N480.48 (9)C11—C10—C9119.8 (4)
O2—Mn1—N4137.27 (9)C11—C10—H10120.1
N1—Mn1—N468.35 (9)C9—C10—H10120.1
O3—Mn1—N686.51 (10)C10—C11—C12117.7 (3)
O5—Mn1—N686.38 (9)C10—C11—H11121.1
O1—Mn1—N6142.68 (9)C12—C11—H11121.1
O2—Mn1—N685.63 (9)N5—C12—C11123.9 (3)
N1—Mn1—N668.43 (9)N5—C12—H12118.1
N4—Mn1—N6136.71 (9)C11—C12—H12118.1
O3—Mn1—C1996.82 (10)N1—C13—N3124.5 (3)
O5—Mn1—C1992.61 (9)N1—C13—C14116.0 (3)
O1—Mn1—C1928.32 (9)N3—C13—C14119.4 (3)
O2—Mn1—C1928.80 (9)N6—C14—C15123.2 (3)
N1—Mn1—C19176.91 (10)N6—C14—C13114.7 (3)
N4—Mn1—C19108.78 (10)C15—C14—C13122.2 (3)
N6—Mn1—C19114.37 (10)C14—C15—C16118.7 (3)
C19—O1—Mn191.6 (2)C14—C15—H15120.7
C19—O2—Mn190.6 (2)C16—C15—H15120.7
C21—O3—Mn1146.0 (2)C17—C16—C15118.7 (3)
Mn1—O5—H5A115.1C17—C16—H16120.6
Mn1—O5—H5B117.1C15—C16—H16120.6
H5A—O5—H5B107.7C16—C17—C18119.1 (3)
C13—N1—C1116.3 (3)C16—C17—H17120.5
C13—N1—Mn1122.0 (2)C18—C17—H17120.5
C1—N1—Mn1121.7 (2)N6—C18—C17123.5 (3)
C7—N2—C1114.7 (3)N6—C18—H18118.3
C13—N3—C7114.7 (3)C17—C18—H18118.3
C6—N4—C2117.3 (3)O1—C19—O2120.4 (3)
C6—N4—Mn1123.9 (2)O1—C19—C20120.2 (3)
C2—N4—Mn1118.8 (2)O2—C19—C20119.3 (3)
C12—N5—C8117.4 (3)O1—C19—Mn160.06 (17)
C18—N6—C14116.9 (3)O2—C19—Mn160.56 (17)
C18—N6—Mn1124.3 (2)C20—C19—Mn1174.2 (3)
C14—N6—Mn1118.8 (2)C19—C20—H20A109.5
N1—C1—N2124.5 (3)C19—C20—H20B109.5
N1—C1—C2116.6 (3)H20A—C20—H20B109.5
N2—C1—C2118.9 (3)C19—C20—H20C109.5
N4—C2—C3123.2 (3)H20A—C20—H20C109.5
N4—C2—C1114.5 (3)H20B—C20—H20C109.5
C3—C2—C1122.3 (3)O4—C21—O3124.0 (3)
C4—C3—C2118.4 (3)O4—C21—C22118.6 (3)
C4—C3—H3120.8O3—C21—C22117.2 (3)
C2—C3—H3120.8C21—C22—H22A109.5
C3—C4—C5119.4 (3)C21—C22—H22B109.5
C3—C4—H4120.3H22A—C22—H22B109.5
C5—C4—H4120.3C21—C22—H22C109.5
C4—C5—C6118.7 (3)H22A—C22—H22C109.5
C4—C5—H5120.7H22B—C22—H22C109.5
C6—C5—H5120.7H6A—O6—H6B104.7
O3—Mn1—O1—C1991.6 (2)C6—N4—C2—C1178.7 (3)
O5—Mn1—O1—C1989.8 (2)Mn1—N4—C2—C10.6 (3)
O2—Mn1—O1—C192.90 (19)N1—C1—C2—N41.4 (4)
N1—Mn1—O1—C19177.55 (19)N2—C1—C2—N4179.7 (3)
N4—Mn1—O1—C19177.8 (2)N1—C1—C2—C3178.2 (3)
N6—Mn1—O1—C191.7 (3)N2—C1—C2—C30.2 (5)
O3—Mn1—O2—C1990.5 (2)N4—C2—C3—C40.8 (5)
O5—Mn1—O2—C1997.1 (2)C1—C2—C3—C4178.7 (3)
O1—Mn1—O2—C192.86 (18)C2—C3—C4—C50.4 (5)
N1—Mn1—O2—C19176.6 (2)C3—C4—C5—C61.6 (5)
N4—Mn1—O2—C1910.3 (2)C2—N4—C6—C50.4 (5)
N6—Mn1—O2—C19176.4 (2)Mn1—N4—C6—C5178.8 (2)
O5—Mn1—O3—C21145.7 (5)C4—C5—C6—N41.6 (5)
O1—Mn1—O3—C2142.1 (5)C1—N2—C7—N31.2 (4)
O2—Mn1—O3—C2115.4 (5)C1—N2—C7—C8177.5 (3)
N1—Mn1—O3—C21169.2 (5)C13—N3—C7—N22.3 (4)
N4—Mn1—O3—C21122.8 (5)C13—N3—C7—C8176.4 (3)
N6—Mn1—O3—C21100.5 (5)C12—N5—C8—C92.0 (5)
C19—Mn1—O3—C2113.6 (5)C12—N5—C8—C7176.9 (3)
O3—Mn1—N1—C1385.8 (2)N2—C7—C8—N55.5 (4)
O5—Mn1—N1—C1390.2 (2)N3—C7—C8—N5173.4 (3)
O1—Mn1—N1—C13179.9 (2)N2—C7—C8—C9175.6 (3)
O2—Mn1—N1—C1310.1 (4)N3—C7—C8—C95.6 (5)
N4—Mn1—N1—C13179.9 (3)N5—C8—C9—C101.7 (6)
N6—Mn1—N1—C132.6 (2)C7—C8—C9—C10177.2 (3)
O3—Mn1—N1—C191.8 (2)C8—C9—C10—C110.3 (6)
O5—Mn1—N1—C192.2 (2)C9—C10—C11—C120.7 (6)
O1—Mn1—N1—C12.5 (3)C8—N5—C12—C111.0 (5)
O2—Mn1—N1—C1172.3 (2)C10—C11—C12—N50.3 (5)
N4—Mn1—N1—C12.2 (2)C1—N1—C13—N30.1 (5)
N6—Mn1—N1—C1179.8 (2)Mn1—N1—C13—N3177.7 (2)
O3—Mn1—N4—C698.8 (3)C1—N1—C13—C14178.9 (3)
O5—Mn1—N4—C691.3 (3)Mn1—N1—C13—C143.3 (4)
O1—Mn1—N4—C62.1 (2)C7—N3—C13—N11.7 (4)
O2—Mn1—N4—C64.3 (3)C7—N3—C13—C14177.3 (3)
N1—Mn1—N4—C6177.8 (3)C18—N6—C14—C150.1 (4)
N6—Mn1—N4—C6174.5 (2)Mn1—N6—C14—C15179.4 (2)
C19—Mn1—N4—C61.0 (3)C18—N6—C14—C13178.9 (3)
O3—Mn1—N4—C282.1 (2)Mn1—N6—C14—C130.4 (3)
O5—Mn1—N4—C287.9 (2)N1—C13—C14—N61.8 (4)
O1—Mn1—N4—C2178.8 (2)N3—C13—C14—N6179.2 (3)
O2—Mn1—N4—C2174.93 (19)N1—C13—C14—C15177.2 (3)
N1—Mn1—N4—C21.4 (2)N3—C13—C14—C151.8 (4)
N6—Mn1—N4—C24.7 (3)N6—C14—C15—C160.1 (5)
C19—Mn1—N4—C2179.9 (2)C13—C14—C15—C16178.8 (3)
O3—Mn1—N6—C1896.7 (3)C14—C15—C16—C170.3 (5)
O5—Mn1—N6—C1890.5 (3)C15—C16—C17—C180.5 (5)
O1—Mn1—N6—C180.1 (3)C14—N6—C18—C170.3 (5)
O2—Mn1—N6—C181.1 (3)Mn1—N6—C18—C17179.6 (3)
N1—Mn1—N6—C18177.8 (3)C16—C17—C18—N60.5 (5)
N4—Mn1—N6—C18174.5 (2)Mn1—O1—C19—O25.1 (3)
C19—Mn1—N6—C180.8 (3)Mn1—O1—C19—C20173.3 (3)
O3—Mn1—N6—C1484.0 (2)Mn1—O2—C19—O15.1 (3)
O5—Mn1—N6—C1488.8 (2)Mn1—O2—C19—C20173.3 (3)
O1—Mn1—N6—C14179.1 (2)O3—Mn1—C19—O191.9 (2)
O2—Mn1—N6—C14178.2 (2)O5—Mn1—C19—O191.6 (2)
N1—Mn1—N6—C141.5 (2)O2—Mn1—C19—O1174.9 (3)
N4—Mn1—N6—C144.8 (3)N4—Mn1—C19—O12.3 (2)
C19—Mn1—N6—C14179.9 (2)N6—Mn1—C19—O1178.84 (19)
C13—N1—C1—N21.2 (4)O3—Mn1—C19—O293.1 (2)
Mn1—N1—C1—N2178.9 (2)O5—Mn1—C19—O283.31 (19)
C13—N1—C1—C2179.4 (3)O1—Mn1—C19—O2174.9 (3)
Mn1—N1—C1—C22.8 (4)N4—Mn1—C19—O2172.65 (18)
C7—N2—C1—N10.6 (4)N6—Mn1—C19—O23.9 (2)
C7—N2—C1—C2178.9 (3)Mn1—O3—C21—O4167.0 (3)
C6—N4—C2—C30.9 (5)Mn1—O3—C21—C2218.2 (7)
Mn1—N4—C2—C3179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N5i0.842.162.924 (3)151
O5—H5B···O6ii0.841.882.704 (3)168
O6—H6A···O20.841.952.791 (3)175
O6—H6B···O4iii0.841.872.711 (4)176
C3—H3···O5iv0.952.463.399 (4)170
C5—H5···O3i0.952.593.338 (4)136
C6—H6···O10.952.332.983 (4)125
C18—H18···O20.952.553.198 (4)125
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+2, y, z+1; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C2H3O2)2(C18H12N6)(H2O)]·H2O
Mr521.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.341 (2), 24.977 (5), 9.8284 (19)
β (°) 118.073 (4)
V3)2239.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.32 × 0.24 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.863, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16577, 5548, 3076
Rint0.068
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.153, 1.00
No. of reflections5548
No. of parameters318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.49

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mn1—O32.113 (2)Mn1—N12.298 (3)
Mn1—O52.245 (2)Mn1—N42.387 (3)
Mn1—O12.284 (2)Mn1—N62.393 (3)
Mn1—O22.295 (2)
O3—Mn1—O5169.93 (10)N1—Mn1—N468.35 (9)
O1—Mn1—O257.06 (8)N1—Mn1—N668.43 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N5i0.842.162.924 (3)151.0
O5—H5B···O6ii0.841.882.704 (3)168.1
O6—H6A···O20.841.952.791 (3)175.1
O6—H6B···O4iii0.841.872.711 (4)176.3
C3—H3···O5iv0.952.463.399 (4)170.4
C5—H5···O3i0.952.593.338 (4)136.3
C6—H6···O10.952.332.983 (4)125.1
C18—H18···O20.952.553.198 (4)125.2
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+2, y, z+1; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, M. G. B., Hudson, M. J., Iveson, P. B., Russell, M. L. & Madic, C. (1998). Acta Cryst. C54, 985–987.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2010). Acta Cryst. E66, m262.  Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m591–m592.  Google Scholar
First citationMajumder, A., Pilet, G., Rodriguez, M. T. G. & Mitra, S. (2006). Polyhedron, 25, 2550–2558.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M., Fang, R. & Zhao, Q. (2008). J. Chem. Crystallogr. 38, 601–604.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1238-m1239
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds