organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2357-o2358

2,4-Di­amino-5-(4-chloro­phen­yl)-6-ethyl­pyrimidin-1-ium 2-acet­amido­benzoate

aDepartment of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143 701, Republic of Korea
*Correspondence e-mail: sampath@konkuk.ac.kr, sams76@gmail.com

(Received 7 August 2011; accepted 11 August 2011; online 17 August 2011)

The title compound, C12H14ClN4+·C9H8NO3, is a salt with a 1:1 ratio of cation and anion components inter­acting with each other forming an R22(8) ring motif. The crystal structure is stabilized by hydrogen bonds (N—H⋯O) involving two different eight-membered rings. One of them is formed between the pyrimidine ring (donor) and the carboxylate group (acceptor) from the benzoate, whereas the other ring is formed by N—H⋯O interactions, which help to form a dimer between two symmetry-related salts in the unit cell. In addition, an intramolecular C—H⋯N and intermolecular C—H⋯Cl interactions help to control the molecules in the unit-cell packing.

Related literature

For related literature on amino­pyrimidine–carboxyl­ate inter­actions, see: Baker & Santi (1965[Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.]); Chinnakali et al. (1999[Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399-401.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids. Amsterdam: Elsevier.]); Hunt et al. (1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533-536.]); Lynch & Jones (2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]); Stanley et al. (2005[Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201-7210.]). For literature on amino­pyrimidine and benzoic acid adducts, see: Thanigaimani et al. (2006[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976-o2978.], 2007[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4212.]); Balasubramani et al. (2005[Balasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203-o4205.], 2006[Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907-o2909.]). For puckering parameters, see: Cremer & Pople, (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14ClN4+·C9H8NO3

  • Mr = 427.89

  • Monoclinic, C 2/c

  • a = 25.226 (4) Å

  • b = 9.0666 (16) Å

  • c = 20.688 (4) Å

  • β = 113.400 (3)°

  • V = 4342.5 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.4 × 0.35 × 0.32 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 14400 measured reflections

  • 3937 independent reflections

  • 3079 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.123

  • S = 1.04

  • 3937 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O1 0.86 1.90 2.614 (2) 140
C9—H9B⋯N5 0.97 2.87 3.683 (3) 142
N1—H1⋯O1i 0.86 1.86 2.715 (2) 177
N3—H3B⋯O2i 0.86 1.96 2.802 (3) 165
N3—H3A⋯O2ii 0.86 2.16 2.897 (2) 143
N4—H4A⋯O3iii 0.86 2.01 2.859 (2) 168
C10—H10B⋯Cl1iv 0.96 2.95 3.864 (3) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) [x, -y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aminopyrimidine-Carboxylate interactions are important since they are involved in protein-nucleic acids recognition and protein-drug binding. Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju, 1989). In general, aminopyrimidines posses self complementary hydrogen-bonded motifs forming a base pair which in itself is a unique property. The adducts of carboxylic acid with 2-aminopyrimidine system form a graph-set motif R22(8) (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine-carboxylic acid/carboxylates systems. The crystal structures of many aminopyrimidine carboxylates (Stanley et al., 2005) and co-crystal structures (Chinnakali et al.,1999) have been reported. Many structures of aminopyrimidine and benzoic acid adducts have been reported. Few of them are 2-amino-4,6-dimethoxy pyrimidine: 4-aminobenzoic acid (Thanigaimani et al., 2006), 2-amino-4,6-dimethoxypyrimidine: phthalic acid (Thanigaimani et al., 2007), 2-amino-4,6-dimethylpyrimidine: cinnamic acid (Balasubramani et al., 2005) and 2-amino-4,6-dimethylpyrimidine: 4-hydroxybenzoic acid (Balasubramani et al., 2006). All these reported structures also have common features of heterosynthone formation. In the present study we report a salt (1:1) namely, 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium- 2-(acetylamino)benzoate and its interactions are studied extensively.

The asymmetric unit of crystal contains a single molecule of each component of salt (Fig. 1) and does not have any direct interactions each other. The interactions were found between the symmetry related molecules of aminopyrimidin-1-ium and benzoate salt via hydrogen bonds N1—H1···O1 and N3—H3B···O2 (-x + 1/2, -y + 1/2, -z + 1) (Fig. 2). Here the pyrimidine acts as a donor which donates two H atoms and carboxylate O atoms as acceptors. In addition dimeric interactions by the atoms O2 and N3 form an eight membered ring through the Hydrogen bonds N3—H3A···O2 (x - 1/2, -y + 1/2, z - 1/2) and N3—H3B···O2 (-x + 1/2, -y + 1/2, -z + 1) (Fig. 2). The dihedral angle between the rings, 4-chlorophenyl and 2,4-diaminopyrimidine is 80.6 (1)°. This value is higher than that in a biphenyl ring system. This may be due to the substitution of ethyl and amine groups at C4 and C6, respectively. An extended moiety of acetylamino group is coplanar with phenyl carboxylate and the dihedral angle between these two is 1.59 (1)° (Cremer & Pople, 1975; Nardelli, 1995).

In the crystal packing, the molecules are arranged as sheets along the a direction (Fig. 3). These sheets are organized as two layers in the unit cell and both layer molecules are connected to each other through N4—H4A···O3 hydrogen bond. In addition, a six membered ring is formed by an intra-molecular interaction (N5—H5···O1)in benzoate molecule which also controls the molecules in crystal packing. Molecular packing is stabilized by many N—H···O and a C—H···Cl (x, -y, z - 1/2) intra and intermolecular interactions (Table 1, Fig. 2).

Related literature top

For related literature on aminopyrimidine–carboxylate interactions, see: Baker & Santi (1965); Chinnakali et al. (1999); Desiraju (1989); Hunt et al. (1980); Lynch & Jones (2004); Stanley et al. (2005); . For literature on aminopyrimidine and benzoic acid adducts, see: Thanigaimani et al. (2006, 2007); Balasubramani et al. (2005, 2006). For puckering parameters, see: Cremer & Pople, (1975); Nardelli (1995).

Experimental top

A hot methanolic solution (20 ml) of 2,4-diamino-5-(4-chlorophenyl)-6- ethylpyrimidine and 2-(acetylamino)benzoic acid in the ratio of 1:1 was warmed for 0.5 h over a water bath. The mixture was cooled slowly and kept at room temperature and after a few days, colourless crystals were obtained

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene, 0.96 Å for methyl H atoms and for aromatic NH2 and N—H = 0.86 Å. The Uiso parameters for H atoms were constraned to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq of the carrier atom for the remaining H atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SMART (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with the atom numbering scheme. Displacement ellipsoid are drawn at 30% probability level.
[Figure 2] Fig. 2. Dimer interaction between the symmetry related salts of title compound. Dashed lines indicate the intra and intermolecular hydrogen bonds.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the b axis. Dashed lines indicate the intra and intermolecular interactions between the molecules.
2,4-Diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2-acetamidobenzoate top
Crystal data top
C12H14ClN4+·C9H8NO3F(000) = 1792
Mr = 427.89Dx = 1.309 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.226 (4) ÅCell parameters from 14400 reflections
b = 9.0666 (16) Åθ = 1.8–26.2°
c = 20.688 (4) ŵ = 0.21 mm1
β = 113.400 (3)°T = 293 K
V = 4342.5 (13) Å3Block, colourless
Z = 80.4 × 0.35 × 0.32 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3079 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 26.2°, θmin = 1.8°
ω scansh = 2930
14400 measured reflectionsk = 1111
3937 independent reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.059P)2 + 2.2497P]
where P = (Fo2 + 2Fc2)/3
3937 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H14ClN4+·C9H8NO3V = 4342.5 (13) Å3
Mr = 427.89Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.226 (4) ŵ = 0.21 mm1
b = 9.0666 (16) ÅT = 293 K
c = 20.688 (4) Å0.4 × 0.35 × 0.32 mm
β = 113.400 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3079 reflections with I > 2σ(I)
14400 measured reflectionsRint = 0.019
3937 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
3937 reflectionsΔρmin = 0.19 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09641 (3)0.17665 (8)0.85360 (3)0.0916 (3)
O10.34974 (6)0.30249 (17)0.60241 (7)0.0668 (4)
O20.40391 (6)0.20074 (17)0.70432 (7)0.0651 (4)
O30.16543 (8)0.5398 (3)0.55466 (10)0.1088 (7)
N10.06713 (6)0.24269 (18)0.44774 (7)0.0487 (4)
H10.09250.22760.43040.058*
N50.25286 (7)0.4296 (2)0.58885 (9)0.0691 (5)
H50.27950.40910.57420.083*
N20.02695 (6)0.31925 (17)0.42880 (8)0.0490 (4)
C20.01378 (8)0.2902 (2)0.40505 (9)0.0473 (4)
C40.01287 (7)0.30452 (19)0.49808 (9)0.0449 (4)
C50.04201 (8)0.2494 (2)0.54570 (9)0.0450 (4)
C60.08133 (8)0.2183 (2)0.51771 (9)0.0458 (4)
N30.00325 (7)0.3063 (2)0.33758 (8)0.0642 (5)
H3A0.03020.33580.30860.077*
H3B0.02980.28730.32260.077*
N40.05259 (7)0.34253 (19)0.52206 (8)0.0573 (4)
H4A0.08560.37490.49340.069*
H4B0.04530.33470.56620.069*
C90.13931 (8)0.1497 (2)0.55671 (10)0.0573 (5)
H9A0.15050.16270.60690.069*
H9B0.16780.19870.54370.069*
C100.13821 (12)0.0142 (3)0.54001 (14)0.0866 (8)
H10A0.17580.05570.56550.130*
H10B0.12770.02700.49040.130*
H10C0.11050.06300.55360.130*
C110.05491 (8)0.2300 (2)0.62204 (9)0.0461 (4)
C120.05200 (10)0.0934 (2)0.65023 (10)0.0615 (5)
H120.04150.01150.62080.074*
C130.06433 (10)0.0761 (2)0.72089 (11)0.0672 (6)
H130.06250.01650.73920.081*
C140.07937 (9)0.1978 (2)0.76379 (10)0.0583 (5)
C150.08186 (10)0.3350 (2)0.73762 (10)0.0624 (5)
H150.09160.41690.76720.075*
C160.06970 (9)0.3503 (2)0.66685 (10)0.0565 (5)
H160.07150.44330.64890.068*
C170.26374 (9)0.3814 (2)0.65760 (11)0.0597 (5)
C180.22574 (11)0.4080 (3)0.69018 (15)0.0842 (7)
H180.19150.45890.66590.101*
C190.23812 (13)0.3602 (4)0.75731 (16)0.0925 (8)
H190.21220.37900.77810.111*
C200.28810 (12)0.2852 (3)0.79432 (14)0.0819 (7)
H200.29640.25360.84010.098*
C210.32583 (10)0.2572 (3)0.76267 (11)0.0654 (6)
H210.35970.20590.78780.078*
C220.31507 (8)0.3029 (2)0.69465 (10)0.0516 (5)
C230.35930 (8)0.2663 (2)0.66497 (10)0.0498 (5)
C240.20715 (10)0.5028 (3)0.54250 (13)0.0763 (7)
C250.21049 (12)0.5345 (4)0.47279 (14)0.0992 (9)
H25A0.17320.51930.43550.149*
H25B0.23810.46960.46640.149*
H25C0.22230.63500.47200.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1155 (6)0.1148 (6)0.0436 (3)0.0138 (4)0.0307 (3)0.0113 (3)
O10.0521 (8)0.0950 (11)0.0544 (9)0.0212 (8)0.0222 (7)0.0160 (8)
O20.0497 (8)0.0881 (11)0.0533 (8)0.0187 (7)0.0158 (6)0.0105 (7)
O30.0666 (11)0.1441 (18)0.0979 (13)0.0506 (12)0.0139 (10)0.0016 (12)
N10.0421 (8)0.0635 (10)0.0400 (8)0.0054 (7)0.0159 (6)0.0034 (7)
N50.0487 (9)0.0840 (13)0.0700 (12)0.0178 (9)0.0187 (8)0.0095 (10)
N20.0410 (8)0.0601 (10)0.0426 (8)0.0025 (7)0.0131 (7)0.0051 (7)
C20.0437 (10)0.0538 (11)0.0400 (9)0.0003 (8)0.0118 (8)0.0027 (8)
C40.0432 (10)0.0455 (10)0.0449 (10)0.0014 (8)0.0164 (8)0.0034 (8)
C50.0461 (10)0.0441 (10)0.0428 (9)0.0009 (8)0.0156 (8)0.0028 (8)
C60.0445 (10)0.0488 (10)0.0391 (9)0.0005 (8)0.0112 (8)0.0002 (8)
N30.0499 (9)0.1003 (14)0.0388 (9)0.0151 (9)0.0136 (7)0.0090 (8)
N40.0454 (9)0.0785 (12)0.0478 (9)0.0105 (8)0.0183 (7)0.0101 (8)
C90.0496 (11)0.0754 (14)0.0418 (10)0.0112 (10)0.0128 (8)0.0048 (9)
C100.0947 (18)0.0754 (16)0.0860 (17)0.0288 (14)0.0320 (14)0.0133 (13)
C110.0449 (10)0.0496 (11)0.0420 (9)0.0060 (8)0.0154 (8)0.0035 (8)
C120.0830 (15)0.0490 (12)0.0509 (11)0.0012 (10)0.0248 (10)0.0001 (9)
C130.0921 (16)0.0565 (13)0.0550 (12)0.0053 (11)0.0314 (11)0.0141 (10)
C140.0613 (12)0.0722 (14)0.0407 (10)0.0115 (10)0.0194 (9)0.0065 (10)
C150.0770 (14)0.0601 (13)0.0473 (11)0.0038 (11)0.0218 (10)0.0065 (9)
C160.0703 (13)0.0474 (11)0.0512 (11)0.0036 (9)0.0235 (10)0.0034 (9)
C170.0486 (11)0.0663 (13)0.0625 (12)0.0024 (9)0.0204 (9)0.0077 (10)
C180.0624 (14)0.1020 (19)0.0919 (19)0.0213 (13)0.0344 (13)0.0068 (15)
C190.0876 (19)0.121 (2)0.0872 (19)0.0119 (17)0.0543 (16)0.0122 (17)
C200.0856 (18)0.104 (2)0.0663 (14)0.0015 (15)0.0405 (13)0.0067 (14)
C210.0640 (13)0.0748 (14)0.0574 (12)0.0038 (11)0.0243 (10)0.0023 (11)
C220.0447 (10)0.0536 (11)0.0539 (11)0.0036 (8)0.0169 (8)0.0081 (9)
C230.0430 (10)0.0543 (11)0.0475 (11)0.0014 (8)0.0129 (8)0.0032 (9)
C240.0526 (13)0.0783 (16)0.0795 (16)0.0147 (12)0.0065 (11)0.0024 (12)
C250.0818 (17)0.111 (2)0.0846 (18)0.0232 (16)0.0111 (14)0.0237 (16)
Geometric parameters (Å, º) top
Cl1—C141.7433 (19)C10—H10C0.9600
O1—C231.262 (2)C11—C121.383 (3)
O2—C231.247 (2)C11—C161.383 (3)
O3—C241.222 (3)C12—C131.377 (3)
N1—C21.354 (2)C12—H120.9300
N1—C61.364 (2)C13—C141.372 (3)
N1—H10.8600C13—H130.9300
N5—C241.346 (3)C14—C151.368 (3)
N5—C171.407 (3)C15—C161.379 (3)
N5—H50.8600C15—H150.9300
N2—C21.329 (2)C16—H160.9300
N2—C41.339 (2)C17—C181.395 (3)
C2—N31.321 (2)C17—C221.408 (3)
C4—N41.328 (2)C18—C191.367 (4)
C4—C51.433 (2)C18—H180.9300
C5—C61.362 (3)C19—C201.368 (4)
C5—C111.491 (2)C19—H190.9300
C6—C91.497 (3)C20—C211.376 (3)
N3—H3A0.8600C20—H200.9300
N3—H3B0.8600C21—C221.386 (3)
N4—H4A0.8600C21—H210.9300
N4—H4B0.8600C22—C231.509 (3)
C9—C101.523 (3)C24—C251.505 (4)
C9—H9A0.9700C25—H25A0.9600
C9—H9B0.9700C25—H25B0.9600
C10—H10A0.9600C25—H25C0.9600
C10—H10B0.9600
C2—N1—C6121.21 (16)C14—C13—C12118.9 (2)
C2—N1—H1119.4C14—C13—H13120.6
C6—N1—H1119.4C12—C13—H13120.6
C24—N5—C17129.9 (2)C15—C14—C13121.32 (18)
C24—N5—H5115.1C15—C14—Cl1119.43 (17)
C17—N5—H5115.1C13—C14—Cl1119.25 (17)
C2—N2—C4117.42 (14)C14—C15—C16119.05 (19)
N3—C2—N2120.54 (16)C14—C15—H15120.5
N3—C2—N1117.07 (17)C16—C15—H15120.5
N2—C2—N1122.39 (16)C15—C16—C11121.32 (19)
N4—C4—N2117.08 (15)C15—C16—H16119.3
N4—C4—C5120.00 (16)C11—C16—H16119.3
N2—C4—C5122.92 (16)C18—C17—N5122.7 (2)
C6—C5—C4116.60 (16)C18—C17—C22119.0 (2)
C6—C5—C11122.45 (16)N5—C17—C22118.38 (18)
C4—C5—C11120.95 (16)C19—C18—C17120.8 (2)
C5—C6—N1119.27 (16)C19—C18—H18119.6
C5—C6—C9125.29 (16)C17—C18—H18119.6
N1—C6—C9115.35 (16)C18—C19—C20120.9 (2)
C2—N3—H3A120.0C18—C19—H19119.5
C2—N3—H3B120.0C20—C19—H19119.5
H3A—N3—H3B120.0C19—C20—C21118.9 (2)
C4—N4—H4A120.0C19—C20—H20120.6
C4—N4—H4B120.0C21—C20—H20120.6
H4A—N4—H4B120.0C20—C21—C22122.3 (2)
C6—C9—C10110.93 (18)C20—C21—H21118.8
C6—C9—H9A109.5C22—C21—H21118.8
C10—C9—H9A109.5C21—C22—C17118.07 (19)
C6—C9—H9B109.5C21—C22—C23117.99 (17)
C10—C9—H9B109.5C17—C22—C23123.93 (18)
H9A—C9—H9B108.0O2—C23—O1123.28 (18)
C9—C10—H10A109.5O2—C23—C22117.42 (17)
C9—C10—H10B109.5O1—C23—C22119.29 (16)
H10A—C10—H10B109.5O3—C24—N5123.6 (3)
C9—C10—H10C109.5O3—C24—C25121.7 (2)
H10A—C10—H10C109.5N5—C24—C25114.8 (2)
H10B—C10—H10C109.5C24—C25—H25A109.5
C12—C11—C16117.94 (17)C24—C25—H25B109.5
C12—C11—C5121.79 (17)H25A—C25—H25B109.5
C16—C11—C5120.26 (17)C24—C25—H25C109.5
C13—C12—C11121.50 (19)H25A—C25—H25C109.5
C13—C12—H12119.3H25B—C25—H25C109.5
C11—C12—H12119.3
C4—N2—C2—N3178.21 (17)C12—C13—C14—Cl1178.78 (17)
C4—N2—C2—N12.2 (3)C13—C14—C15—C160.9 (3)
C6—N1—C2—N3177.84 (17)Cl1—C14—C15—C16178.42 (17)
C6—N1—C2—N21.8 (3)C14—C15—C16—C110.2 (3)
C2—N2—C4—N4175.89 (16)C12—C11—C16—C150.7 (3)
C2—N2—C4—C54.6 (3)C5—C11—C16—C15179.95 (19)
N4—C4—C5—C6177.47 (17)C24—N5—C17—C181.4 (4)
N2—C4—C5—C63.1 (3)C24—N5—C17—C22178.4 (2)
N4—C4—C5—C111.7 (3)N5—C17—C18—C19179.5 (2)
N2—C4—C5—C11177.80 (16)C22—C17—C18—C190.7 (4)
C4—C5—C6—N11.0 (3)C17—C18—C19—C200.0 (5)
C11—C5—C6—N1178.14 (16)C18—C19—C20—C210.5 (5)
C4—C5—C6—C9175.26 (17)C19—C20—C21—C220.2 (4)
C11—C5—C6—C95.6 (3)C20—C21—C22—C170.5 (3)
C2—N1—C6—C53.3 (3)C20—C21—C22—C23179.9 (2)
C2—N1—C6—C9173.28 (17)C18—C17—C22—C210.9 (3)
C5—C6—C9—C10100.7 (2)N5—C17—C22—C21179.27 (19)
N1—C6—C9—C1075.7 (2)C18—C17—C22—C23179.5 (2)
C6—C5—C11—C1280.4 (2)N5—C17—C22—C230.3 (3)
C4—C5—C11—C12100.5 (2)C21—C22—C23—O22.1 (3)
C6—C5—C11—C16100.3 (2)C17—C22—C23—O2177.44 (19)
C4—C5—C11—C1678.8 (2)C21—C22—C23—O1177.81 (18)
C16—C11—C12—C131.1 (3)C17—C22—C23—O12.7 (3)
C5—C11—C12—C13179.58 (19)C17—N5—C24—O30.3 (4)
C11—C12—C13—C140.5 (3)C17—N5—C24—C25179.4 (2)
C12—C13—C14—C150.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O10.861.902.614 (2)140
C9—H9B···N50.972.873.683 (3)142
N1—H1···O1i0.861.862.715 (2)177
N3—H3B···O2i0.861.962.802 (3)165
N3—H3A···O2ii0.862.162.897 (2)143
N4—H4A···O3iii0.862.012.859 (2)168
C10—H10B···Cl1iv0.962.953.864 (3)160
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z+1; (iv) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC12H14ClN4+·C9H8NO3
Mr427.89
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.226 (4), 9.0666 (16), 20.688 (4)
β (°) 113.400 (3)
V3)4342.5 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.4 × 0.35 × 0.32
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14400, 3937, 3079
Rint0.019
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.04
No. of reflections3937
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: SMART (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O10.861.902.614 (2)140
C9—H9B···N50.972.873.683 (3)142
N1—H1···O1i0.861.862.715 (2)177
N3—H3B···O2i0.861.962.802 (3)165
N3—H3A···O2ii0.862.162.897 (2)143
N4—H4A···O3iii0.862.012.859 (2)168
C10—H10B···Cl1iv0.962.953.864 (3)160
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z+1; (iv) x, y, z1/2.
 

References

First citationBaker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBalasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907–o2909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBalasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203–o4205.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536.  CAS Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210.  Web of Science CSD CrossRef CAS Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976–o2978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4212.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2357-o2358
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds