metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1267-m1268

cis-[1,2-Bis(di­phenyl­arsan­yl)ethane-κ2As,As']tetra­carbonyl­chromium(0)

aFaculty of Industrial Science and Technology, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia, bChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 8 August 2011; accepted 9 August 2011; online 27 August 2011)

In the title compound, [Cr(C26H24As2)(CO)4], the Cr atom is octa­hedrally coordinated by four carbonyl ligands and one bidentate 1,2-bis­(diphenyl­arsan­yl)ethane ligand, which chelates in a cis manner with an As—Cr—As bite angle of 82.513 (9)°. The dihedral angles between the pairs of benzene rings attached to each As atom are 84.63 (9) and 77.15 (8)°. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, forming infinite chains along the a axis. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

X-ray structure determinations of chromium carbonyls with arsine ligands are rare. A search of the Cambridge Crystallographic Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) reveals only 12 complexes of chromium carbonyl disubtituted with tertiary arsines. For related structures, see: Bennett et al. (1971[Bennett, M. J., Cotton, F. A. & LaPrade, M. D. (1971). Acta Cryst. B27, 1899-1904.]); Nowell et al. (1972[Nowell, I. W., Rettig, S. & Trotter, J. (1972). J. Chem. Soc. Dalton Trans. pp. 2381-2388.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C26H24As2)(CO)4]

  • Mr = 650.33

  • Orthorhombic, P b c a

  • a = 17.0231 (4) Å

  • b = 12.6200 (3) Å

  • c = 25.5527 (6) Å

  • V = 5489.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 100 K

  • 0.53 × 0.25 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.313, Tmax = 0.871

  • 87112 measured reflections

  • 9352 independent reflections

  • 7454 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.065

  • S = 1.02

  • 9352 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

As1—Cr1 2.4461 (3)
As2—Cr1 2.4512 (3)
Cr1—C2 1.8457 (17)
Cr1—C1 1.8511 (17)
Cr1—C3 1.8894 (17)
Cr1—C4 1.8935 (18)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.93 2.57 3.345 (2) 141
C16—H16ACg1ii 0.93 2.60 3.519 (2) 169
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Very few chromium carbonyls with bidentate arsine ligands have been reported (Allen, 2002). The C—C bond length and the As—Cr—As bite angle of the title complex are comparable to similar complexes of chromium carbonyls substituted with bidentate arsine with two carbon atom backbone (Nowell et al.,1972). The title compound is isostructural to Cr(CO)4(Ph2P(CH2)2PPh2) and this gives further support that the formation of stable cis-M(CO)4L2 compounds is prefered when the L2 groups are combined in a chelating bidentate ligand (Bennett et al. 1971).

The Cr—As bond lengths show an average value of 2.449 Å and the As—Cr—As bite angle has a value of 82.51 (1)° (Table 1) while in Cr(CO)4(Ph2P(CH2)2PPh2), the average of Cr—P bond lengths is 2.360Å and the P—Cr—P bite angle has a value of 83.41 (8).

In the molecule, the dihedral angle between the two benzene ring attached to the As1 and As2 are 84.63 (9)° (C7—C12 & C13—C18 rings) and 77.15 (8)° (C19—C24 & C25—C30 rings), respectively. The molecules form infinite chains along the a axis (Fig. 2) throught C9—H9A···O1i (Table 2) intermolecular interactions. The crystal structure is further stabilized by C—H···π interaction involving Cg1, Cg1 is the centroid of C7—C12 (Table 2).

Related literature top

X-ray structure determinations of chromium carbonyls with arsine ligands are rare. A search of the Cambridge Crystallographic Structural Database (Allen, 2002) reveals only 12 complexes of chromium carbonyl disubtituted with tertiary arsines. For related structures, see: Bennett et al. (1971); Nowell et al. (1972). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

All manipulations were performed under a dry, oxygen-free nitrogen atmosphere using standard Schlenk techniques. All solvents were dried over sodium under dry oxygen free nitrogen. Chromium hexacarbonyl (200 mg, 0.909 mmol) and ethylenebisdiphenyl-arsanylethane (441.9 mg, 0.9086 mmol) in 35 ml of pet ether (100–130°C) was refluxed for 12 h. Suitable single crystals were obtained by solvent-solvent diffusion in a mixture of dichloromethane/methanol.

Refinement top

All hydrogen atoms were positioned geometrically and refined using ariding model with C—H = 0.93–0.97Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of (I) shown an infinite chains along a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
cis-[1,2-Bis(diphenylarsanyl)ethane- κ2As,As']tetracarbonylchromium(0) top
Crystal data top
[Cr(C26H24As2)(CO)4]F(000) = 2608
Mr = 650.33Dx = 1.574 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9793 reflections
a = 17.0231 (4) Åθ = 2.4–31.6°
b = 12.6200 (3) ŵ = 2.84 mm1
c = 25.5527 (6) ÅT = 100 K
V = 5489.5 (2) Å3Plate, yellow
Z = 80.53 × 0.25 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9352 independent reflections
Radiation source: fine-focus sealed tube7454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 31.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2525
Tmin = 0.313, Tmax = 0.871k = 1818
87112 measured reflectionsl = 3736
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0273P)2 + 3.1824P]
where P = (Fo2 + 2Fc2)/3
9352 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cr(C26H24As2)(CO)4]V = 5489.5 (2) Å3
Mr = 650.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.0231 (4) ŵ = 2.84 mm1
b = 12.6200 (3) ÅT = 100 K
c = 25.5527 (6) Å0.53 × 0.25 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9352 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7454 reflections with I > 2σ(I)
Tmin = 0.313, Tmax = 0.871Rint = 0.054
87112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.02Δρmax = 0.78 e Å3
9352 reflectionsΔρmin = 0.50 e Å3
334 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.057670 (9)0.238802 (12)0.109865 (6)0.01225 (4)
As20.018356 (9)0.355446 (12)0.219264 (6)0.01278 (4)
Cr10.014160 (15)0.402272 (19)0.128720 (10)0.01236 (5)
O10.06677 (8)0.43384 (10)0.01759 (5)0.0246 (3)
O20.09528 (8)0.60856 (9)0.15170 (5)0.0232 (3)
O30.16549 (7)0.27784 (10)0.14160 (5)0.0224 (3)
O40.14071 (8)0.51681 (11)0.11081 (6)0.0272 (3)
C10.04384 (10)0.42144 (12)0.05967 (7)0.0165 (3)
C20.06388 (10)0.52821 (13)0.14459 (7)0.0169 (3)
C30.10761 (10)0.32364 (13)0.13788 (6)0.0161 (3)
C40.08227 (10)0.47383 (13)0.11800 (7)0.0175 (3)
C50.11061 (9)0.19004 (12)0.17374 (6)0.0153 (3)
H5A0.12280.11520.17080.018*
H5B0.15950.22840.17830.018*
C60.05746 (10)0.20852 (12)0.22068 (6)0.0163 (3)
H6A0.08650.19620.25280.020*
H6B0.01360.15950.21960.020*
C70.14297 (9)0.24008 (12)0.05972 (7)0.0149 (3)
C80.20274 (10)0.16476 (14)0.06237 (7)0.0206 (3)
H8A0.20280.11460.08900.025*
C90.26242 (11)0.16466 (16)0.02509 (8)0.0259 (4)
H9A0.30260.11490.02700.031*
C100.26182 (11)0.23863 (16)0.01474 (8)0.0275 (4)
H10A0.30150.23810.03970.033*
C110.20263 (13)0.31346 (16)0.01777 (8)0.0293 (4)
H11A0.20250.36290.04480.035*
C120.14324 (11)0.31449 (14)0.01975 (7)0.0231 (4)
H12A0.10370.36520.01800.028*
C130.00267 (9)0.11792 (13)0.08554 (7)0.0152 (3)
C140.00004 (11)0.01848 (14)0.10873 (7)0.0221 (4)
H14A0.03200.00680.13770.027*
C150.04515 (12)0.06359 (14)0.08852 (8)0.0259 (4)
H15A0.04360.13000.10420.031*
C160.09245 (11)0.04732 (14)0.04528 (8)0.0238 (4)
H16A0.12230.10270.03190.029*
C170.09518 (11)0.05155 (14)0.02200 (8)0.0234 (4)
H17A0.12700.06270.00710.028*
C180.05043 (11)0.13430 (13)0.04200 (7)0.0212 (3)
H18A0.05240.20070.02630.025*
C190.06385 (9)0.35132 (12)0.27216 (6)0.0142 (3)
C200.05732 (10)0.28751 (13)0.31664 (7)0.0184 (3)
H20A0.01300.24540.32120.022*
C210.11640 (11)0.28637 (14)0.35403 (7)0.0224 (4)
H21A0.11160.24360.38350.027*
C220.18290 (11)0.34913 (14)0.34745 (7)0.0222 (4)
H22A0.22240.34870.37260.027*
C230.19024 (10)0.41239 (14)0.30323 (7)0.0204 (3)
H23A0.23470.45430.29880.024*
C240.13112 (10)0.41316 (13)0.26559 (7)0.0172 (3)
H24A0.13650.45510.23590.021*
C250.10030 (9)0.43394 (13)0.25556 (7)0.0160 (3)
C260.14419 (11)0.39131 (14)0.29641 (7)0.0215 (3)
H26A0.13670.32120.30640.026*
C270.19926 (11)0.45346 (15)0.32230 (8)0.0260 (4)
H27A0.22810.42480.34980.031*
C280.21143 (11)0.55748 (15)0.30750 (8)0.0269 (4)
H28A0.24840.59860.32500.032*
C290.16864 (11)0.60052 (14)0.26664 (8)0.0237 (4)
H29A0.17710.67030.25640.028*
C300.11286 (10)0.53888 (13)0.24094 (7)0.0183 (3)
H30B0.08370.56810.21370.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.01221 (7)0.01282 (7)0.01172 (8)0.00059 (5)0.00040 (6)0.00029 (5)
As20.01295 (8)0.01347 (7)0.01191 (8)0.00115 (5)0.00018 (6)0.00042 (5)
Cr10.01258 (12)0.01213 (11)0.01236 (12)0.00032 (8)0.00026 (9)0.00065 (9)
O10.0237 (7)0.0300 (7)0.0200 (7)0.0057 (5)0.0055 (5)0.0078 (5)
O20.0222 (6)0.0174 (6)0.0300 (7)0.0035 (5)0.0000 (6)0.0021 (5)
O30.0193 (6)0.0236 (6)0.0244 (7)0.0038 (5)0.0008 (5)0.0022 (5)
O40.0232 (7)0.0283 (7)0.0300 (7)0.0092 (5)0.0042 (6)0.0022 (6)
C10.0151 (7)0.0155 (7)0.0187 (8)0.0023 (5)0.0004 (6)0.0015 (6)
C20.0164 (8)0.0186 (7)0.0158 (8)0.0018 (6)0.0014 (6)0.0006 (6)
C30.0191 (8)0.0159 (7)0.0133 (8)0.0028 (6)0.0016 (6)0.0013 (6)
C40.0210 (8)0.0164 (7)0.0149 (8)0.0013 (6)0.0006 (6)0.0016 (6)
C50.0159 (7)0.0152 (7)0.0148 (8)0.0021 (5)0.0004 (6)0.0002 (6)
C60.0193 (8)0.0147 (7)0.0149 (8)0.0023 (6)0.0010 (6)0.0001 (6)
C70.0126 (7)0.0171 (7)0.0151 (8)0.0022 (5)0.0017 (6)0.0032 (6)
C80.0175 (8)0.0293 (9)0.0149 (8)0.0042 (7)0.0003 (7)0.0004 (7)
C90.0156 (8)0.0412 (11)0.0208 (9)0.0045 (7)0.0015 (7)0.0057 (8)
C100.0205 (9)0.0397 (11)0.0223 (9)0.0073 (8)0.0086 (7)0.0067 (8)
C110.0371 (11)0.0269 (9)0.0240 (10)0.0047 (8)0.0111 (9)0.0038 (8)
C120.0269 (9)0.0197 (8)0.0228 (9)0.0008 (7)0.0062 (8)0.0014 (7)
C130.0137 (7)0.0163 (7)0.0154 (8)0.0002 (5)0.0024 (6)0.0032 (6)
C140.0278 (9)0.0219 (8)0.0166 (8)0.0061 (7)0.0036 (7)0.0014 (6)
C150.0353 (11)0.0192 (8)0.0232 (9)0.0078 (7)0.0026 (8)0.0016 (7)
C160.0219 (9)0.0245 (8)0.0251 (10)0.0058 (7)0.0018 (8)0.0078 (7)
C170.0217 (9)0.0248 (8)0.0237 (9)0.0022 (7)0.0091 (7)0.0052 (7)
C180.0233 (9)0.0184 (7)0.0218 (9)0.0026 (6)0.0057 (7)0.0020 (6)
C190.0149 (7)0.0143 (7)0.0134 (7)0.0015 (5)0.0011 (6)0.0019 (5)
C200.0199 (8)0.0155 (7)0.0197 (8)0.0018 (6)0.0002 (7)0.0006 (6)
C210.0287 (9)0.0195 (8)0.0189 (9)0.0015 (7)0.0039 (7)0.0030 (6)
C220.0209 (8)0.0240 (8)0.0217 (9)0.0039 (7)0.0078 (7)0.0025 (7)
C230.0160 (8)0.0212 (8)0.0240 (9)0.0001 (6)0.0016 (7)0.0011 (7)
C240.0166 (8)0.0179 (7)0.0171 (8)0.0009 (6)0.0005 (6)0.0000 (6)
C250.0133 (7)0.0194 (7)0.0152 (8)0.0012 (6)0.0004 (6)0.0028 (6)
C260.0216 (9)0.0234 (8)0.0197 (9)0.0025 (7)0.0030 (7)0.0001 (7)
C270.0202 (9)0.0329 (10)0.0247 (10)0.0072 (7)0.0096 (8)0.0061 (8)
C280.0172 (8)0.0310 (9)0.0326 (11)0.0021 (7)0.0057 (8)0.0136 (8)
C290.0200 (8)0.0198 (8)0.0314 (10)0.0018 (6)0.0023 (7)0.0075 (7)
C300.0166 (8)0.0184 (7)0.0198 (9)0.0026 (6)0.0017 (6)0.0035 (6)
Geometric parameters (Å, º) top
As1—C71.9367 (16)C13—C181.393 (2)
As1—C131.9413 (16)C14—C151.390 (2)
As1—C51.9634 (16)C14—H14A0.9300
As1—Cr12.4461 (3)C15—C161.382 (3)
As2—C251.9461 (16)C15—H15A0.9300
As2—C191.9463 (16)C16—C171.383 (3)
As2—C61.9704 (16)C16—H16A0.9300
As2—Cr12.4512 (3)C17—C181.390 (2)
Cr1—C21.8457 (17)C17—H17A0.9300
Cr1—C11.8511 (17)C18—H18A0.9300
Cr1—C31.8894 (17)C19—C241.396 (2)
Cr1—C41.8935 (18)C19—C201.397 (2)
O1—C11.155 (2)C20—C211.387 (2)
O2—C21.161 (2)C20—H20A0.9300
O3—C31.146 (2)C21—C221.392 (3)
O4—C41.148 (2)C21—H21A0.9300
C5—C61.520 (2)C22—C231.389 (3)
C5—H5A0.9700C22—H22A0.9300
C5—H5B0.9700C23—C241.392 (2)
C6—H6A0.9700C23—H23A0.9300
C6—H6B0.9700C24—H24A0.9300
C7—C121.387 (2)C25—C261.392 (2)
C7—C81.394 (2)C25—C301.392 (2)
C8—C91.393 (3)C26—C271.390 (3)
C8—H8A0.9300C26—H26A0.9300
C9—C101.381 (3)C27—C281.382 (3)
C9—H9A0.9300C27—H27A0.9300
C10—C111.383 (3)C28—C291.384 (3)
C10—H10A0.9300C28—H28A0.9300
C11—C121.393 (3)C29—C301.392 (2)
C11—H11A0.9300C29—H29A0.9300
C12—H12A0.9300C30—H30B0.9300
C13—C141.389 (2)
C7—As1—C13101.03 (7)C7—C12—C11120.17 (17)
C7—As1—C5102.03 (7)C7—C12—H12A119.9
C13—As1—C5105.23 (7)C11—C12—H12A119.9
C7—As1—Cr1119.87 (5)C14—C13—C18119.62 (16)
C13—As1—Cr1117.47 (5)C14—C13—As1123.77 (13)
C5—As1—Cr1109.27 (5)C18—C13—As1116.60 (12)
C25—As2—C19101.42 (7)C13—C14—C15119.77 (17)
C25—As2—C6103.18 (7)C13—C14—H14A120.1
C19—As2—C6101.83 (7)C15—C14—H14A120.1
C25—As2—Cr1119.27 (5)C16—C15—C14120.58 (17)
C19—As2—Cr1119.97 (5)C16—C15—H15A119.7
C6—As2—Cr1108.69 (5)C14—C15—H15A119.7
C2—Cr1—C188.38 (7)C15—C16—C17119.82 (17)
C2—Cr1—C392.23 (7)C15—C16—H16A120.1
C1—Cr1—C387.53 (7)C17—C16—H16A120.1
C2—Cr1—C491.07 (7)C16—C17—C18120.08 (17)
C1—Cr1—C492.09 (7)C16—C17—H17A120.0
C3—Cr1—C4176.66 (7)C18—C17—H17A120.0
C2—Cr1—As1177.11 (5)C17—C18—C13120.13 (16)
C1—Cr1—As193.38 (5)C17—C18—H18A119.9
C3—Cr1—As190.13 (5)C13—C18—H18A119.9
C4—Cr1—As186.58 (5)C24—C19—C20119.03 (15)
C2—Cr1—As295.95 (5)C24—C19—As2119.43 (12)
C1—Cr1—As2173.10 (5)C20—C19—As2121.54 (12)
C3—Cr1—As286.94 (5)C21—C20—C19120.56 (16)
C4—Cr1—As293.20 (5)C21—C20—H20A119.7
As1—Cr1—As282.513 (9)C19—C20—H20A119.7
O1—C1—Cr1176.05 (15)C20—C21—C22120.04 (17)
O2—C2—Cr1176.30 (15)C20—C21—H21A120.0
O3—C3—Cr1177.18 (15)C22—C21—H21A120.0
O4—C4—Cr1179.09 (16)C23—C22—C21119.90 (16)
C6—C5—As1109.55 (11)C23—C22—H22A120.0
C6—C5—H5A109.8C21—C22—H22A120.0
As1—C5—H5A109.8C22—C23—C24120.07 (16)
C6—C5—H5B109.8C22—C23—H23A120.0
As1—C5—H5B109.8C24—C23—H23A120.0
H5A—C5—H5B108.2C23—C24—C19120.39 (16)
C5—C6—As2109.32 (11)C23—C24—H24A119.8
C5—C6—H6A109.8C19—C24—H24A119.8
As2—C6—H6A109.8C26—C25—C30119.10 (16)
C5—C6—H6B109.8C26—C25—As2123.05 (13)
As2—C6—H6B109.8C30—C25—As2117.80 (12)
H6A—C6—H6B108.3C27—C26—C25120.06 (17)
C12—C7—C8119.66 (16)C27—C26—H26A120.0
C12—C7—As1119.68 (13)C25—C26—H26A120.0
C8—C7—As1120.62 (13)C28—C27—C26120.47 (18)
C9—C8—C7119.99 (17)C28—C27—H27A119.8
C9—C8—H8A120.0C26—C27—H27A119.8
C7—C8—H8A120.0C27—C28—C29120.02 (17)
C10—C9—C8119.87 (18)C27—C28—H28A120.0
C10—C9—H9A120.1C29—C28—H28A120.0
C8—C9—H9A120.1C28—C29—C30119.70 (17)
C9—C10—C11120.54 (18)C28—C29—H29A120.1
C9—C10—H10A119.7C30—C29—H29A120.1
C11—C10—H10A119.7C29—C30—C25120.64 (17)
C10—C11—C12119.76 (18)C29—C30—H30B119.7
C10—C11—H11A120.1C25—C30—H30B119.7
C12—C11—H11A120.1
C7—As1—Cr1—C158.18 (8)C10—C11—C12—C70.7 (3)
C13—As1—Cr1—C165.02 (8)C7—As1—C13—C14101.21 (16)
C5—As1—Cr1—C1175.28 (7)C5—As1—C13—C144.64 (17)
C7—As1—Cr1—C3145.71 (8)Cr1—As1—C13—C14126.46 (14)
C13—As1—Cr1—C322.52 (8)C7—As1—C13—C1878.32 (14)
C5—As1—Cr1—C397.19 (7)C5—As1—C13—C18175.83 (13)
C7—As1—Cr1—C433.72 (8)Cr1—As1—C13—C1854.01 (14)
C13—As1—Cr1—C4156.91 (8)C18—C13—C14—C150.3 (3)
C5—As1—Cr1—C483.38 (7)As1—C13—C14—C15179.84 (14)
C7—As1—Cr1—As2127.40 (6)C13—C14—C15—C160.4 (3)
C13—As1—Cr1—As2109.41 (6)C14—C15—C16—C170.3 (3)
C5—As1—Cr1—As210.30 (5)C15—C16—C17—C180.1 (3)
C25—As2—Cr1—C272.21 (7)C16—C17—C18—C130.0 (3)
C19—As2—Cr1—C253.61 (7)C14—C13—C18—C170.1 (3)
C6—As2—Cr1—C2170.04 (7)As1—C13—C18—C17179.67 (14)
C25—As2—Cr1—C3164.14 (7)C25—As2—C19—C24107.98 (13)
C19—As2—Cr1—C338.31 (7)C6—As2—C19—C24145.76 (13)
C6—As2—Cr1—C378.11 (7)Cr1—As2—C19—C2425.84 (14)
C25—As2—Cr1—C419.20 (7)C25—As2—C19—C2072.24 (14)
C19—As2—Cr1—C4145.03 (7)C6—As2—C19—C2034.03 (15)
C6—As2—Cr1—C498.55 (7)Cr1—As2—C19—C20153.95 (11)
C25—As2—Cr1—As1105.32 (5)C24—C19—C20—C210.7 (2)
C19—As2—Cr1—As1128.85 (5)As2—C19—C20—C21179.55 (13)
C7—As1—C5—C6166.75 (11)C19—C20—C21—C220.0 (3)
C13—As1—C5—C688.13 (12)C20—C21—C22—C230.4 (3)
Cr1—As1—C5—C638.86 (11)C21—C22—C23—C240.1 (3)
As1—C5—C6—As249.63 (13)C22—C23—C24—C190.6 (3)
C25—As2—C6—C587.01 (12)C20—C19—C24—C231.0 (2)
C19—As2—C6—C5168.11 (11)As2—C19—C24—C23179.24 (13)
Cr1—As2—C6—C540.54 (12)C19—As2—C25—C2672.05 (15)
C13—As1—C7—C12103.78 (14)C6—As2—C25—C2633.15 (16)
C5—As1—C7—C12147.84 (14)Cr1—As2—C25—C26153.72 (13)
Cr1—As1—C7—C1227.06 (16)C19—As2—C25—C30105.36 (14)
C13—As1—C7—C874.09 (14)C6—As2—C25—C30149.44 (13)
C5—As1—C7—C834.29 (15)Cr1—As2—C25—C3028.87 (15)
Cr1—As1—C7—C8155.07 (12)C30—C25—C26—C270.5 (3)
C12—C7—C8—C90.2 (3)As2—C25—C26—C27176.90 (14)
As1—C7—C8—C9178.04 (14)C25—C26—C27—C280.6 (3)
C7—C8—C9—C100.6 (3)C26—C27—C28—C290.0 (3)
C8—C9—C10—C110.4 (3)C27—C28—C29—C300.6 (3)
C9—C10—C11—C120.2 (3)C28—C29—C30—C250.7 (3)
C8—C7—C12—C110.5 (3)C26—C25—C30—C290.2 (3)
As1—C7—C12—C11177.42 (15)As2—C25—C30—C29177.68 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.932.573.345 (2)141
C16—H16A···Cg1ii0.932.603.519 (2)169
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formula[Cr(C26H24As2)(CO)4]
Mr650.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)17.0231 (4), 12.6200 (3), 25.5527 (6)
V3)5489.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.84
Crystal size (mm)0.53 × 0.25 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.313, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
87112, 9352, 7454
Rint0.054
(sin θ/λ)max1)0.743
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.02
No. of reflections9352
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.50

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
As1—Cr12.4461 (3)Cr1—C11.8511 (17)
As2—Cr12.4512 (3)Cr1—C31.8894 (17)
Cr1—C21.8457 (17)Cr1—C41.8935 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.932.573.345 (2)141
C16—H16A···Cg1ii0.932.603.519 (2)169
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z.
 

Footnotes

Thomson Reuters Researcher ID: D-6198-2011.

§Additional correspondence author, e-mail: omarsa@usm.my. Thomson Reuters ResearcherID: B-6034-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for the Research Grant 1001/PJJauh/811115. HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160. MNN is grateful to Universiti Malaysia Pahang for a research position.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBennett, M. J., Cotton, F. A. & LaPrade, M. D. (1971). Acta Cryst. B27, 1899–1904.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNowell, I. W., Rettig, S. & Trotter, J. (1972). J. Chem. Soc. Dalton Trans. pp. 2381–2388.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1267-m1268
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds