metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-Formato-κ2O:O′)bis­­[dicarbon­yl(η5-cyclo­penta­dien­yl)iron(II)] tetra­fluoridoborate

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and bChemistry Department, Kenyatta University, PO Box 43844, Nairobi, Kenya
*Correspondence e-mail: owaga@ukzn.ac.za

(Received 8 August 2011; accepted 12 August 2011; online 17 August 2011)

In the structure of the title compound [Fe2(C5H5)2(CHO2)(CO)4]BF4, each FeII atom is coordinated in a pseudo-octa­hedral three-legged piano-stool fashion. The cyclo­penta­dienyl ligand occupies three fac coordination sites while the two carbonyl ligands and formate O atom occupy the remaining three sites.

Related literature

For the synthesis of the title and other analogous compounds, see: Tso & Cutler (1985[Tso, C. C. & Cutler, A. R. (1985). Organometallics, 4, 1242-1247.], 1990[Tso, C. C. & Cutler, A. R. (1990). Inorg. Chem. 29, 471-475.]). For mononuclear [Fe(κ1-OCHO)(η5-C5H5)(CO)2], see: Darensbourg, Day et al. (1981[Darensbourg, D. J., Day, C. S. & Fischer, M. B. (1981). Inorg. Chem. 20, 3511-3519.]); Darensbourg, Fischer et al. (1981[Darensbourg, D. J., Fischer, M. B., Raymond, J., Schmidt, E. & Baldwin, B. J. (1981). J. Am. Chem. Soc. 103, 1297-1298.]); Dombek & Angelici (1973[Dombek, B. D. & Angelici, R. J. (1973). Inorg. Chem. 7, 345-347.]). For related compounds, see: M'thiruaine, Friedrich, Changamu & Bala (2011[M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2011). Inorg. Chim. Acta, 366, 105-115.]); M'thiruaine, Friedrich, Changamu & Omondi (2011[M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Omondi, B. (2011). Acta Cryst. E67, m485.]); Pinkes et al. (1997[Pinkes, J. R., Masi, C. J., Chiulli, R., Steffey, B. D. & Cutler, A. R. (1997). Inorg. Chem. 36, 70-79.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C5H5)2(CHO2)(CO)4]BF4

  • Mr = 485.75

  • Monoclinic, P 21 /c

  • a = 7.4964 (5) Å

  • b = 17.8845 (14) Å

  • c = 14.1931 (9) Å

  • β = 115.144 (3)°

  • V = 1722.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 100 K

  • 0.24 × 0.11 × 0.1 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.678, Tmax = 0.844

  • 41366 measured reflections

  • 4341 independent reflections

  • 3784 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 1.02

  • 4341 reflections

  • 253 parameters

  • 11 restraints

  • H-atom parameters constrained

  • Δρmax = 1.38 e Å−3

  • Δρmin = −0.92 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There has been a considerable interest in metalloformates and metallocarboxylates due to their potential application in the catalysis of water-gas shift reactions (Darensbourg, Day et al. 1981; Darensbourg, Fischer et al. 1981) and catalytic reduction of CO2 (Tso & Cutler, 1985, 1990; Pinkes et al. 1997). In connection to this the neutral mononuclear formate complex [(η5-C5H5)Fe(CO)2(η1-OC(H)O)] has been prepared using different routes (Dombek & Angelici 1973; Darensbourg, Day et al. 1981; Tso & Cutler, 1985) and its molecular structure is well known (Darensbourg, Day et al. 1981; Darensbourg, Fischer et al. 1981). The cationic binuclear complex [{(η5-C5H5)Fe(CO)2}2(µ-OC(H)O)]PF6 has been reported as the product of the reaction between the neutral mononuclear complex [(η5-C5H5)Fe(CO)2(η1-OC(H)O)] and [(η5-C5H5)Fe(CO)2(THF)]PF6, and has been assumed to exist as a syn-syn isomer based on spectroscopic data (Tso & Cutler, 1985). The same authors have reported various formate bridged heterobimetallic complexes (Tso & Cutler, 1990) but none of their crystal structures are known.

The title compound (I) was obtained in high yields from the reaction of formic acid with two equivalents of the diethyl ether complex [(η5-C5H5)Fe(CO)2(O(CH2CH3)2)]BF4. This is a part of our study on the reactions of the diethyl ether complex with electron pair donor ligands (M'thiruaine, Friedrich, Changamu & Bala, 2011; M'thiruaine, Friedrich, Changamu & Omondi, 2011). The crystallizes with one discrete molecular cation and one counter anion in the assymetric unit. Each Fe atom is coordinated in a pseudo-octahedral three-legged piano stool fashion in which the iron metal capped with cyclopentadienyl occupies three coordination sites while the two carbonyl ligands and formate oxygen occupy the other three coordination sites (Fig. 1). The Fe—O bond lengths of 1.9844 (13) and 1.9686 (13) Å are close to the 1.957 (2)Å reported for the neutral mononuclear complex [(η5-C5H5)Fe(CO)2(η1-OC(H)O)] (Darensbourg, Day et al. 1981). The two O—C bonds of the formate group (–OC(H)O–) are identical, with the bond distances being equal to 1.256 (2) and 1.258 (2) Å, which is close to 1.277 (3)Å and 1.208 (4) found for coordinated and uncoordinated O—C of the formate moiety in the complex [(η5-C5H5)Fe(CO)2(η1-OC(H)O)], respectively. The identical bond lengths of the two C—O bonds of bridging formate indicate electron delocalization between the two oxygen atoms of the formate moiety. Thus the structure shown in Fig. 1 is an overall structure of two resonance structures: [Fp—O=C(H)O—Fp]+ and [Fp—O-(H)C=O—Fp]+. This greatly contributes to the stability of the title compound in both solution and solid state. The Fp moieties are oriented in the solid state so as to adopt a syn-anti isomer structure contrary to the assumption made by Tso & Cutler (1985).

Related literature top

For the synthesis of the title and other analogous compounds, see: Tso & Cutler (1985, 1990). For mononuclear [Fe(η1-OCHO)(η5-C5H5)(CO)2], see: Darensbourg, Day et al. (1981); Darensbourg, Fischer et al. (1981); Dombek & Angelici (1973). For the synthesis and other preparative applications of the ether complex Fe(η1-O(CH2CH3)2)(η5-C5H5)(CO)2BF4, see: M'thiruaine, Friedrich, Changamu & Bala (2011); M'thiruaine, Friedrich, Changamu & Omondi, 2011); Pinkes et al. (1997).

Experimental top

The compound was synthesized as described below and its spectroscopic data is in good agreement with data reported for the PF6- salt.

To a solution of [(η5-C5H5)Fe(CO)2(O(CH2CH3)2)]BF4 (0.560 g, 1.66 mmol) in CH2Cl2 (10 ml), 98% formic acid (0.030 ml, 0.796 mmol) was added and the mixture stirred at room temperature for 5 h after which diethyl ether was added to precipitate the formate compound as a light red solid. The mixture was allowed to stand for 30 min and then the mother liquor was syringed off and the residue washed with (2 x 5 ml) diethyl to give 0.70 g (87% yield) of the light red solid. Anal. Calc. for C15H11BF4Fe2O6: C, 37.09; H, 2.28% Found: C, 36.53; H, 2.57%. 1H NMR (400 MHz, acetone-d6): δ 5.46 (s, 10H, Cp), 7.18 (s, 1H, OCHO). 13C NMR (400 MHz, acetone-d6): δ 86.88 (Cp) 212.23 (CO). IR (solid state): ν(CO) 2057, 2039, 1985 cm-1, v(OCO) 1562 cm-1. M.p 109–110 °C.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–1.00 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids) with H atoms omited for clarity.
(µ-Formato-κ2O:O')bis[dicarbonyl(η5- cyclopentadienyl)iron(II)] tetrafluoridoborate top
Crystal data top
[Fe2(C5H5)2(CHO2)(CO)4]BF4F(000) = 968
Mr = 485.75Dx = 1.873 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 42124 reflections
a = 7.4964 (5) Åθ = 2.0–28.5°
b = 17.8845 (14) ŵ = 1.76 mm1
c = 14.1931 (9) ÅT = 100 K
β = 115.144 (3)°Block, brown
V = 1722.5 (2) Å30.24 × 0.11 × 0.1 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 28.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 910
Tmin = 0.678, Tmax = 0.844k = 2423
41366 measured reflectionsl = 1919
4341 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0257P)2 + 2.6185P]
where P = (Fo2 + 2Fc2)/3
4341 reflections(Δ/σ)max = 0.002
253 parametersΔρmax = 1.38 e Å3
11 restraintsΔρmin = 0.92 e Å3
Crystal data top
[Fe2(C5H5)2(CHO2)(CO)4]BF4V = 1722.5 (2) Å3
Mr = 485.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4964 (5) ŵ = 1.76 mm1
b = 17.8845 (14) ÅT = 100 K
c = 14.1931 (9) Å0.24 × 0.11 × 0.1 mm
β = 115.144 (3)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
4341 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3784 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 0.844Rint = 0.048
41366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02811 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.02Δρmax = 1.38 e Å3
4341 reflectionsΔρmin = 0.92 e Å3
253 parameters
Special details top

Experimental. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–1.00 Å and with Uiso(H) = 1.2Ueq(C).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. 244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for B1 912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 26 003_ALERT_ _G # Space-Group NOTED. 232_ALERT_2_G Hirshfeld Test Diff (M—X) Fe1 – C7.. 5.63 su 232_ALERT_2_G Hirshfeld Test Diff (M—X) Fe2 – C14.. 5.38 su 232_ALERT_2_G Hirshfeld Test Diff (M—X) Fe2 – C15.. 5.63 su DELU and SIMU restraints used. 790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 2 B F4 860_ALERT_3_G Note: Number of Least-Squares Restraints ······. 11 NOTED.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3243 (3)0.92926 (11)0.07899 (14)0.0147 (4)
H10.33370.880.04380.018*
C20.1969 (3)0.99018 (11)0.08289 (14)0.0150 (4)
H20.10250.99110.050.018*
C30.2325 (3)1.04957 (11)0.13869 (14)0.0153 (4)
H30.16771.09980.15220.018*
C40.3832 (3)1.02592 (11)0.16890 (14)0.0152 (4)
H40.441.05620.20880.018*
C50.4380 (3)0.95243 (11)0.13173 (14)0.0153 (4)
H50.53920.92140.14210.018*
C60.0115 (3)1.01353 (10)0.34237 (14)0.0146 (3)
C70.0791 (3)0.90816 (11)0.23422 (15)0.0161 (3)
C80.0601 (3)0.85414 (10)0.39906 (14)0.0137 (3)
H80.09360.81670.43620.016*
C90.3687 (3)0.72050 (11)0.53224 (15)0.0179 (4)
H90.26980.68170.52830.021*
C100.5315 (3)0.74607 (11)0.62519 (15)0.0175 (4)
H100.56660.72790.69750.021*
C110.6362 (3)0.79995 (12)0.59592 (16)0.0188 (4)
H110.75790.82680.6440.023*
C120.5394 (3)0.80858 (12)0.48493 (16)0.0189 (4)
H120.58070.84260.44190.023*
C130.3781 (3)0.75852 (11)0.44746 (15)0.0185 (4)
H130.28310.75230.37280.022*
C140.2328 (3)0.82195 (10)0.63946 (15)0.0151 (3)
C150.4344 (3)0.92972 (11)0.59175 (14)0.0150 (3)
B10.1687 (3)0.64951 (14)0.37678 (18)0.0201 (4)
F10.06516 (18)0.69395 (7)0.33590 (9)0.0219 (3)
F20.2175 (2)0.58267 (8)0.32135 (15)0.0431 (4)
F30.3406 (2)0.68494 (8)0.36527 (13)0.0340 (3)
F40.0473 (2)0.63435 (12)0.47950 (12)0.0510 (5)
Fe10.13319 (4)0.955840 (14)0.233347 (19)0.01069 (7)
Fe20.34774 (4)0.835389 (14)0.552967 (19)0.01083 (7)
O10.1019 (2)1.05243 (8)0.40890 (12)0.0232 (3)
O20.2129 (2)0.88085 (9)0.23040 (12)0.0250 (3)
O30.19470 (19)0.88025 (8)0.31758 (10)0.0149 (3)
O40.11643 (19)0.87505 (7)0.43390 (10)0.0139 (3)
O50.1671 (2)0.80908 (9)0.69662 (11)0.0228 (3)
O60.4921 (2)0.98874 (8)0.61515 (12)0.0241 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0144 (9)0.0155 (9)0.0115 (8)0.0002 (7)0.0029 (7)0.0001 (7)
C20.0149 (9)0.0174 (9)0.0111 (8)0.0007 (7)0.0042 (7)0.0031 (7)
C30.0153 (9)0.0138 (8)0.0145 (8)0.0018 (7)0.0041 (7)0.0036 (7)
C40.0123 (8)0.0191 (9)0.0121 (8)0.0046 (7)0.0031 (7)0.0021 (7)
C50.0101 (8)0.0201 (9)0.0132 (8)0.0011 (7)0.0023 (7)0.0035 (7)
C60.0135 (9)0.0144 (8)0.0140 (8)0.0020 (6)0.0038 (7)0.0019 (6)
C70.0138 (8)0.0185 (9)0.0153 (8)0.0018 (6)0.0055 (7)0.0015 (7)
C80.0148 (9)0.0133 (8)0.0142 (8)0.0011 (7)0.0074 (7)0.0012 (7)
C90.0151 (9)0.0130 (9)0.0222 (9)0.0028 (7)0.0046 (8)0.0033 (7)
C100.0152 (9)0.0150 (9)0.0188 (9)0.0057 (7)0.0038 (7)0.0005 (7)
C110.0111 (9)0.0205 (9)0.0218 (9)0.0037 (7)0.0041 (7)0.0013 (8)
C120.0155 (9)0.0238 (10)0.0208 (9)0.0031 (8)0.0109 (8)0.0021 (8)
C130.0167 (9)0.0212 (10)0.0161 (9)0.0061 (8)0.0053 (7)0.0053 (7)
C140.0159 (9)0.0145 (8)0.0147 (8)0.0029 (7)0.0063 (7)0.0013 (7)
C150.0143 (9)0.0170 (7)0.0130 (8)0.0005 (7)0.0051 (7)0.0005 (6)
B10.0165 (11)0.0222 (11)0.0202 (10)0.0014 (9)0.0064 (9)0.0029 (9)
F10.0215 (6)0.0243 (6)0.0217 (6)0.0017 (5)0.0110 (5)0.0033 (5)
F20.0262 (8)0.0265 (7)0.0816 (12)0.0079 (6)0.0275 (8)0.0190 (8)
F30.0321 (8)0.0294 (7)0.0534 (9)0.0073 (6)0.0307 (7)0.0015 (6)
F40.0333 (9)0.0855 (13)0.0248 (7)0.0234 (9)0.0032 (6)0.0205 (8)
Fe10.00883 (12)0.01172 (13)0.01071 (12)0.00072 (9)0.00336 (10)0.00103 (9)
Fe20.00995 (13)0.01173 (13)0.01013 (12)0.00130 (9)0.00361 (10)0.00004 (9)
O10.0228 (8)0.0187 (7)0.0208 (7)0.0012 (6)0.0020 (6)0.0026 (6)
O20.0186 (7)0.0328 (9)0.0259 (8)0.0080 (6)0.0118 (6)0.0032 (6)
O30.0112 (6)0.0164 (6)0.0152 (6)0.0000 (5)0.0037 (5)0.0038 (5)
O40.0118 (6)0.0156 (6)0.0129 (6)0.0012 (5)0.0039 (5)0.0022 (5)
O50.0274 (8)0.0251 (8)0.0212 (7)0.0040 (6)0.0153 (7)0.0045 (6)
O60.0277 (8)0.0187 (7)0.0245 (7)0.0037 (6)0.0097 (7)0.0031 (6)
Geometric parameters (Å, º) top
C1—C51.414 (3)C9—Fe22.0910 (19)
C1—C21.434 (3)C9—H91
C1—Fe12.1002 (18)C10—C111.412 (3)
C1—H11C10—Fe22.0737 (19)
C2—C31.416 (3)C10—H100.9999
C2—Fe12.0732 (18)C11—C121.435 (3)
C2—H21C11—Fe22.0805 (19)
C3—C41.432 (3)C11—H110.9999
C3—Fe12.0783 (19)C12—C131.414 (3)
C3—H31C12—Fe22.0990 (19)
C4—C51.411 (3)C12—H121.0001
C4—Fe12.1125 (19)C13—Fe22.1152 (19)
C4—H41.0001C13—H131.0001
C5—Fe12.1224 (19)C14—O51.137 (2)
C5—H51C14—Fe21.7906 (19)
C6—O11.136 (2)C15—O61.135 (2)
C6—Fe11.7915 (19)C15—Fe21.808 (2)
C7—O21.138 (2)B1—F41.378 (3)
C7—Fe11.8009 (19)B1—F31.382 (3)
C8—O41.256 (2)B1—F21.392 (3)
C8—O31.258 (2)B1—F11.397 (3)
C8—H80.95Fe1—O31.9844 (13)
C9—C131.410 (3)Fe2—O41.9686 (13)
C9—C101.439 (3)
C5—C1—C2107.34 (17)O6—C15—Fe2178.34 (18)
C5—C1—Fe171.28 (11)F4—B1—F3112.2 (2)
C2—C1—Fe168.89 (10)F4—B1—F2109.0 (2)
C5—C1—H1126.3F3—B1—F2108.60 (18)
C2—C1—H1126.3F4—B1—F1108.53 (18)
Fe1—C1—H1126.3F3—B1—F1110.15 (18)
C3—C2—C1108.10 (16)F2—B1—F1108.22 (18)
C3—C2—Fe170.24 (10)C6—Fe1—C793.30 (9)
C1—C2—Fe170.92 (10)C6—Fe1—O394.73 (7)
C3—C2—H2125.9C7—Fe1—O395.98 (7)
C1—C2—H2125.9C6—Fe1—C2120.60 (8)
Fe1—C2—H2125.9C7—Fe1—C287.91 (8)
C2—C3—C4107.81 (17)O3—Fe1—C2144.23 (7)
C2—C3—Fe169.86 (10)C6—Fe1—C390.74 (8)
C4—C3—Fe171.32 (11)C7—Fe1—C3117.34 (8)
C2—C3—H3126.1O3—Fe1—C3145.87 (7)
C4—C3—H3126.1C2—Fe1—C339.90 (7)
Fe1—C3—H3126.1C6—Fe1—C1157.78 (8)
C5—C4—C3107.74 (17)C7—Fe1—C196.27 (8)
C5—C4—Fe170.92 (11)O3—Fe1—C1104.12 (7)
C3—C4—Fe168.74 (11)C2—Fe1—C140.19 (7)
C5—C4—H4126.1C3—Fe1—C167.05 (7)
C3—C4—H4126.1C6—Fe1—C497.62 (8)
Fe1—C4—H4126.1C7—Fe1—C4154.51 (8)
C4—C5—C1109.00 (17)O3—Fe1—C4105.94 (7)
C4—C5—Fe170.16 (11)C2—Fe1—C466.70 (7)
C1—C5—Fe169.59 (11)C3—Fe1—C439.94 (7)
C4—C5—H5125.5C1—Fe1—C466.18 (7)
C1—C5—H5125.5C6—Fe1—C5133.28 (8)
Fe1—C5—H5125.5C7—Fe1—C5133.17 (8)
O1—C6—Fe1177.30 (17)O3—Fe1—C586.05 (7)
O2—C7—Fe1176.01 (18)C2—Fe1—C566.31 (7)
O4—C8—O3123.42 (17)C3—Fe1—C566.25 (8)
O4—C8—H8118.3C1—Fe1—C539.13 (7)
O3—C8—H8118.3C4—Fe1—C538.92 (7)
C13—C9—C10107.38 (18)C14—Fe2—C1597.58 (9)
C13—C9—Fe271.35 (11)C14—Fe2—O497.58 (7)
C10—C9—Fe269.14 (11)C15—Fe2—O489.81 (7)
C13—C9—H9126.3C14—Fe2—C1088.27 (8)
C10—C9—H9126.3C15—Fe2—C10119.41 (8)
Fe2—C9—H9126.3O4—Fe2—C10149.28 (7)
C11—C10—C9107.94 (18)C14—Fe2—C11120.08 (9)
C11—C10—Fe270.39 (11)C15—Fe2—C1190.05 (9)
C9—C10—Fe270.43 (11)O4—Fe2—C11142.00 (7)
C11—C10—H10126C10—Fe2—C1139.74 (8)
C9—C10—H10126C14—Fe2—C992.94 (8)
Fe2—C10—H10126C15—Fe2—C9157.11 (8)
C10—C11—C12108.14 (18)O4—Fe2—C9108.95 (7)
C10—C11—Fe269.87 (11)C10—Fe2—C940.43 (8)
C12—C11—Fe270.61 (11)C11—Fe2—C967.11 (8)
C10—C11—H11125.9C14—Fe2—C12155.18 (8)
C12—C11—H11125.9C15—Fe2—C1297.22 (8)
Fe2—C11—H11125.9O4—Fe2—C12102.29 (7)
C13—C12—C11107.30 (18)C10—Fe2—C1267.08 (8)
C13—C12—Fe271.01 (11)C11—Fe2—C1240.17 (8)
C11—C12—Fe269.22 (11)C9—Fe2—C1266.65 (8)
C13—C12—H12126.4C14—Fe2—C13128.76 (9)
C11—C12—H12126.3C15—Fe2—C13133.58 (8)
Fe2—C12—H12126.3O4—Fe2—C1386.96 (7)
C9—C13—C12109.22 (17)C10—Fe2—C1366.45 (8)
C9—C13—Fe269.49 (11)C11—Fe2—C1366.32 (8)
C12—C13—Fe269.77 (11)C9—Fe2—C1339.16 (8)
C9—C13—H13125.4C12—Fe2—C1339.21 (8)
C12—C13—H13125.4C8—O3—Fe1120.38 (12)
Fe2—C13—H13125.4C8—O4—Fe2128.81 (12)
O5—C14—Fe2175.35 (17)
C5—C1—C2—C30.6 (2)C1—C5—Fe1—O3118.19 (11)
Fe1—C1—C2—C360.70 (13)C4—C5—Fe1—C281.72 (12)
C5—C1—C2—Fe161.25 (13)C1—C5—Fe1—C238.52 (11)
C1—C2—C3—C40.4 (2)C4—C5—Fe1—C337.96 (11)
Fe1—C2—C3—C461.56 (13)C1—C5—Fe1—C382.28 (12)
C1—C2—C3—Fe161.13 (13)C4—C5—Fe1—C1120.24 (16)
C2—C3—C4—C50.2 (2)C1—C5—Fe1—C4120.24 (16)
Fe1—C3—C4—C560.48 (13)C11—C10—Fe2—C14145.14 (13)
C2—C3—C4—Fe160.63 (13)C9—C10—Fe2—C1496.58 (13)
C3—C4—C5—C10.2 (2)C11—C10—Fe2—C1547.42 (14)
Fe1—C4—C5—C158.91 (13)C9—C10—Fe2—C15165.69 (12)
C3—C4—C5—Fe159.11 (13)C11—C10—Fe2—O4112.87 (15)
C2—C1—C5—C40.5 (2)C9—C10—Fe2—O45.4 (2)
Fe1—C1—C5—C459.26 (13)C9—C10—Fe2—C11118.28 (17)
C2—C1—C5—Fe159.72 (12)C11—C10—Fe2—C9118.28 (17)
C13—C9—C10—C110.8 (2)C11—C10—Fe2—C1237.90 (12)
Fe2—C9—C10—C1160.69 (14)C9—C10—Fe2—C1280.38 (13)
C13—C9—C10—Fe261.45 (13)C11—C10—Fe2—C1380.73 (13)
C9—C10—C11—C120.2 (2)C9—C10—Fe2—C1337.55 (12)
Fe2—C10—C11—C1260.52 (14)C10—C11—Fe2—C1441.31 (15)
C9—C10—C11—Fe260.72 (13)C12—C11—Fe2—C14160.03 (12)
C10—C11—C12—C131.1 (2)C10—C11—Fe2—C15140.10 (12)
Fe2—C11—C12—C1361.14 (13)C12—C11—Fe2—C15101.18 (13)
C10—C11—C12—Fe260.05 (14)C10—C11—Fe2—O4130.14 (13)
C10—C9—C13—C121.5 (2)C12—C11—Fe2—O411.43 (18)
Fe2—C9—C13—C1258.58 (14)C12—C11—Fe2—C10118.72 (17)
C10—C9—C13—Fe260.04 (13)C10—C11—Fe2—C938.31 (12)
C11—C12—C13—C91.6 (2)C12—C11—Fe2—C980.41 (13)
Fe2—C12—C13—C958.41 (14)C10—C11—Fe2—C12118.72 (17)
C11—C12—C13—Fe259.99 (13)C10—C11—Fe2—C1381.09 (13)
C3—C2—Fe1—C646.86 (14)C12—C11—Fe2—C1337.62 (12)
C1—C2—Fe1—C6165.13 (12)C13—C9—Fe2—C14158.36 (13)
C3—C2—Fe1—C7139.46 (12)C10—C9—Fe2—C1483.87 (13)
C1—C2—Fe1—C7102.27 (12)C13—C9—Fe2—C1584.2 (2)
C3—C2—Fe1—O3123.20 (13)C10—C9—Fe2—C1533.6 (3)
C1—C2—Fe1—O34.93 (17)C13—C9—Fe2—O459.31 (13)
C1—C2—Fe1—C3118.27 (16)C10—C9—Fe2—O4177.08 (11)
C3—C2—Fe1—C1118.27 (16)C13—C9—Fe2—C10117.77 (17)
C3—C2—Fe1—C438.15 (11)C13—C9—Fe2—C1180.10 (13)
C1—C2—Fe1—C480.12 (12)C10—C9—Fe2—C1137.67 (12)
C3—C2—Fe1—C580.75 (12)C13—C9—Fe2—C1236.25 (12)
C1—C2—Fe1—C537.52 (11)C10—C9—Fe2—C1281.52 (13)
C2—C3—Fe1—C6141.09 (12)C10—C9—Fe2—C13117.77 (17)
C4—C3—Fe1—C6101.01 (12)C13—C12—Fe2—C1473.1 (2)
C2—C3—Fe1—C746.98 (14)C11—C12—Fe2—C1444.7 (3)
C4—C3—Fe1—C7164.89 (11)C13—C12—Fe2—C15160.72 (12)
C2—C3—Fe1—O3119.34 (13)C11—C12—Fe2—C1581.44 (13)
C4—C3—Fe1—O31.44 (18)C13—C12—Fe2—O469.34 (12)
C4—C3—Fe1—C2117.90 (16)C11—C12—Fe2—O4172.83 (12)
C2—C3—Fe1—C138.12 (11)C13—C12—Fe2—C1080.34 (13)
C4—C3—Fe1—C179.78 (12)C11—C12—Fe2—C1037.50 (12)
C2—C3—Fe1—C4117.90 (16)C13—C12—Fe2—C11117.83 (18)
C2—C3—Fe1—C580.90 (12)C13—C12—Fe2—C936.20 (12)
C4—C3—Fe1—C537.01 (11)C11—C12—Fe2—C981.63 (13)
C5—C1—Fe1—C682.2 (2)C11—C12—Fe2—C13117.83 (18)
C2—C1—Fe1—C635.7 (3)C9—C13—Fe2—C1428.18 (16)
C5—C1—Fe1—C7162.86 (12)C12—C13—Fe2—C14149.00 (13)
C2—C1—Fe1—C779.23 (12)C9—C13—Fe2—C15147.70 (13)
C5—C1—Fe1—O365.06 (12)C12—C13—Fe2—C1526.88 (17)
C2—C1—Fe1—O3177.03 (11)C9—C13—Fe2—O4125.46 (12)
C5—C1—Fe1—C2117.91 (16)C12—C13—Fe2—O4113.72 (12)
C5—C1—Fe1—C380.07 (12)C9—C13—Fe2—C1038.75 (12)
C2—C1—Fe1—C337.84 (11)C12—C13—Fe2—C1082.07 (13)
C5—C1—Fe1—C436.39 (11)C9—C13—Fe2—C1182.29 (13)
C2—C1—Fe1—C481.52 (12)C12—C13—Fe2—C1138.53 (12)
C2—C1—Fe1—C5117.91 (16)C12—C13—Fe2—C9120.82 (17)
C5—C4—Fe1—C6159.28 (12)C9—C13—Fe2—C12120.82 (17)
C3—C4—Fe1—C681.99 (12)O4—C8—O3—Fe12.3 (2)
C5—C4—Fe1—C786.2 (2)C6—Fe1—O3—C847.85 (15)
C3—C4—Fe1—C732.6 (2)C7—Fe1—O3—C845.98 (15)
C5—C4—Fe1—O362.12 (12)C2—Fe1—O3—C8140.73 (15)
C3—C4—Fe1—O3179.16 (10)C3—Fe1—O3—C8146.20 (15)
C5—C4—Fe1—C280.61 (12)C1—Fe1—O3—C8144.01 (14)
C3—C4—Fe1—C238.11 (11)C4—Fe1—O3—C8147.16 (14)
C5—C4—Fe1—C3118.72 (16)C5—Fe1—O3—C8179.01 (15)
C5—C4—Fe1—C136.58 (11)O3—C8—O4—Fe2174.87 (13)
C3—C4—Fe1—C182.14 (12)C14—Fe2—O4—C840.67 (17)
C3—C4—Fe1—C5118.72 (16)C15—Fe2—O4—C8138.29 (16)
C4—C5—Fe1—C628.79 (16)C10—Fe2—O4—C858.8 (2)
C1—C5—Fe1—C6149.03 (12)C11—Fe2—O4—C8131.88 (16)
C4—C5—Fe1—C7143.93 (12)C9—Fe2—O4—C855.10 (17)
C1—C5—Fe1—C723.69 (16)C12—Fe2—O4—C8124.36 (16)
C4—C5—Fe1—O3121.58 (11)C13—Fe2—O4—C888.04 (16)

Experimental details

Crystal data
Chemical formula[Fe2(C5H5)2(CHO2)(CO)4]BF4
Mr485.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.4964 (5), 17.8845 (14), 14.1931 (9)
β (°) 115.144 (3)
V3)1722.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.24 × 0.11 × 0.1
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.678, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
41366, 4341, 3784
Rint0.048
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.02
No. of reflections4341
No. of parameters253
No. of restraints11
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.38, 0.92

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors gratefully acknowledge the University of Johannesburg for funding and Dr Ilia Guzei for helping with structure refinement.

References

First citationBruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarensbourg, D. J., Day, C. S. & Fischer, M. B. (1981). Inorg. Chem. 20, 3511–3519.  Google Scholar
First citationDarensbourg, D. J., Fischer, M. B., Raymond, J., Schmidt, E. & Baldwin, B. J. (1981). J. Am. Chem. Soc. 103, 1297–1298.  Google Scholar
First citationDombek, B. D. & Angelici, R. J. (1973). Inorg. Chem. 7, 345–347.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationM'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2011). Inorg. Chim. Acta, 366, 105–115.  CAS Google Scholar
First citationM'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Omondi, B. (2011). Acta Cryst. E67, m485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPinkes, J. R., Masi, C. J., Chiulli, R., Steffey, B. D. & Cutler, A. R. (1997). Inorg. Chem. 36, 70–79.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTso, C. C. & Cutler, A. R. (1985). Organometallics, 4, 1242–1247.  Google Scholar
First citationTso, C. C. & Cutler, A. R. (1990). Inorg. Chem. 29, 471–475.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds