metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1314-m1315

trans-Tetra­carbonyl­bis­­[tris­­(4-fluoro­phen­yl)phosphane-κP]chromium(0)

aFaculty of Industrial Science and Technology, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia, bChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 August 2011; accepted 19 August 2011; online 27 August 2011)

In the title compound, [Cr(C18H12F3P)2(CO)4], the Cr atom is octa­hedrally coordinated by four carbonyl ligands and the two tertiary phosphanes that are trans to each other. The Cr atom and two carbonyl groups are on a twofold axis. The benzene rings attached to the phospho­rus atom make dihedral angles of 80.32 (5), 52.91 (5) and 83.80 (5)° with each other. In the crystal, C—H⋯O and C—H⋯F inter­molecular inter­actions form an infinite three-dimensional network.

Related literature

For the crystal structures of phosphane complexes of carbonyl­chromium compounds, see: Preston et al. (1972[Preston, H. G., Steward, J. M., Plastas, H. J. & Grim, S. O. (1972). Inorg. Chem. 11, 161-165.]); bin Shawkataly et al. (1996[Shawkataly, O. bin, Saminathan, T., Muniswaran, K., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 1352-1355.], 2009[Shawkataly, O. bin, Thangadurai, D. T., Pankhi, M. A. A., Shahinoor Dulal Islam, S. M. & Fun, H.-K. (2009). Acta Cryst. E65, m250-m251.]). For related structures, see: Brunet et al. (2002[Brunet, J. J., Diallo, O., Donnadieu, B. & Roblou, E. (2002). Organometallics, 21, 3388-3394.]); Bennett et al. (2004[Bennett, D. W., Siddiquee, T. A., Haworth, D. T., Kabir, S. E. & Camellia, F. K. (2004). J. Chem. Crystallogr. 34, 353-359.]). A search of the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) reveals 113 complexes of carbonyl­chromium complexes with bis-phosphanes. For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C18H12F3P)2(CO)4]

  • Mr = 796.53

  • Monoclinic, C 2/c

  • a = 11.9318 (8) Å

  • b = 18.0956 (8) Å

  • c = 15.8195 (8) Å

  • β = 92.740 (1)°

  • V = 3411.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 100 K

  • 0.29 × 0.21 × 0.19 mm

Data collection
  • Bruker APEX Duo CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.869, Tmax = 0.912

  • 35263 measured reflections

  • 5028 independent reflections

  • 4627 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.074

  • S = 1.04

  • 5028 reflections

  • 242 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Cr1—C37 1.8808 (17)
Cr1—C38 1.8925 (11)
Cr1—C39 1.8989 (15)
Cr1—P1 2.3331 (3)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1ii 0.93 2.55 3.4602 (16) 165
C8—H8A⋯F1iii 0.93 2.48 3.3830 (16) 165
C14—H14A⋯F3iv 0.93 2.46 3.3561 (14) 161
Symmetry codes: (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The bonding characteristics of metal carbonyls with a phosphane ligand in phosphane-substituted metal carbonyls are interesting. Several crystal structures of phosphane substituted group 6 carbonyls with trans coordination of phosphane are reported (Brunet et al. 2002; Bennett et al., 2004).

In the title compound, the Cr—P bond lengths, with an average value of 2.3331 (3) Å (Table 1) are relatively short in spite of the presence of the bulky phosphane ligand compared to the average values of 2.3656 (16)Å in the complex trans-Cr(CO)4(PPh3)2 (Bennett et al. 2004).

The Cr1, O1, O3, C37 C39 atoms lie on a twofold axis. The three benzene rings attached to the phosphorus atom make dihedral angles of 80.32 (5)° (between C1—C6 & C7—C12), 52.91 (5)° (between C1—C6 & C13—C18) and 83.80 (5)° (between C7—C12 & C13—C18) with each other.

In the crystal, the molecules are interconnected by intermolecular C4—H4A···O1ii, C8—H8A···F1iii and C14—H14A···F3iv interactions (Table 2) to form an infinite three-dimensional network (Fig. 2).

Related literature top

For the crystal structures of phosphane complexes of carbonlychromiums, see: Preston et al. (1972); bin Shawkataly et al. (1996, 2009). For related structures, see: Brunet et al. (2002); Bennett et al. (2004). A search of the Cambridge Structural Database reveals 113 complexes of carbonylchromium complexes with bis-phosphanes; see: Allen (2002). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). .

Experimental top

All manipulations were performed under a dry, oxygen-free nitrogen atmosphere using standard Schlenk techniques. All solvents were dried over sodium under dry oxygen free nitrogen. Chromium hexacarbonyl (200 mg, 0.909 mmol) and tris(4-flurophenyl)phosphane (301.8 mg, 0.9542 mmol) in 30 ml of pet ether (100–130°C) was refluxed for 12 h. Suitable single crystals were obtained by solvent-solvent diffusion in a mixture of dichloromethane/methanol.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
trans-Tetracarbonylbis[tris(4-fluorophenyl)phosphane- κP]chromium(0) top
Crystal data top
[Cr(C18H12F3P)2(CO)4]F(000) = 1616
Mr = 796.53Dx = 1.551 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9233 reflections
a = 11.9318 (8) Åθ = 2.4–30.1°
b = 18.0956 (8) ŵ = 0.51 mm1
c = 15.8195 (8) ÅT = 100 K
β = 92.740 (1)°Block, colourless
V = 3411.7 (3) Å30.29 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker APEX Duo CCD area-detector
diffractometer
5028 independent reflections
Radiation source: fine-focus sealed tube4627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.869, Tmax = 0.912k = 2525
35263 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.035P)2 + 3.7272P]
where P = (Fo2 + 2Fc2)/3
5028 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cr(C18H12F3P)2(CO)4]V = 3411.7 (3) Å3
Mr = 796.53Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.9318 (8) ŵ = 0.51 mm1
b = 18.0956 (8) ÅT = 100 K
c = 15.8195 (8) Å0.29 × 0.21 × 0.19 mm
β = 92.740 (1)°
Data collection top
Bruker APEX Duo CCD area-detector
diffractometer
5028 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4627 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.912Rint = 0.022
35263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
5028 reflectionsΔρmin = 0.47 e Å3
242 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.00000.470721 (12)0.25000.01127 (6)
P10.18184 (2)0.464307 (14)0.310682 (16)0.01170 (6)
F10.47047 (7)0.30568 (5)0.07445 (5)0.03078 (18)
F20.27164 (8)0.30623 (5)0.63765 (5)0.0368 (2)
F30.37981 (7)0.75534 (4)0.41277 (5)0.02655 (16)
O10.00000.63797 (7)0.25000.0450 (4)
O20.08864 (8)0.48305 (6)0.07365 (6)0.0300 (2)
O30.00000.30234 (6)0.25000.0249 (2)
C10.31342 (9)0.45249 (6)0.16868 (7)0.01626 (19)
H1A0.29190.50100.15730.020*
C20.37850 (9)0.41494 (7)0.11182 (7)0.0195 (2)
H2A0.40170.43790.06300.023*
C30.40757 (9)0.34262 (7)0.13002 (7)0.0207 (2)
C40.37508 (10)0.30617 (6)0.20114 (7)0.0207 (2)
H4A0.39550.25720.21110.025*
C50.31090 (9)0.34444 (6)0.25788 (7)0.01666 (19)
H5A0.28830.32080.30640.020*
C60.27996 (8)0.41807 (6)0.24279 (6)0.01374 (18)
C70.12666 (10)0.36724 (6)0.44384 (7)0.0193 (2)
H7A0.05830.36040.41420.023*
C80.14776 (11)0.33051 (7)0.52065 (8)0.0247 (2)
H8A0.09400.29980.54280.030*
C90.25007 (12)0.34096 (6)0.56260 (7)0.0242 (2)
C100.33278 (10)0.38535 (7)0.53176 (7)0.0231 (2)
H10A0.40180.39060.56110.028*
C110.31014 (9)0.42195 (6)0.45570 (7)0.0191 (2)
H11A0.36470.45230.43400.023*
C120.20668 (9)0.41398 (6)0.41100 (6)0.01477 (18)
C130.19260 (9)0.59837 (6)0.39426 (7)0.01655 (19)
H13A0.12380.58310.41330.020*
C140.23616 (9)0.66625 (6)0.42015 (7)0.0186 (2)
H14A0.19790.69630.45670.022*
C150.33815 (10)0.68791 (6)0.39001 (7)0.0185 (2)
C160.39903 (9)0.64423 (6)0.33799 (7)0.0189 (2)
H16A0.46790.66000.31950.023*
C170.35499 (9)0.57552 (6)0.31349 (7)0.01725 (19)
H17A0.39570.54480.27920.021*
C180.25037 (8)0.55231 (5)0.33991 (6)0.01340 (17)
C370.00000.57466 (9)0.25000.0235 (3)
C380.05647 (9)0.47660 (6)0.14043 (7)0.0185 (2)
C390.00000.36578 (8)0.25000.0154 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.01065 (10)0.00928 (10)0.01385 (11)0.0000.00032 (7)0.000
P10.01137 (11)0.01041 (11)0.01334 (12)0.00025 (8)0.00078 (8)0.00089 (8)
F10.0299 (4)0.0317 (4)0.0315 (4)0.0092 (3)0.0101 (3)0.0112 (3)
F20.0589 (6)0.0308 (4)0.0198 (4)0.0033 (4)0.0080 (3)0.0124 (3)
F30.0354 (4)0.0177 (3)0.0266 (4)0.0114 (3)0.0022 (3)0.0056 (3)
O10.0433 (8)0.0133 (6)0.0749 (12)0.0000.0335 (8)0.000
O20.0223 (4)0.0483 (6)0.0196 (4)0.0018 (4)0.0024 (3)0.0089 (4)
O30.0365 (7)0.0132 (5)0.0250 (6)0.0000.0024 (5)0.000
C10.0154 (4)0.0155 (4)0.0180 (5)0.0012 (4)0.0019 (4)0.0001 (4)
C20.0173 (5)0.0231 (5)0.0185 (5)0.0001 (4)0.0042 (4)0.0012 (4)
C30.0165 (5)0.0238 (5)0.0221 (5)0.0047 (4)0.0020 (4)0.0085 (4)
C40.0213 (5)0.0159 (5)0.0245 (5)0.0055 (4)0.0024 (4)0.0040 (4)
C50.0180 (5)0.0142 (4)0.0177 (4)0.0018 (4)0.0011 (4)0.0002 (4)
C60.0121 (4)0.0134 (4)0.0156 (4)0.0010 (3)0.0002 (3)0.0009 (3)
C70.0234 (5)0.0168 (5)0.0176 (5)0.0029 (4)0.0008 (4)0.0021 (4)
C80.0360 (6)0.0184 (5)0.0199 (5)0.0051 (5)0.0023 (5)0.0050 (4)
C90.0404 (7)0.0168 (5)0.0152 (5)0.0029 (5)0.0016 (4)0.0041 (4)
C100.0265 (5)0.0227 (5)0.0196 (5)0.0039 (4)0.0050 (4)0.0024 (4)
C110.0185 (5)0.0204 (5)0.0183 (5)0.0009 (4)0.0007 (4)0.0028 (4)
C120.0172 (4)0.0126 (4)0.0145 (4)0.0017 (3)0.0011 (3)0.0010 (3)
C130.0157 (4)0.0167 (5)0.0174 (4)0.0012 (4)0.0017 (3)0.0009 (4)
C140.0212 (5)0.0167 (5)0.0180 (5)0.0004 (4)0.0012 (4)0.0038 (4)
C150.0244 (5)0.0140 (4)0.0168 (5)0.0054 (4)0.0022 (4)0.0004 (4)
C160.0184 (5)0.0199 (5)0.0185 (5)0.0062 (4)0.0012 (4)0.0004 (4)
C170.0157 (5)0.0168 (5)0.0194 (5)0.0020 (4)0.0028 (4)0.0015 (4)
C180.0135 (4)0.0121 (4)0.0145 (4)0.0006 (3)0.0005 (3)0.0008 (3)
C370.0188 (7)0.0153 (7)0.0350 (9)0.0000.0117 (6)0.000
C380.0138 (4)0.0214 (5)0.0200 (5)0.0004 (4)0.0013 (4)0.0044 (4)
C390.0167 (6)0.0159 (6)0.0138 (6)0.0000.0013 (5)0.000
Geometric parameters (Å, º) top
Cr1—C371.8808 (17)C5—C61.4001 (14)
Cr1—C38i1.8924 (11)C5—H5A0.9300
Cr1—C381.8925 (11)C7—C121.3944 (15)
Cr1—C391.8989 (15)C7—C81.3972 (15)
Cr1—P1i2.3331 (3)C7—H7A0.9300
Cr1—P12.3331 (3)C8—C91.3744 (19)
P1—C61.8288 (10)C8—H8A0.9300
P1—C181.8391 (10)C9—C101.3796 (18)
P1—C121.8414 (10)C10—C111.3886 (15)
F1—C31.3587 (12)C10—H10A0.9300
F2—C91.3570 (13)C11—C121.4005 (15)
F3—C151.3595 (12)C11—H11A0.9300
O1—C371.146 (2)C13—C141.3880 (15)
O2—C381.1471 (15)C13—C181.4020 (14)
O3—C391.1481 (19)C13—H13A0.9300
C1—C21.3931 (15)C14—C151.3846 (16)
C1—C61.4023 (14)C14—H14A0.9300
C1—H1A0.9300C15—C161.3737 (16)
C2—C31.3806 (16)C16—C171.3973 (15)
C2—H2A0.9300C16—H16A0.9300
C3—C41.3758 (17)C17—C181.3998 (14)
C4—C51.3918 (15)C17—H17A0.9300
C4—H4A0.9300
C37—Cr1—C38i86.78 (3)C12—C7—C8120.96 (11)
C37—Cr1—C3886.78 (3)C12—C7—H7A119.5
C38i—Cr1—C38173.56 (7)C8—C7—H7A119.5
C37—Cr1—C39180.0C9—C8—C7118.26 (11)
C38i—Cr1—C3993.22 (3)C9—C8—H8A120.9
C38—Cr1—C3993.22 (3)C7—C8—H8A120.9
C37—Cr1—P1i92.850 (8)F2—C9—C8119.05 (11)
C38i—Cr1—P1i90.85 (3)F2—C9—C10118.04 (11)
C38—Cr1—P1i89.47 (3)C8—C9—C10122.90 (11)
C39—Cr1—P1i87.150 (8)C9—C10—C11118.12 (11)
C37—Cr1—P192.851 (8)C9—C10—H10A120.9
C38i—Cr1—P189.47 (3)C11—C10—H10A120.9
C38—Cr1—P190.85 (3)C10—C11—C12121.24 (11)
C39—Cr1—P187.149 (8)C10—C11—H11A119.4
P1i—Cr1—P1174.299 (16)C12—C11—H11A119.4
C6—P1—C18104.74 (5)C7—C12—C11118.50 (10)
C6—P1—C12101.46 (5)C7—C12—P1122.43 (8)
C18—P1—C1299.22 (5)C11—C12—P1119.07 (8)
C6—P1—Cr1112.95 (3)C14—C13—C18121.25 (10)
C18—P1—Cr1117.00 (3)C14—C13—H13A119.4
C12—P1—Cr1119.17 (3)C18—C13—H13A119.4
C2—C1—C6120.85 (10)C15—C14—C13118.16 (10)
C2—C1—H1A119.6C15—C14—H14A120.9
C6—C1—H1A119.6C13—C14—H14A120.9
C3—C2—C1118.03 (10)F3—C15—C16118.55 (10)
C3—C2—H2A121.0F3—C15—C14118.63 (10)
C1—C2—H2A121.0C16—C15—C14122.81 (10)
F1—C3—C4118.64 (10)C15—C16—C17118.40 (10)
F1—C3—C2118.19 (11)C15—C16—H16A120.8
C4—C3—C2123.17 (10)C17—C16—H16A120.8
C3—C4—C5118.30 (10)C16—C17—C18120.86 (10)
C3—C4—H4A120.9C16—C17—H17A119.6
C5—C4—H4A120.9C18—C17—H17A119.6
C4—C5—C6120.81 (10)C17—C18—C13118.45 (9)
C4—C5—H5A119.6C17—C18—P1125.23 (8)
C6—C5—H5A119.6C13—C18—P1116.31 (8)
C5—C6—C1118.82 (9)O1—C37—Cr1180.0
C5—C6—P1120.41 (8)O2—C38—Cr1177.10 (11)
C1—C6—P1120.24 (8)O3—C39—Cr1180.0
C37—Cr1—P1—C6118.45 (4)C7—C8—C9—C100.71 (19)
C38i—Cr1—P1—C6154.80 (5)F2—C9—C10—C11178.90 (11)
C38—Cr1—P1—C631.63 (5)C8—C9—C10—C111.24 (19)
C39—Cr1—P1—C661.55 (4)C9—C10—C11—C120.34 (18)
C37—Cr1—P1—C183.27 (4)C8—C7—C12—C111.58 (17)
C38i—Cr1—P1—C1883.48 (5)C8—C7—C12—P1179.28 (9)
C38—Cr1—P1—C1890.09 (5)C10—C11—C12—C71.03 (17)
C39—Cr1—P1—C18176.73 (4)C10—C11—C12—P1179.80 (9)
C37—Cr1—P1—C12122.64 (4)C6—P1—C12—C7111.54 (9)
C38i—Cr1—P1—C1235.89 (5)C18—P1—C12—C7141.25 (9)
C38—Cr1—P1—C12150.55 (5)Cr1—P1—C12—C713.13 (10)
C39—Cr1—P1—C1257.36 (4)C6—P1—C12—C1167.60 (9)
C6—C1—C2—C30.94 (16)C18—P1—C12—C1139.61 (9)
C1—C2—C3—F1179.61 (10)Cr1—P1—C12—C11167.73 (7)
C1—C2—C3—C40.20 (17)C18—C13—C14—C150.74 (16)
F1—C3—C4—C5179.83 (10)C13—C14—C15—F3177.88 (10)
C2—C3—C4—C50.76 (18)C13—C14—C15—C162.03 (17)
C3—C4—C5—C60.18 (16)F3—C15—C16—C17178.85 (10)
C4—C5—C6—C10.92 (16)C14—C15—C16—C171.06 (17)
C4—C5—C6—P1172.56 (8)C15—C16—C17—C181.22 (16)
C2—C1—C6—C51.49 (16)C16—C17—C18—C132.42 (16)
C2—C1—C6—P1173.15 (8)C16—C17—C18—P1178.79 (8)
C18—P1—C6—C5130.53 (8)C14—C13—C18—C171.42 (16)
C12—P1—C6—C527.68 (9)C14—C13—C18—P1179.68 (8)
Cr1—P1—C6—C5101.07 (8)C6—P1—C18—C170.15 (10)
C18—P1—C6—C157.95 (9)C12—P1—C18—C17104.68 (9)
C12—P1—C6—C1160.80 (8)Cr1—P1—C18—C17125.76 (8)
Cr1—P1—C6—C170.45 (9)C6—P1—C18—C13178.66 (8)
C12—C7—C8—C90.74 (18)C12—P1—C18—C1374.13 (9)
C7—C8—C9—F2179.43 (11)Cr1—P1—C18—C1355.42 (9)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1ii0.932.553.4602 (16)165
C8—H8A···F1iii0.932.483.3830 (16)165
C14—H14A···F3iv0.932.463.3561 (14)161
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Cr(C18H12F3P)2(CO)4]
Mr796.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)11.9318 (8), 18.0956 (8), 15.8195 (8)
β (°) 92.740 (1)
V3)3411.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.29 × 0.21 × 0.19
Data collection
DiffractometerBruker APEX Duo CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.869, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
35263, 5028, 4627
Rint0.022
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.074, 1.04
No. of reflections5028
No. of parameters242
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.47

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cr1—C371.8808 (17)Cr1—C391.8989 (15)
Cr1—C38i1.8924 (11)Cr1—P1i2.3331 (3)
Cr1—C381.8925 (11)Cr1—P12.3331 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1ii0.93002.55003.4602 (16)165.00
C8—H8A···F1iii0.93002.48003.3830 (16)165.00
C14—H14A···F3iv0.93002.46003.3561 (14)161.00
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1.
 

Footnotes

Thomson Reuters Researcher ID: D-6198-2011

§Additional correspondence author: omarsa@usm.my. Thomson Reuters Researcher ID: B-6034-2009

Thomson Reuters ResearcherID: A-3561-2009

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research grant No. 1001/PJJauh/811115. HKF also thanks USM for the Research University Grant No. 1001/PFIZIK/811160. NMN is grateful to Universiti Malaysia Pahang for a research position.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBennett, D. W., Siddiquee, T. A., Haworth, D. T., Kabir, S. E. & Camellia, F. K. (2004). J. Chem. Crystallogr. 34, 353–359.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunet, J. J., Diallo, O., Donnadieu, B. & Roblou, E. (2002). Organometallics, 21, 3388–3394.  Web of Science CSD CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPreston, H. G., Steward, J. M., Plastas, H. J. & Grim, S. O. (1972). Inorg. Chem. 11, 161–165.  CSD CrossRef CAS Web of Science Google Scholar
First citationShawkataly, O. bin, Saminathan, T., Muniswaran, K., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 1352–1355.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShawkataly, O. bin, Thangadurai, D. T., Pankhi, M. A. A., Shahinoor Dulal Islam, S. M. & Fun, H.-K. (2009). Acta Cryst. E65, m250–m251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1314-m1315
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds