metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[[μ3-5-(pyridine-4-carboxamido)­isophthalato]{μ3-5-[(pyridin-1-ium-4-yl)carbonyl­amino]­isophthalato}­neodymium(III)] dihydrate]

aDepartment of Chemistry and Materials Science, Hengyang, Hunan 421008, People's Republic of China
*Correspondence e-mail: yifang7124@163.com

(Received 15 August 2011; accepted 22 August 2011; online 27 August 2011)

In the title compound, {[Nd(C14H9N2O5)(C14H8N2O5)]·2H2O}n, the NdIII atom is eight-coordinated as it is surrounded by eight carboxyl­ate O atoms from six ligands in a distorted square-anti­prismatic arrangement. The NdIII atoms are linked by HL and L2− ligands [H2L is 5-(pyridine-4-carboxamido)­isophthalic acid], forming a bilayer network. The layers are linked into a three-demensional network through N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For background on transition metal complexes that exhibit one-, two- and three-dimensional frameworks, see: Kitagawa & Kondo (1998[Kitagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739-1753.]). For high-dimensional lanthanide frameworks, see: Kiritsis et al. (1998[Kiritsis, V., Michaeljdes, A., Skoulika, S., Golhen, S. & Ouahab, L. (1998). Inorg. Chem. 37, 3407-3410.]); Zhao et al. (2004[Zhao, B., Cheng, P., Chen, X. Y., Cheng, C., Shi, W., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). J. Am. Chem. Soc. 126, 3012-3013.]). For coordination capabilities of carboxyl­ate, pyridine and amide groups, see: Huyskens (1977[Huyskens, P. L. (1977). J. Am. Chem. Soc. 99, 2578-2582.]); Lee & Kumler (1962[Lee, C. M. & Kumler, W. D. (1962). J. Am. Chem. Soc. 84, 571-578.]); Wang et al. (2007[Wang, Y., Huang, Y. Q., Liu, G. X., Okamuraz, T.-A., Doi, M., Sheng, Y. W., Sun, W. Y. & Ueyama, N. (2007). Chem. Eur. J. 13, 7523-7531.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd(C14H9N2O5)(C14H8N2O5)]·2H2O

  • Mr = 749.73

  • Monoclinic, P 21 /c

  • a = 13.4421 (15) Å

  • b = 13.7754 (17) Å

  • c = 16.2418 (13) Å

  • β = 115.813 (4)°

  • V = 2707.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 291 K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.715, Tmax = 0.796

  • 14297 measured reflections

  • 5287 independent reflections

  • 4792 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.07

  • 5287 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 1.83 e Å−3

  • Δρmin = −1.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1W 0.86 2.06 2.846 (5) 151
N1—H1⋯O2i 0.89 1.85 2.725 (4) 171
O1W—H1WA⋯O9i 0.85 1.89 2.734 (5) 177
O2W—H2WA⋯O10i 0.85 2.52 3.124 (5) 129
O1W—H1WB⋯O10ii 0.85 2.00 2.845 (5) 171
O2W—H2WA⋯O4iii 0.85 2.36 2.923 (5) 125
O2W—H2WB⋯O1iv 0.85 2.11 2.957 (4) 178
N4—H4A⋯O2Wv 0.86 2.15 2.953 (5) 156
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, there has a great deal of interest in synthesizing transition metal complexes that exhibit one-, two- and three-dimensional frameworks (Kitagawa & Kondo, 1998). However, high-dimensional lanthanide frameworks are less common (Kiritsis et al., 1998; Zhao et al., 2004). On the other hand, it is well known that carboxylate and pyridine groups have good coordination capacities as well as the amide group, a group with two different types of hydrogen bonding sites: the –NH moiety that acts as an electron acceptor and a –C=O group that acts as an electron donor (Lee, & Kumler, 1962; Huyskens, 1977; Wang et al., 2007). The study reports a new lanthanide(III) coordination polymer, [Nd(HL)(L)]n.2nH2O, (I), with H2L and Nd(NO3)3.6H2O.

In the title compound, the central NdIII ion is eight-coordinated by eight O atoms from six ligands, which gives a square antiprismatic geometry (Fig. 1). The carboxyl groups of the two unique L2- (HL-) ligands exhibit the same coordination modes: there is a monocarboxylate and a dicarboxylate, i.e., the monocarboxylate group coordinates to one NdIII atom in µ1-η1:η1-chelate mode and the other dicarboxylate connects two NdIII atoms in a µ2-η1:η1 bridging mode. The pyridyl groups are free. Based on the coordination modes of the carboxylate groups of L2- (HL-), a bilayer network is formed (Fig. 2). Adjacent molecules are linked through N—H···O and O—H···O hydrogen bonds into a three-dimensional network.

Related literature top

For background on transition metal complexes that exhibit one-, two- and three-dimensional frameworks, see: Kitagawa & Kondo (1998). For high-dimensional lanthanide frameworks, see: Kiritsis et al. (1998); Zhao et al. (2004). For coordination capacities of carboxylate, pyridine and amide groups, see: Huyskens (1977); Lee & Kumler (1962); Wang et al. (2007). Please check expanded text

Experimental top

A mixture of 0.05 mmol Nd(NO3)3.6H2O (21.5 mg. 0.05 mmol), H2L (28.6 mg, 0.1 mmol), NaOH (6.0 mg, 0.15 mmol), MeOH (4 ml) and H2O (6 ml) was heated in a 16 ml Teflon-lined reaction vessel at 453 K for 5 days; the mixture was cooled to room temperature over a period of 40 h. The product was collected by filtration, washed with H2O and air-dried.

Refinement top

H atoms bonded to C atoms were placed geometrically and refiined as riding atoms. The pyridyl (N1) was found from a difference Fourier maps and refined as riding, with N—H = 0.86 Å, and the water H atoms were found from Fourier difference maps and refined with restraints for O—H distances (0.85 Å) with Uiso(H) = 1.2Ueq(O). The highest residual electron density was found at 0.07 Å from Nd1 atom and the deepest hole at 0.56 Å from the O1W atom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level. [Symmetry codes: (i) 2 - x,-1/2 + y, 3/2 - z (ii) x,1/2 - y, -1/2 + z (iii) 2 - x,-y, 1 - z.]
[Figure 2] Fig. 2. Projection showing the two-dimensional structure of the compound linked by L2-; all the pyridyl groups are omitted.
Poly[[[µ3-5-(pyridine-4-carboxamido)isophthalato]{µ3-5-[(pyridin-1-ium- 4-yl)carbonylamino]isophthalato}neodymium(III)] dihydrate] top
Crystal data top
[Nd(C14H9N2O5)(C14H8N2O5)]·2H2OF(000) = 1492
Mr = 749.73Dx = 1.839 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 8058 reflections
a = 13.4421 (15) Åθ = 2.2–28.3°
b = 13.7754 (17) ŵ = 2.00 mm1
c = 16.2418 (13) ÅT = 291 K
β = 115.813 (4)°Block, colorless
V = 2707.4 (5) Å30.18 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5287 independent reflections
Radiation source: fine-focus sealed tube4792 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1615
Tmin = 0.715, Tmax = 0.796k = 1616
14297 measured reflectionsl = 2016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.055P)2 + 3.5595P]
where P = (Fo2 + 2Fc2)/3
5287 reflections(Δ/σ)max < 0.001
406 parametersΔρmax = 1.83 e Å3
0 restraintsΔρmin = 1.61 e Å3
Crystal data top
[Nd(C14H9N2O5)(C14H8N2O5)]·2H2OV = 2707.4 (5) Å3
Mr = 749.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4421 (15) ŵ = 2.00 mm1
b = 13.7754 (17) ÅT = 291 K
c = 16.2418 (13) Å0.18 × 0.16 × 0.12 mm
β = 115.813 (4)°
Data collection top
Bruker SMART APEX
diffractometer
5287 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
4792 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.796Rint = 0.052
14297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.07Δρmax = 1.83 e Å3
5287 reflectionsΔρmin = 1.61 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O2W0.4403 (3)0.6060 (3)0.0967 (3)0.0456 (9)
O1W0.4253 (3)0.1460 (3)0.5360 (2)0.0537 (11)
Nd10.898403 (16)0.014994 (16)0.571291 (14)0.01719 (10)
O10.7704 (2)0.1428 (2)0.56596 (19)0.0250 (6)
O20.9065 (2)0.1322 (2)0.70371 (19)0.0236 (6)
O30.9144 (2)0.4679 (2)0.8775 (2)0.0289 (7)
O40.7730 (2)0.4510 (2)0.91087 (18)0.0244 (6)
O50.4645 (3)0.5086 (2)0.5783 (2)0.0356 (8)
O60.9932 (2)0.1532 (2)0.55514 (19)0.0212 (6)
O71.1226 (2)0.1364 (2)0.50548 (19)0.0218 (6)
O81.0730 (2)0.4069 (2)0.7959 (2)0.0279 (7)
O91.2447 (2)0.4326 (2)0.89481 (19)0.0255 (7)
O101.4746 (3)0.0803 (2)0.7157 (2)0.0374 (8)
N20.4776 (3)0.3440 (3)0.5862 (2)0.0256 (8)
H20.43950.29150.56890.031*
N10.0898 (3)0.4082 (3)0.3610 (3)0.0343 (9)
H10.02590.39710.31300.041*
N41.4748 (3)0.2155 (3)0.7943 (2)0.0275 (8)
H4A1.51750.25700.83330.033*
N31.8768 (3)0.1047 (4)0.9233 (4)0.0524 (13)
C10.8171 (3)0.1699 (3)0.6476 (3)0.0189 (8)
C20.7617 (3)0.2495 (3)0.6762 (3)0.0174 (8)
C30.8178 (3)0.3080 (3)0.7518 (3)0.0177 (8)
H30.89330.30020.78710.021*
C40.7597 (3)0.3787 (3)0.7744 (2)0.0163 (8)
C50.6465 (3)0.3920 (3)0.7214 (3)0.0202 (8)
H50.60800.43830.73770.024*
C60.5922 (3)0.3350 (3)0.6440 (3)0.0197 (8)
C70.6500 (3)0.2648 (3)0.6220 (3)0.0218 (8)
H70.61330.22700.57000.026*
C80.8192 (3)0.4374 (3)0.8595 (3)0.0165 (8)
C90.4240 (3)0.4284 (3)0.5564 (3)0.0240 (9)
C100.3035 (3)0.4177 (3)0.4879 (3)0.0229 (9)
C110.2528 (4)0.4968 (4)0.4336 (4)0.0423 (13)
H110.29170.55450.44070.051*
C120.1446 (5)0.4904 (4)0.3688 (4)0.0490 (15)
H120.11050.54300.33120.059*
C130.1334 (4)0.3328 (4)0.4145 (4)0.0414 (12)
H130.09120.27730.40820.050*
C140.2411 (4)0.3362 (4)0.4796 (3)0.0383 (12)
H140.27170.28340.51800.046*
C151.0895 (3)0.1640 (3)0.5638 (3)0.0178 (8)
C161.1716 (3)0.2123 (3)0.6484 (3)0.0195 (8)
C171.2835 (3)0.1920 (3)0.6786 (3)0.0222 (9)
H171.30670.15020.64550.027*
C181.3594 (3)0.2342 (3)0.7580 (3)0.0254 (9)
C191.3240 (3)0.2999 (3)0.8052 (3)0.0248 (9)
H191.37560.33020.85760.030*
C201.2126 (3)0.3201 (3)0.7746 (3)0.0197 (8)
C211.1354 (3)0.2748 (3)0.6964 (3)0.0212 (8)
H211.06030.28630.67660.025*
C221.1748 (3)0.3909 (3)0.8245 (3)0.0195 (8)
C231.5245 (3)0.1407 (3)0.7749 (3)0.0260 (9)
C241.6479 (3)0.1320 (3)0.8288 (3)0.0244 (9)
C251.7001 (4)0.0579 (4)0.8048 (4)0.0432 (13)
H251.66030.01650.75630.052*
C261.8130 (4)0.0472 (5)0.8552 (4)0.0518 (15)
H261.84680.00420.84020.062*
C271.8250 (4)0.1743 (4)0.9450 (4)0.0453 (13)
H271.86690.21480.99350.054*
C281.7122 (4)0.1909 (4)0.9002 (3)0.0362 (11)
H281.68040.24150.91830.043*
H1WA0.36870.12030.49360.054*
H1WB0.43820.12020.58720.054*
H2WA0.41560.57770.13050.054*
H2WB0.37990.61820.05010.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O2W0.0282 (18)0.050 (2)0.050 (2)0.0082 (17)0.0092 (16)0.0003 (19)
O1W0.056 (2)0.050 (2)0.033 (2)0.025 (2)0.0012 (18)0.0001 (18)
Nd10.01348 (13)0.02044 (15)0.01550 (14)0.00045 (7)0.00432 (10)0.00084 (8)
O10.0206 (14)0.0288 (16)0.0190 (14)0.0067 (12)0.0026 (12)0.0077 (12)
O20.0143 (14)0.0323 (16)0.0176 (14)0.0070 (12)0.0008 (12)0.0019 (12)
O30.0126 (14)0.0271 (16)0.0389 (18)0.0022 (12)0.0037 (13)0.0093 (14)
O40.0250 (15)0.0305 (16)0.0154 (14)0.0016 (13)0.0067 (12)0.0050 (12)
O50.0210 (17)0.0343 (19)0.036 (2)0.0009 (13)0.0023 (15)0.0072 (15)
O60.0143 (13)0.0190 (14)0.0285 (15)0.0013 (11)0.0076 (12)0.0004 (12)
O70.0225 (14)0.0219 (15)0.0213 (14)0.0033 (12)0.0098 (12)0.0039 (12)
O80.0141 (14)0.0380 (18)0.0269 (16)0.0020 (13)0.0046 (12)0.0134 (14)
O90.0177 (14)0.0329 (17)0.0211 (15)0.0025 (12)0.0040 (12)0.0097 (13)
O100.0294 (17)0.0375 (19)0.0365 (19)0.0018 (15)0.0063 (15)0.0118 (16)
N20.0120 (16)0.0273 (19)0.0258 (19)0.0004 (14)0.0027 (14)0.0088 (15)
N10.0175 (18)0.048 (2)0.025 (2)0.0038 (17)0.0017 (16)0.0043 (18)
N40.0122 (16)0.037 (2)0.030 (2)0.0002 (15)0.0056 (15)0.0132 (17)
N30.026 (2)0.051 (3)0.073 (3)0.005 (2)0.015 (2)0.008 (3)
C10.0180 (19)0.0190 (19)0.021 (2)0.0013 (16)0.0092 (17)0.0008 (16)
C20.0137 (18)0.0183 (19)0.0177 (19)0.0018 (15)0.0046 (16)0.0015 (15)
C30.0101 (17)0.023 (2)0.0165 (19)0.0022 (15)0.0027 (15)0.0013 (16)
C40.0112 (17)0.0204 (19)0.0127 (18)0.0007 (15)0.0008 (15)0.0021 (15)
C50.0152 (19)0.022 (2)0.020 (2)0.0030 (15)0.0046 (16)0.0050 (16)
C60.0102 (17)0.025 (2)0.0173 (19)0.0010 (15)0.0002 (15)0.0052 (16)
C70.0166 (19)0.025 (2)0.018 (2)0.0007 (16)0.0023 (16)0.0054 (17)
C80.0125 (18)0.0145 (19)0.0145 (18)0.0009 (14)0.0016 (15)0.0003 (15)
C90.0144 (19)0.037 (3)0.017 (2)0.0015 (18)0.0030 (16)0.0061 (18)
C100.0167 (19)0.031 (2)0.0173 (19)0.0016 (17)0.0040 (16)0.0023 (17)
C110.026 (3)0.042 (3)0.044 (3)0.005 (2)0.002 (2)0.012 (2)
C120.029 (3)0.056 (4)0.044 (3)0.002 (2)0.001 (3)0.022 (3)
C130.023 (2)0.038 (3)0.050 (3)0.004 (2)0.003 (2)0.007 (2)
C140.021 (2)0.040 (3)0.042 (3)0.003 (2)0.002 (2)0.011 (2)
C150.0171 (19)0.0111 (18)0.022 (2)0.0002 (14)0.0056 (16)0.0025 (15)
C160.0175 (19)0.024 (2)0.0174 (19)0.0035 (16)0.0081 (16)0.0018 (16)
C170.0186 (19)0.025 (2)0.023 (2)0.0008 (16)0.0091 (17)0.0073 (17)
C180.016 (2)0.033 (2)0.025 (2)0.0006 (17)0.0076 (17)0.0049 (19)
C190.018 (2)0.032 (2)0.022 (2)0.0007 (17)0.0065 (17)0.0077 (18)
C200.0191 (19)0.023 (2)0.0185 (19)0.0010 (16)0.0098 (16)0.0014 (16)
C210.0139 (18)0.025 (2)0.025 (2)0.0012 (16)0.0094 (17)0.0026 (17)
C220.019 (2)0.020 (2)0.021 (2)0.0006 (16)0.0104 (17)0.0002 (16)
C230.023 (2)0.029 (2)0.025 (2)0.0020 (18)0.0097 (19)0.0018 (18)
C240.017 (2)0.027 (2)0.030 (2)0.0005 (17)0.0117 (18)0.0009 (18)
C250.032 (3)0.047 (3)0.049 (3)0.002 (2)0.016 (2)0.014 (3)
C260.029 (3)0.055 (3)0.071 (4)0.010 (3)0.021 (3)0.018 (3)
C270.026 (2)0.041 (3)0.055 (3)0.003 (2)0.005 (2)0.013 (3)
C280.024 (2)0.033 (3)0.048 (3)0.004 (2)0.013 (2)0.009 (2)
Geometric parameters (Å, º) top
O2W—H2WA0.8499C2—C31.385 (5)
O2W—H2WB0.8515C2—C71.386 (5)
O1W—H1WA0.8498C3—C41.393 (5)
O1W—H1WB0.8499C3—H30.9300
Nd1—O62.368 (3)C4—C51.395 (5)
Nd1—O3i2.371 (3)C4—C81.498 (5)
Nd1—O7ii2.383 (3)C5—C61.390 (5)
Nd1—O12.436 (3)C5—H50.9300
Nd1—O4iii2.455 (3)C6—C71.381 (5)
Nd1—O9i2.493 (3)C7—H70.9300
Nd1—O8i2.508 (3)C9—C101.521 (5)
Nd1—O22.653 (3)C10—C141.373 (6)
O1—C11.252 (5)C10—C111.381 (7)
O2—C11.261 (5)C11—C121.377 (8)
O3—C81.254 (5)C11—H110.9300
O3—Nd1iv2.371 (3)C12—H120.9300
O4—C81.252 (5)C13—C141.372 (6)
O4—Nd1v2.455 (3)C13—H130.9300
O5—C91.214 (5)C14—H140.9300
O6—C151.249 (4)C15—C161.493 (5)
O7—C151.267 (5)C16—C211.384 (5)
O7—Nd1ii2.383 (3)C16—C171.392 (5)
O8—C221.259 (5)C17—C181.376 (6)
O8—Nd1iv2.508 (3)C17—H170.9300
O9—C221.258 (5)C18—C191.397 (6)
O9—Nd1iv2.493 (3)C19—C201.386 (5)
O10—C231.226 (5)C19—H190.9300
N2—C91.343 (6)C20—C211.389 (6)
N2—C61.418 (5)C20—C221.492 (5)
N2—H20.8596C21—H210.9300
N1—C131.317 (6)C23—C241.505 (6)
N1—C121.327 (7)C24—C281.370 (6)
N1—H10.8864C24—C251.387 (6)
N4—C231.339 (5)C25—C261.383 (7)
N4—C181.422 (5)C25—H250.9300
N4—H4A0.8607C26—H260.9300
N3—C271.319 (7)C27—C281.386 (6)
N3—C261.326 (7)C27—H270.9300
C1—C21.509 (5)C28—H280.9300
H2WA—O2W—H2WB100.1C7—C6—C5119.7 (3)
H1WA—O1W—H1WB110.4C7—C6—N2117.5 (3)
O6—Nd1—O3i73.66 (10)C5—C6—N2122.7 (4)
O6—Nd1—O7ii126.34 (9)C6—C7—C2121.2 (4)
O3i—Nd1—O7ii79.05 (10)C6—C7—H7119.4
O6—Nd1—O179.68 (10)C2—C7—H7119.4
O3i—Nd1—O1146.63 (10)O4—C8—O3123.2 (4)
O7ii—Nd1—O1133.86 (9)O4—C8—C4118.4 (3)
O6—Nd1—O4iii83.28 (10)O3—C8—C4118.4 (3)
O3i—Nd1—O4iii123.93 (10)O5—C9—N2125.5 (4)
O7ii—Nd1—O4iii75.02 (10)O5—C9—C10120.1 (4)
O1—Nd1—O4iii71.12 (10)N2—C9—C10114.4 (4)
O6—Nd1—O9i153.47 (10)C14—C10—C11118.2 (4)
O3i—Nd1—O9i126.94 (10)C14—C10—C9124.2 (4)
O7ii—Nd1—O9i77.88 (10)C11—C10—C9117.6 (4)
O1—Nd1—O9i74.69 (10)C12—C11—C10120.1 (5)
O4iii—Nd1—O9i94.70 (9)C12—C11—H11120.0
O6—Nd1—O8i133.14 (10)C10—C11—H11120.0
O3i—Nd1—O8i78.10 (10)N1—C12—C11119.0 (5)
O7ii—Nd1—O8i82.49 (10)N1—C12—H12120.5
O1—Nd1—O8i107.52 (10)C11—C12—H12120.5
O4iii—Nd1—O8i143.44 (10)N1—C13—C14119.9 (5)
O9i—Nd1—O8i51.99 (9)N1—C13—H13120.1
O6—Nd1—O276.49 (9)C14—C13—H13120.1
O3i—Nd1—O2102.66 (10)C13—C14—C10119.9 (5)
O7ii—Nd1—O2155.57 (9)C13—C14—H14120.1
O1—Nd1—O250.83 (9)C10—C14—H14120.1
O4iii—Nd1—O2120.74 (9)O6—C15—O7124.3 (4)
O9i—Nd1—O282.03 (10)O6—C15—C16118.1 (3)
O8i—Nd1—O274.19 (11)O7—C15—C16117.6 (3)
O6—Nd1—C22i152.25 (11)C21—C16—C17121.2 (4)
O3i—Nd1—C22i102.40 (11)C21—C16—C15119.7 (3)
O7ii—Nd1—C22i78.11 (10)C17—C16—C15119.1 (3)
O1—Nd1—C22i91.90 (11)C18—C17—C16119.5 (4)
O4iii—Nd1—C22i119.15 (10)C18—C17—H17120.3
O9i—Nd1—C22i25.98 (10)C16—C17—H17120.3
O8i—Nd1—C22i26.04 (10)C17—C18—C19119.8 (4)
O2—Nd1—C22i77.73 (10)C17—C18—N4122.8 (4)
C1—O1—Nd199.1 (2)C19—C18—N4117.4 (4)
C1—O2—Nd188.6 (2)C20—C19—C18120.4 (4)
C8—O3—Nd1iv172.9 (3)C20—C19—H19119.8
C8—O4—Nd1v115.1 (2)C18—C19—H19119.8
C15—O6—Nd1131.7 (2)C19—C20—C21119.9 (4)
C15—O7—Nd1ii130.8 (2)C19—C20—C22120.4 (4)
C22—O8—Nd1iv93.0 (2)C21—C20—C22119.7 (3)
C22—O9—Nd1iv93.8 (2)C16—C21—C20119.2 (4)
C9—N2—C6124.9 (4)C16—C21—H21120.4
C9—N2—H2117.5C20—C21—H21120.4
C6—N2—H2117.6O9—C22—O8121.1 (4)
C13—N1—C12122.8 (4)O9—C22—C20119.7 (3)
C13—N1—H1115.2O8—C22—C20119.1 (4)
C12—N1—H1121.1O9—C22—Nd1iv60.3 (2)
C23—N4—C18127.4 (4)O8—C22—Nd1iv61.0 (2)
C23—N4—H4A116.3O10—C23—N4123.2 (4)
C18—N4—H4A116.3O10—C23—C24119.3 (4)
C27—N3—C26115.5 (4)N4—C23—C24117.4 (4)
O1—C1—O2121.5 (4)C28—C24—C25117.6 (4)
O1—C1—C2117.1 (3)C28—C24—C23125.0 (4)
O2—C1—C2121.3 (3)C25—C24—C23117.3 (4)
C3—C2—C7119.7 (4)C26—C25—C24118.1 (5)
C3—C2—C1123.0 (3)C26—C25—H25121.0
C7—C2—C1117.3 (3)C24—C25—H25121.0
C2—C3—C4119.2 (3)N3—C26—C25125.1 (5)
C2—C3—H3120.4N3—C26—H26117.5
C4—C3—H3120.4C25—C26—H26117.5
C3—C4—C5121.0 (3)N3—C27—C28124.4 (5)
C3—C4—C8119.0 (3)N3—C27—H27117.8
C5—C4—C8119.9 (3)C28—C27—H27117.8
C6—C5—C4119.1 (4)C24—C28—C27119.3 (4)
C6—C5—H5120.5C24—C28—H28120.4
C4—C5—H5120.5C27—C28—H28120.4
O6—Nd1—O1—C181.7 (2)N2—C9—C10—C1422.5 (6)
O3i—Nd1—O1—C144.5 (3)O5—C9—C10—C1118.0 (6)
O7ii—Nd1—O1—C1146.9 (2)N2—C9—C10—C11160.5 (5)
O4iii—Nd1—O1—C1168.1 (3)C14—C10—C11—C124.3 (9)
O9i—Nd1—O1—C191.3 (3)C9—C10—C11—C12178.4 (5)
O8i—Nd1—O1—C150.4 (3)C13—N1—C12—C112.1 (9)
O2—Nd1—O1—C10.8 (2)C10—C11—C12—N11.3 (10)
C22i—Nd1—O1—C171.7 (3)C12—N1—C13—C142.4 (9)
O6—Nd1—O2—C188.4 (2)N1—C13—C14—C100.8 (8)
O3i—Nd1—O2—C1157.9 (2)C11—C10—C14—C134.1 (8)
O7ii—Nd1—O2—C1110.8 (3)C9—C10—C14—C13178.9 (5)
O1—Nd1—O2—C10.8 (2)Nd1—O6—C15—O775.6 (5)
O4iii—Nd1—O2—C114.8 (3)Nd1—O6—C15—C16104.1 (4)
O9i—Nd1—O2—C175.9 (2)Nd1ii—O7—C15—O648.7 (5)
O8i—Nd1—O2—C1128.6 (2)Nd1ii—O7—C15—C16131.1 (3)
C22i—Nd1—O2—C1102.0 (2)O6—C15—C16—C2124.5 (5)
O3i—Nd1—O6—C158.1 (3)O7—C15—C16—C21155.8 (4)
O7ii—Nd1—O6—C1554.4 (4)O6—C15—C16—C17154.2 (4)
O1—Nd1—O6—C15167.8 (4)O7—C15—C16—C1725.5 (5)
O4iii—Nd1—O6—C15120.2 (3)C21—C16—C17—C180.4 (6)
O9i—Nd1—O6—C15152.7 (3)C15—C16—C17—C18178.3 (4)
O8i—Nd1—O6—C1563.4 (4)C16—C17—C18—C192.6 (7)
O2—Nd1—O6—C15115.9 (3)C16—C17—C18—N4178.6 (4)
C22i—Nd1—O6—C1593.7 (4)C23—N4—C18—C1718.5 (7)
Nd1—O1—C1—O21.5 (4)C23—N4—C18—C19162.6 (4)
Nd1—O1—C1—C2178.3 (3)C17—C18—C19—C202.4 (7)
Nd1—O2—C1—O11.4 (4)N4—C18—C19—C20178.8 (4)
Nd1—O2—C1—C2178.5 (3)C18—C19—C20—C210.1 (7)
O1—C1—C2—C3158.1 (4)C18—C19—C20—C22179.4 (4)
O2—C1—C2—C322.1 (6)C17—C16—C21—C202.0 (6)
O1—C1—C2—C720.5 (5)C15—C16—C21—C20179.3 (4)
O2—C1—C2—C7159.4 (4)C19—C20—C21—C162.2 (6)
C7—C2—C3—C42.7 (6)C22—C20—C21—C16177.3 (4)
C1—C2—C3—C4178.8 (4)Nd1iv—O9—C22—O84.0 (4)
C2—C3—C4—C50.8 (6)Nd1iv—O9—C22—C20175.0 (3)
C2—C3—C4—C8176.1 (4)Nd1iv—O8—C22—O94.0 (4)
C3—C4—C5—C61.5 (6)Nd1iv—O8—C22—C20175.1 (3)
C8—C4—C5—C6178.3 (4)C19—C20—C22—O90.1 (6)
C4—C5—C6—C71.7 (6)C21—C20—C22—O9179.4 (4)
C4—C5—C6—N2179.8 (4)C19—C20—C22—O8179.0 (4)
C9—N2—C6—C7136.0 (4)C21—C20—C22—O81.5 (6)
C9—N2—C6—C545.4 (6)C18—N4—C23—O105.7 (7)
C5—C6—C7—C20.3 (6)C18—N4—C23—C24174.7 (4)
N2—C6—C7—C2178.3 (4)O10—C23—C24—C28175.8 (5)
C3—C2—C7—C62.5 (6)N4—C23—C24—C284.6 (7)
C1—C2—C7—C6178.9 (4)O10—C23—C24—C253.3 (6)
Nd1v—O4—C8—O322.1 (5)N4—C23—C24—C25176.3 (4)
Nd1v—O4—C8—C4155.6 (3)C28—C24—C25—C260.9 (8)
C3—C4—C8—O4135.3 (4)C23—C24—C25—C26178.3 (5)
C5—C4—C8—O441.6 (5)C27—N3—C26—C252.8 (10)
C3—C4—C8—O342.5 (5)C24—C25—C26—N32.4 (10)
C5—C4—C8—O3140.6 (4)C26—N3—C27—C281.8 (9)
C6—N2—C9—O54.0 (7)C25—C24—C28—C270.1 (7)
C6—N2—C9—C10174.4 (4)C23—C24—C28—C27179.1 (5)
O5—C9—C10—C14159.0 (5)N3—C27—C28—C240.5 (9)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y, z+1; (iii) x, y+1/2, z1/2; (iv) x+2, y+1/2, z+3/2; (v) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1W0.862.062.846 (5)151
N1—H1···O2vi0.891.852.725 (4)171
O1W—H1WA···O9vi0.851.892.734 (5)177
O2W—H2WA···O10vi0.852.523.124 (5)129
O1W—H1WB···O10vii0.852.002.845 (5)171
O2W—H2WA···O4viii0.852.362.923 (5)125
O2W—H2WB···O1ix0.852.112.957 (4)178
N4—H4A···O2Wx0.862.152.953 (5)156
Symmetry codes: (vi) x1, y+1/2, z1/2; (vii) x1, y, z; (viii) x+1, y+1, z+1; (ix) x+1, y+1/2, z+1/2; (x) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Nd(C14H9N2O5)(C14H8N2O5)]·2H2O
Mr749.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.4421 (15), 13.7754 (17), 16.2418 (13)
β (°) 115.813 (4)
V3)2707.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.715, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
14297, 5287, 4792
Rint0.052
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.07
No. of reflections5287
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.83, 1.61

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1W0.862.062.846 (5)151.3
N1—H1···O2i0.891.852.725 (4)170.8
O1W—H1WA···O9i0.851.892.734 (5)176.8
O2W—H2WA···O10i0.852.523.124 (5)129.3
O1W—H1WB···O10ii0.852.002.845 (5)171.1
O2W—H2WA···O4iii0.852.362.923 (5)124.6
O2W—H2WB···O1iv0.852.112.957 (4)177.9
N4—H4A···O2Wv0.862.152.953 (5)155.6
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by Hengyang Bureau of Science and Technology (grant No. 2009 K J29).

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuyskens, P. L. (1977). J. Am. Chem. Soc. 99, 2578–2582.  CrossRef CAS Web of Science Google Scholar
First citationKiritsis, V., Michaeljdes, A., Skoulika, S., Golhen, S. & Ouahab, L. (1998). Inorg. Chem. 37, 3407–3410.  Google Scholar
First citationKitagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739–1753.  Web of Science CrossRef CAS Google Scholar
First citationLee, C. M. & Kumler, W. D. (1962). J. Am. Chem. Soc. 84, 571–578.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Huang, Y. Q., Liu, G. X., Okamuraz, T.-A., Doi, M., Sheng, Y. W., Sun, W. Y. & Ueyama, N. (2007). Chem. Eur. J. 13, 7523–7531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, B., Cheng, P., Chen, X. Y., Cheng, C., Shi, W., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). J. Am. Chem. Soc. 126, 3012–3013.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds