organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-{6-[5-(Pyrazin-2-yl)-1H-1,2,4-triazol-3-yl]pyridin-2-yl}-1H-1,2,4-triazol-3-yl)pyrazine

aDepartment of Physical Chemistry, Henan Polytechnic University, Jiao Zuo 454000, People's Republic of China, and bDepartment of Medicine, Hebi College of Vocation and Technology, He Bi 458030, People's Republic of China
*Correspondence e-mail: wangqiang@hpu.edu.cn

(Received 18 August 2011; accepted 22 August 2011; online 27 August 2011)

In the title mol­ecule, C17H11N11, the five rings are almost coplanar [maxium deviation 0.1949 (1) Å]. The dihedral angles between the two pyrazine rings and the two triazole rings are 1.52 (4) and 2.51 (5)°, respectively. The central pyridine ring forms dihedral angles of 5.57 (1) and 1.71 (1)° with the two triazole rings. The crystal packing consists of a three-dimensional network structure generated by inter­molecular N—H⋯N hydrogen bonds. The crystal structure is further consolidated by ππ stacking [centroid-to-centroid distances 3.599 (10) and 4.769 (13) Å].

Related literature

For the applications of compounds containing triazole subunits, see: Zhang et al. (2010[Zhang, C.-H., Zhang, J.-J., Li, W. & Liu, B.-H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 599-600.]); Fischer (2007[Fischer, G. (2007). Adv. Heterocycl. Chem. 95, 143-219.]); Ouellette et al. (2007[Ouellette, W., Hudson, B. S. & Zubieta, J. (2007). Inorg. Chem. 46, 4887-4904.]). For a recent study, see: Xu et al. (2011[Xu, Z., Zhao, X. & Wang, Q. (2011). Acta Cryst. E67, o2037.]). For the synthesis, see: Browne (1975[Browne, E. J. (1975). Aust. J. Chem. 28, 2543-2546.]); Klingele & Brooker (2004[Klingele, H. M. & Brooker, S. (2004). Eur. J. Org. Chem. pp, 3422-3434.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11N11

  • Mr = 369.37

  • Monoclinic, P 21 /c

  • a = 10.751 (2) Å

  • b = 13.721 (3) Å

  • c = 11.385 (2) Å

  • β = 102.57 (3)°

  • V = 1639.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.905, Tmax = 1.000

  • 17628 measured reflections

  • 3204 independent reflections

  • 2896 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.125

  • S = 1.22

  • 3204 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H34⋯N12i 0.96 (2) 1.92 (2) 2.817 (3) 155 (2)
N4—H35⋯N13ii 0.92 (2) 2.21 (2) 3.113 (3) 167 (2)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Compounds containing triazole subunits have been intensively studied owing to diverse biological properties and also to the ease of complexation (Zhang et al., 2010; Fischer, 2007; Ouellette et al., 2007). In continuation with a recent study (Xu et al., 2011), we report the title compound (Scheme I), 2-(5-(6-(5-(pyrazin-2-yl)-1H-1,2,4-triazol-3-yl)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)pyrazine.

The five rings are almost coplanar (maxium deviation = 0.1949 (1) Å). The dihedral angles between the two pyrazine rings and the two triazole rings are 1.52 (4) and 2.51 (5)°, respectively. The central pyridine ring forms dihedral angles of 5.57 (1) and 1.71 (1)° with the two triazole rings (Fig. 1). The crystal packing consists of a three-dimensional net structure generated by intermolecular N—H···N hydrogen bonds. The crystal structure is further consolidated by ππ stacking [centroid–centroid distances = 3.599 (10) and 4.769 (13) Å].

Related literature top

For the applications of compounds containing triazole subunits, see: Zhang et al. (2010); Fischer (2007); Ouellette et al. (2007). For a recent study, see: Xu et al. (2011). For the synthesis, see: Browne (1975); Klingele & Brooker (2004).

Experimental top

2-(5-(6-(5-(pyrazin-2-yl)-1H-1,2,4-triazol-3-yl)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)pyrazine was prepared according to Browne (1975) and Klingele & Brooker (2004). The crystals suitable for crystallographic analysis were grown by recrystallization from DMF and ethanol solution as colorless prism.

Refinement top

N-bound H atoms were located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C—H = 0.94 Å) and were constrained in a riding motion approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines, viewed down the a axis.
2-(5-{6-[5-(Pyrazin-2-yl)-1H-1,2,4-triazol-3-yl]pyridin-2-yl}-1H- 1,2,4-triazol-3-yl)pyrazine top
Crystal data top
C17H11N11F(000) = 760
Mr = 369.37Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4186 reflections
a = 10.751 (2) Åθ = 1.9–27.1°
b = 13.721 (3) ŵ = 0.10 mm1
c = 11.385 (2) ÅT = 293 K
β = 102.57 (3)°Prism, colourless
V = 1639.2 (6) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3204 independent reflections
Radiation source: fine-focus sealed tube2896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1313
Tmin = 0.905, Tmax = 1.000k = 1616
17628 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.22 w = 1/[σ2(Fo2) + (0.042P)2 + 0.4894P]
where P = (Fo2 + 2Fc2)/3
3204 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H11N11V = 1639.2 (6) Å3
Mr = 369.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.751 (2) ŵ = 0.10 mm1
b = 13.721 (3) ÅT = 293 K
c = 11.385 (2) Å0.20 × 0.20 × 0.20 mm
β = 102.57 (3)°
Data collection top
Bruker SMART APEX
diffractometer
3204 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2896 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 1.000Rint = 0.048
17628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.22Δρmax = 0.17 e Å3
3204 reflectionsΔρmin = 0.18 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N70.80331 (17)0.04695 (12)0.48120 (15)0.0328 (4)
N30.65636 (17)0.55996 (12)0.51910 (15)0.0338 (4)
N60.74831 (16)0.30212 (12)0.54161 (15)0.0324 (4)
N10.67651 (19)0.77043 (13)0.71611 (16)0.0429 (5)
N40.73685 (19)0.56738 (13)0.71244 (16)0.0391 (5)
H350.764 (2)0.5883 (17)0.791 (2)0.047*
N50.75302 (19)0.47317 (13)0.68211 (16)0.0412 (5)
C190.9825 (2)0.15553 (16)0.66349 (19)0.0382 (5)
H191.01420.11960.73280.046*
C10.90635 (19)0.10896 (14)0.56482 (18)0.0308 (5)
N90.91344 (18)0.04313 (13)0.67510 (16)0.0401 (5)
C20.64501 (19)0.72112 (15)0.61304 (18)0.0308 (5)
C30.6795 (2)0.61778 (15)0.61474 (18)0.0311 (5)
N80.86523 (18)0.13308 (13)0.64512 (17)0.0387 (5)
H340.887 (2)0.1853 (17)0.702 (2)0.046*
C40.87349 (19)0.00581 (14)0.57292 (18)0.0307 (5)
N130.86310 (17)0.15592 (13)0.46165 (16)0.0365 (4)
N121.01117 (18)0.24929 (13)0.66175 (17)0.0412 (5)
C70.6963 (2)0.38491 (14)0.48938 (18)0.0311 (5)
C80.8012 (2)0.13480 (15)0.52990 (18)0.0307 (5)
C90.7024 (2)0.47236 (14)0.56489 (18)0.0318 (5)
C100.6893 (2)0.22266 (16)0.34824 (19)0.0368 (5)
H100.68950.16660.30230.044*
C230.6418 (3)0.86407 (17)0.7106 (2)0.0495 (6)
H230.66230.90150.78020.059*
C120.74258 (19)0.22300 (14)0.47064 (18)0.0306 (5)
C180.8945 (2)0.25062 (16)0.4604 (2)0.0406 (6)
H180.86730.28610.38990.049*
N20.54644 (19)0.85860 (14)0.50318 (17)0.0447 (5)
C130.9652 (2)0.29676 (16)0.5592 (2)0.0410 (6)
H130.98160.36310.55480.049*
C140.6359 (2)0.30832 (16)0.2967 (2)0.0393 (5)
H140.59920.31100.21490.047*
C150.5771 (2)0.90720 (17)0.6064 (2)0.0468 (6)
H150.55410.97240.60810.056*
C160.6376 (2)0.38988 (15)0.36799 (19)0.0363 (5)
H160.59990.44760.33520.044*
C220.5812 (2)0.76535 (16)0.5078 (2)0.0396 (5)
H220.56190.72850.43770.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N70.0419 (10)0.0238 (9)0.0304 (9)0.0030 (8)0.0026 (8)0.0000 (7)
N30.0461 (11)0.0226 (9)0.0304 (9)0.0026 (8)0.0033 (8)0.0003 (7)
N60.0418 (10)0.0226 (9)0.0314 (9)0.0008 (8)0.0049 (8)0.0015 (7)
N10.0583 (12)0.0295 (10)0.0348 (10)0.0045 (9)0.0030 (9)0.0043 (8)
N40.0593 (13)0.0247 (10)0.0288 (10)0.0048 (9)0.0001 (9)0.0029 (8)
N50.0619 (13)0.0242 (10)0.0334 (10)0.0060 (9)0.0013 (9)0.0006 (8)
C190.0474 (13)0.0293 (12)0.0336 (12)0.0008 (10)0.0007 (10)0.0024 (9)
C10.0340 (11)0.0257 (11)0.0312 (11)0.0026 (9)0.0034 (9)0.0002 (8)
N90.0505 (11)0.0277 (10)0.0363 (10)0.0023 (8)0.0033 (9)0.0028 (8)
C20.0363 (11)0.0246 (11)0.0305 (11)0.0020 (9)0.0048 (9)0.0004 (8)
C30.0376 (11)0.0258 (11)0.0281 (11)0.0016 (9)0.0032 (9)0.0000 (8)
N80.0518 (12)0.0241 (10)0.0359 (11)0.0015 (8)0.0002 (9)0.0050 (8)
C40.0373 (12)0.0230 (10)0.0300 (11)0.0009 (9)0.0032 (9)0.0004 (8)
N130.0445 (11)0.0278 (10)0.0345 (10)0.0011 (8)0.0025 (8)0.0006 (8)
N120.0453 (11)0.0314 (11)0.0427 (11)0.0023 (9)0.0003 (9)0.0073 (9)
C70.0372 (11)0.0244 (11)0.0307 (11)0.0010 (9)0.0052 (9)0.0010 (8)
C80.0367 (11)0.0248 (10)0.0299 (11)0.0012 (9)0.0056 (9)0.0023 (8)
C90.0401 (12)0.0230 (10)0.0302 (11)0.0009 (9)0.0030 (9)0.0005 (8)
C100.0468 (13)0.0270 (12)0.0355 (12)0.0001 (10)0.0068 (10)0.0055 (9)
C230.0717 (17)0.0291 (13)0.0412 (13)0.0063 (12)0.0017 (12)0.0085 (10)
C120.0358 (11)0.0239 (11)0.0317 (11)0.0007 (9)0.0065 (9)0.0023 (8)
C180.0488 (13)0.0291 (12)0.0399 (13)0.0030 (10)0.0004 (11)0.0065 (10)
N20.0603 (13)0.0323 (11)0.0390 (11)0.0109 (9)0.0051 (10)0.0030 (8)
C130.0437 (13)0.0267 (12)0.0493 (14)0.0019 (10)0.0031 (11)0.0021 (10)
C140.0501 (14)0.0348 (13)0.0297 (12)0.0002 (10)0.0018 (10)0.0000 (9)
C150.0606 (16)0.0272 (12)0.0493 (14)0.0089 (11)0.0049 (12)0.0014 (11)
C160.0470 (13)0.0261 (11)0.0333 (12)0.0014 (10)0.0031 (10)0.0022 (9)
C220.0515 (14)0.0296 (12)0.0354 (12)0.0064 (10)0.0041 (11)0.0025 (9)
Geometric parameters (Å, º) top
N7—C81.329 (2)N8—H340.96 (2)
N7—C41.357 (3)N13—C181.343 (3)
N3—C31.326 (2)N12—C131.334 (3)
N3—C91.360 (2)C7—C161.390 (3)
N6—C71.346 (2)C7—C91.469 (3)
N6—C121.347 (2)C8—C121.460 (3)
N1—C21.333 (3)C10—C141.381 (3)
N1—C231.336 (3)C10—C121.387 (3)
N4—C31.340 (3)C10—H100.9300
N4—N51.359 (2)C23—C151.372 (3)
N4—H350.92 (2)C23—H230.9300
N5—C91.327 (3)C18—C131.368 (3)
C19—N121.324 (3)C18—H180.9300
C19—C11.393 (3)N2—C151.329 (3)
C19—H190.9300N2—C221.331 (3)
C1—N131.332 (3)C13—H130.9300
C1—C41.467 (3)C14—C161.380 (3)
N9—C41.331 (3)C14—H140.9300
N9—N81.353 (2)C15—H150.9300
C2—C221.384 (3)C16—H160.9300
C2—C31.465 (3)C22—H220.9300
N8—C81.342 (3)
C8—N7—C4102.71 (16)N7—C8—C12127.14 (18)
C3—N3—C9103.07 (16)N8—C8—C12122.96 (18)
C7—N6—C12117.06 (17)N5—C9—N3114.43 (18)
C2—N1—C23115.61 (19)N5—C9—C7123.46 (18)
C3—N4—N5109.94 (17)N3—C9—C7122.10 (18)
C3—N4—H35129.4 (15)C14—C10—C12117.8 (2)
N5—N4—H35120.7 (15)C14—C10—H10121.1
C9—N5—N4102.49 (17)C12—C10—H10121.1
N12—C19—C1122.1 (2)N1—C23—C15122.6 (2)
N12—C19—H19118.9N1—C23—H23118.7
C1—C19—H19118.9C15—C23—H23118.7
N13—C1—C19121.37 (19)N6—C12—C10124.10 (19)
N13—C1—C4118.67 (18)N6—C12—C8115.60 (18)
C19—C1—C4119.95 (18)C10—C12—C8120.26 (18)
C4—N9—N8101.92 (17)N13—C18—C13122.4 (2)
N1—C2—C22121.49 (19)N13—C18—H18118.8
N1—C2—C3117.69 (18)C13—C18—H18118.8
C22—C2—C3120.82 (18)C15—N2—C22115.70 (19)
N3—C3—N4110.06 (18)N12—C13—C18121.8 (2)
N3—C3—C2124.49 (18)N12—C13—H13119.1
N4—C3—C2125.44 (18)C18—C13—H13119.1
C8—N8—N9110.45 (17)C16—C14—C10119.3 (2)
C8—N8—H34129.9 (14)C16—C14—H14120.4
N9—N8—H34119.3 (14)C10—C14—H14120.4
N9—C4—N7115.03 (18)N2—C15—C23122.0 (2)
N9—C4—C1120.37 (18)N2—C15—H15119.0
N7—C4—C1124.60 (17)C23—C15—H15119.0
C1—N13—C18115.89 (18)C14—C16—C7119.3 (2)
C19—N12—C13116.37 (19)C14—C16—H16120.3
N6—C7—C16122.38 (19)C7—C16—H16120.3
N6—C7—C9118.00 (18)N2—C22—C2122.5 (2)
C16—C7—C9119.62 (18)N2—C22—H22118.7
N7—C8—N8109.88 (18)C2—C22—H22118.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H34···N12i0.96 (2)1.92 (2)2.817 (3)155 (2)
N4—H35···N13ii0.92 (2)2.21 (2)3.113 (3)167 (2)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H11N11
Mr369.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.751 (2), 13.721 (3), 11.385 (2)
β (°) 102.57 (3)
V3)1639.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.905, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17628, 3204, 2896
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.125, 1.22
No. of reflections3204
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H34···N12i0.96 (2)1.92 (2)2.817 (3)155 (2)
N4—H35···N13ii0.92 (2)2.21 (2)3.113 (3)167 (2)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Research Programme of the Education Department of Henan Province (grant No. 2011 A150015), the Henan Polytechnic University Foundation for Youth (grant No. P051102) and the Henan Polytechnic University Foundation for Doctoral Teachers (grant No. B2010-65). The authors thank Dr D. Zhao for assistance with the data analysis.

References

First citationBrowne, E. J. (1975). Aust. J. Chem. 28, 2543–2546.  CrossRef CAS Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFischer, G. (2007). Adv. Heterocycl. Chem. 95, 143–219.  Web of Science CrossRef Google Scholar
First citationKlingele, H. M. & Brooker, S. (2004). Eur. J. Org. Chem. pp, 3422–3434.  CrossRef Google Scholar
First citationOuellette, W., Hudson, B. S. & Zubieta, J. (2007). Inorg. Chem. 46, 4887–4904.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z., Zhao, X. & Wang, Q. (2011). Acta Cryst. E67, o2037.  CrossRef IUCr Journals Google Scholar
First citationZhang, C.-H., Zhang, J.-J., Li, W. & Liu, B.-H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 599–600.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds